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Eff'ect of a spectral line with Doppler broadening on optical bistability in a ring cavity
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We discuss the effect of a spectral line with Doppler broadening on optical bistability in a ring

cavity which contains a saturable absorber of two-level atoms. In this paper, we first derive a gen-

eralized equation that is satisfied by the output light intensity of this system from the Langevin

equations in H. Haken s Laser Theory (Springer, Heidelberg, 1970j. Then, we simplify the general-

ized equation for a single mode. We study the single-mode equation for both nonexisting and exist-

ing spontaneous emission and obtain the result that the square of the bistability loop increases with

the increase of Doppler broadening of the spectral line.

I. INTRODUCTION

Optical bistability has been one of the important prob-
lems in the field of nonlinear optics for several years. As
early as 1969, when Szoke et al. researched the properties
of a Fabry-Perot etalon which contains a saturable ab-

sorber, ' they found that this system could show a new

feature. So they first put forward the concept of the opti-
cal bistability and predicted some applications of this sys-
tern. Unfortunately, at that time they could not observe
the bistable output of this system. The bistability was not
experimentally demonstrated until 1975. At the same
time, many other people studied bistability, some experi-
mentally and some developing only the theoretical pre-
diction of bistability.

In fact, there are two physical mechanisms to produce
bistability. One is an absorptive operation ' which is
due to the saturable absorption of an absorber in the laser
cavity and the other is a dispersive operation' ' which
results from the dispersion of a nonlinear body in the
laser cavity. In this paper we will study the first one,
considering a two-level-atom system. Many methods
have been developed to deal with the various problems in

a bistable system which contains the two-level atoms as
an absorber. Examples are classical analysis by rate
equations, semiclassical analyses by the Bloch equation
or the Bloch-Maxwell equation, ' and several quantum
treatments by the Von Neumann equation' '" or photon
statistics. ' ' ' But in these papers and in Refs. 13—20,
the laser light is treated as monochromatic. In fact, the
light exhibits a certain broadening, especially inhomo-
geneous broadening because of spontaneous emission,
movement of atoms in gas, and the lattice distortion
caused by impurity atoms in a solid. This inhomogene-
ous linewidth was included in Ref. 9 when the authors
studied a gas-laser system with a saturable absorber. In
Ref. 9 the authors mainly discuss the principle of gen-
erating the bistability and give some parameters which
cause bistability of this system, such as the pumping pa-
rameters m, II, and the detuning (0— )/cok, u. They did
not study the effect of the spectral line with inhomogene-
ous broadening on the bistability, for their starting point

was only to treat the gas-laser system. As the aim of this
paper we discuss this effect on the bistability.

The method that we use starts from the Langevin equa-
tions in Ref. 22, which gives people a distinct physical
image of inhomogeneous broadening. In Sec. II we give
the general theory of all procedures and derive the equa-
tion of motion of the cavity modes. This gives a mul-

timode case more general than is needed for this paper.
In Sec. III we simplify the multimode equation into a
single-mode equation using some approximations. Sec-
tion IV discusses the solution of the single-mode equation
and draws the curves of the output light with Doppler
broadening. Finally, Sec. V briefly concludes this paper.

II. GENERAL THEORY

Figure 1 shows the principle of the ring cavity which
consists of three mirrors. In a ring cavity, an advantage
is that the population inversion of atoms is spatially
homogeneous because the modes in the ring cavity are
running waves and the spatial structure of the modes is
not taken into account for running-wave modes. ' In
Fig. 1 A represents an amplification cell and 8 is an ab-
sorption cell. In the theoretical model to be used we as-
sume that the amplifying medium and absorbing medium
consist of a set of two-level atoms, and that the laser ac-
tion occurs from the atomic state l to another, k (see Fig.
2). Figure 2 is based on a supposition that the atomic
transition in the absorbing cell can be described with a
model similar to the amplifying cell, but with different
values of the characterizing parameters, and that the
atoms and the resonance frequencies in both cells are the
same. ' The Doppler broadening is inhomogeneous,
thus implying that a given mode is coupled with different
strengths to different groups of atoms. This characteris-
tic is illustrated in the subsequent discussion. In Fig. 2,
a and a are the creation and annihilation operators of an
atom for the active cell (the subscripts I and k show the
high and low levels, respectively); the levels in the ampli-
fying medium decay with the rates y for the high level
and yk for low level, and they are populated by a pump-
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FIG. 1. Principle of the ring cavity.
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ing mechanism at the rate R„, for the high level and the
rate A,„, for th.e low level. Similarly, in the absorbing
medium, a t and a represent the creation and annihilation
operators of the atom, the decay rates of the two levels
are conveniently expressed by y and yk multiplied by
some parameter g ((&1), ' and the pumping rates are
R„b for the high level and A, „b for the low level. The
pumping rates in the amplifying cell must be so intense as
to get the population inversion, but on the contrary, in
the absorbing cell the pumping rates are weak and no
population inversion is induced. In the laser field, bJ and
b are the creation and annihilation operators of photons,
and the photon numbers are given by n =b b for mode

j whose frequency and lifetime are described by QJ and
1/kj. We assume that the mode j interacts with groups
of atoms counted by u, and the strength of the interaction
between them is described by g„. Furthermore we as-
sume that the emission lines of all groups of atoms have
the same homogeneous width I but different line centers

These atom lines superimpose upon the Doppler
broadening line. Finally we assume that the group of
atoms u has a corresponding group in the absorbing cell.

After the above interpretation, we can set up Langevin
equations for the field, the dipole, and the atom number.
In the field equation, spontaneous emission is taken ac-
count of.

The field equation is
T

and the atom-number equations are

N&u R=„,+i(akal)~ gg„,b, i (a&a—k)u gg„*,b,
J J

—yN, „+III „,
Nkg =~//+i(a/ ak )&& y ggJb/ —i(akaI )g y g„/bf

J J

N&„Rub+——i(akal )u 2 g„jb~ i(ajak —)„gg„jbj
J J

Nk„——A, „+bi(aI ak )„gg„~bj i(aka—&)„gg„jbj
J J

hark

N—k. + rkk, .
where

Nlu = (a& aI )„, Nl, „——(akak )»t

Nl —& al al )„, Nk„——(al, ak )„.
F~+,I Ik „,l Ik „I II „,I kk „,I kk „are the fluctuating force
of the field, dipole, and atom number, which vanish when
we average them over the heat bath, i.e.,

i 1+ —gg„'(a(ak)„+F+,
J

the dipole equations are

vy(a& a& &

The fluctuations result from the microscopic effects,
but we know that any macroscopic quantity comes from
the statistical average of a lot of microscopic ones corre-
sponding to it. We study the macroscopic quantity so as
to compare this theoretical result with the experimental
demonstration; hence we average the above equations
around the heat bath. The mean-field equations are as
follows:

b*. = iQ—J J
K

+i 1+ gg„*,(a, a„&
2 n

) p(apaa)

FIG. 2. Transmission of two cells.
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Thus the atom number and the dipole could be slow time
variables. Ignoring the frequency pulling and inserting
bJ*=BJ.*exp(iQ. t) (B i.s the slow time variable compared
with b ) in Eqs. (2) and (3), we have

(al ak )„=—t g g„b*(N, N—k)„D (Qj co„—),
J

i—g g„Jb "(Nl Nk —)„,
J

Nl =R„,+i & akat & Xg„JbJ"

i (a—l ak ) u g g„&bJ yNlu
J

Nk„=A, „,+i(al ak )„gg„'Jb,
J

i (a—kal )„gg„jbl' ykNk—„,
J

Nlu =Rub+i &akal &u P g„lbJ'
J

i (al a—k )u g g„"Jbl gyNlu—
J

Nku =~ub+'&al ak )u g gujbJ
J

'&akal ) Xg„lbJ gykNk„. —
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(4)

(5)

(6)

(7)
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J

~here

D (Q —al„)= 1

—+i(Q —co )
2 J

Substituting Eqs. (9) and (10) in Eq. (1), we obtain

K.
bJ'= i Q — bJ'+ g g„'g„b'(Nl Nk)„D—

uJ

X (Qj —co„) 1+ 1

J

1—g g„'Jg„jb,'(Nl Nk)„Dj(Q—j —co„) 1+
n

u, J J

(10)

Assume that the atoms rapidly relax to the stable state
around Eqs. (2)—(7), i.e.,

I f))kj

(12)

Multiplying Eq. (12) by b and adding the complex-

conjugate expression to the result, we obtain

"j= j "j + + g lg~~jg J'bj~bJD (Q —aJ, )+g„jg„''b'b'D (Q aJ)](—N l Nk )„—1

J u, j'

g lg.', g.,'b,'b, D, (Q, ~.)+g.,g„','b,'b,'D, (Q, ~„)](N,—N„)„.
J u, j'

(13)

In order to go on we must neglect all terms containing
bJ bJ (j+j'). This can be justified as follows: As long as
no phase locking occurs, the phase fluctuations of the
different modes are uncorrelated. Thus the mixed terms
(j&j ) on the right-hand side of Eq. (13) vanish if an
average is taken over the phases.

The rate equation for the photon number thus reads

nj ——b'b
(15)

r2
L(Q,. —co„)=

4(Q. —co„) +I

When we insert Eq. (9) into Eqs. (4) and (5), insert Eq.
(10) into Eqs. (6) and (7), and apply the same reasoning,
we find

X4 I gu, I
'«Qj —~. )(Nl Nk)u—

+4 I g„J I
L(QJ co„)(Nl —Nk)„—

u

nj = —Kjnj +

where

(14) y4 I g,j I
ttJL(QJ. —~, )(Nl Nl, )„—

J (16)
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In the amplifying cell, because of Doppler broadening
the pumping rates usually distribute inhomogeneously for
all modes. Assume that the high-level pumping of the
amplifying cell is

We define the stationary state by the condition that all
time derivatives vanish in Eqs. (14), (16)—(19), i.e.,

c, RD

e +4(co„—Qo)
(24)

(R„,/y —A, „/yk)
1+ Q I L(n —co„)/I„

J

(20)

j lu k I k

Then from the set of equations (16),(17) and (18),(19), we
have

where c is the inhomogeneous width of the mode j, Ro is
the pumping rate corresponding to the central frequency
Qo of the mode, and other pumpings (R„b, A,„„and A,„b)
are assumed as constants over the range of co„
(0 (co„(ao ).

41g., I

'
I =g . ' +I [e Ro/e +4(co„—Qo) ] rA, „—, /rk

1+ g I;L(n; —co„)/I„
[R.b —(r /r k )~.b]

g+ g I;L(nc —co„)/I,b

41g., I

'
L(n —co„) .

X,yr
(25)

ln the above derivation, we have used Eq. (22) and
Equation (25) is just the equation which is

satisfied by the multimode output light of a ring cavity.

III. SINGLE-MODE APPROXIMATION

In Sec. II Eq. (25) gives an equation about any mode j,
in which there are two summations over u and j, and the
summation over j is in the denominator. It is clear that
Eq. (25) cannot be calculated without an appropriate ap-
proximation. When there is only one mode oscillating in
the cavity the summation over j vanishes.

In Eq. (25), g„describes the interaction between the
atom u and the mode j. If we admit that the atoms in
two cells have a spatial homogeneous distribution for a
ring cavity, g„can be considered constant. Thus in Eq.
(25) we could delete the subscript j and replace 1g„j 1

by

1g 1

so the single-mode equation is

f A~dco . (27)

Using the replacement co„—no~coo —Q in Eq. (26) and
calculating it, this leads us to

[e'R, /s'+4(~, —n)' —(r/rk)X b]
X +1+I/I„

In our procedure we have used Eq. (15).
As mentioned in Secs. I and II, there are many small

modes in the inhomogeneous width g because the atom
groups emit an individual line with the same homogene-
ous width I but a different central frequency co„. If
I"((c., the following approximation can be supported:

y

(s Ro/e +4(co„—no) —rA.„,/rk
r'+Ir'/I, .+ 4(~„—n)'

,'[R„b—(r Irk)—i,„b] 41g
1+I/I,.g krr (28)

b (r /rk )~ b-
gr'+Ir'/I, .+4@~„—n)

(26)
yk

where coo is the atom group frequency corresponding to
the central frequency 00 and 0 is the frequency of the
mode.
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+I+I/I„g = 1+ I
sa

(29)

After developing the above derivation, we understand
I

In the vicinity of the stimulation threshold, I is much
smaller than I„,i.e., I/I„« 1, so we could take the fol-
lowing expansion:

Q 1 +I /I„= 1+I /2I„,

that the term 4
~ g

~
/y in the factor (4

~ g ~
/y+I) in

Eq. (28) results from spontaneous emission, so it is much
smaller than the output intensity I. In Sec. IV we shall
discuss the effect of the Doppler broadening in two cases:
spontaneous emission does exist or spontaneous emission
does not exist.

At the end of this section, we expand Eq. (28) in the
following form, in which we use Eq. (29):

4/gf I„I +2 'I„((+1)— „([[e'Ro/E +4(coo —0) ]—yk.„,/y I (R„„——yA, b/yb))I

8
[ g /

~I„
+4 I„g —, [( I [e'Ro/e'+4(coo —0)']—yA. „,/y„j ) (R„b—yl—„b ly, „)]krr'

4
I g I

'k
2 2 2[e Ro/s +4(coo —0) —yk, „,/yk] ——R„b — A.„b I

64 /g /

I„g'
+ 2 [e R o «+ 4(o &)—y~—

o /y k ]——R.b-kIr rk
=0. (30)

This is a cubic nonhomogeneous equation for the inten-
sity I. We can see from it that spontaneous emission
leads to the terms proportional to

~ g ~
/y in Eq. (30).

As the constant term in Eq. (30) comes from spontaneous
emission, it is a small quantity. Equation (30) can be
solved by the method of iteration; thus

I
2I„

I' AI
2I„ 2I„

jV. DISCUSSION OF THE SOLUTION

where I/2I„ is a solution of the homogeneous form of
Eq. (30). These results will be given in Sec. IV.

and A and B are nondimensional quantities.
Obviously, the variable A is a function of the width c,,

and B A /BE ~ 0 (0 & e & ~ ); thus A increases monotoni-
cally with c.. In further discussion we can replace c by A
to describe the variance of the bistability with e because
A has a one-to-one correspondence with c.

A physically means the population inversion of the
atoms in the amplifying cell and B is the same in the ab-
sorbing cell. On account of the arrangement of the sym-
bols in Eq. (1), A and B are larger than zero, i.e., A &0,
B &0.

The solutions of Eq. (31) are

Io
7

In order to see the effect of the width c on the bistabili-
ty, we shall discuss Eq. (28) in two cases.

A. Absence of spontaneous emission 2I„
1

Ia ( A —1)—(B +1)
2a

If there is no spontaneous emission, Eq. (28) could be
written as

+[a( A —1)—(B +1)

I
2I„

1— A B
1+I/2I„1+aI /2I„+

where

a=1,

B =(R.b y/yk~ub)—
4

I g I ',
krr

=0, (31) —4a(B+1—A)]'~ ], (33)

I
2I„ (34)Io/2I„, I+ /2I„ for B & A —1 .

where Io /2I„and I+/2I„are nondimensional quanti-
ties. We know that the admissible solutions in physics
must be non-negative and real quantities. According to
this statement the physical solutions of Eq. (33) are
shown in two regions.

(i) For A & a/(a —1),

Io/2I„ for B & A —1
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In this case the function I/2I„=(1/2I„)(B) is concave
towards the B axis (see Fig. 3).

(ii) For A &a/(a —1),
o.5

I
2I„

Io/2I„ for B ~ A —1

Io /2I„, I+ /2I„, I /2I„
for A —1 &B &X (35)

Ip/2I I+ /2I foI B & A —1 0/ 05

In this case the admissible solution condition —non-
negative and a real number —is fulfilled in the region of
A —1 & B &X by all solutions, where X =a ( A +1)
+2&a A (a —1). Thus a new feature will appear. Figure
4 shows the behavior of I in the (I/2I„, B) plane. In the
domain of A —1&8 &X there are three values for a
given B. Figure 5 describes a hysteresis cycle because
analysis' shows that I /2I„ in the case of
A &a/(a —1) and A —1&B &X is unstable. So the
domain of A —1 & B &X shows a bistability I+ /2I„
and Io/2I„. We define the bistability loop as the area
surrounded by the hysteresis cycle, whose representation
1S

FIG. 3. Behavior of the output intensity at 3 & a/(a —1).

bistable loop area increases with the increase of the
Doppler broadening after some analysis. This feature has
been shown in Fig. 4.

B. Presence of spontaneous emission

In this case we can rewrite Eq. (28) as follows:

S= (a —1) A —3a(A —l)A —2a
1

2Q

C= C+ I
2I„

A B1— +1+I/2I„1+Ia /2I„

+4a v'a A (a —1)+ ln A
a(a —1)A a —1

4 Q

(36)

This shows that S increases monotonically with A.
Taking into account a A /ae &0, we could find that the

(37)

where A and B are the same as in Eq. (32) and
C =4

~ g ~
/2yI„ is the nondimensional intensity of

spontaneous emission, i.e., C ~ 0.
Using the iteration method explained in Sec. III, Eq.

(37) can be solved as follows:

25'

s5

FIG. 4. Behavior of the output intensity when A )a/(a —1). In the domain A —1 &B &.X, there are three solutions, Io/2I„,
I+ /2I„, and I /2I„.
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FIG. 5. Hysteresis cycle.
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FIG. 6. Hysteresis cycle in the presence of spontaneous emis-
sion. C=0.01, A =20,21,22.

Io ( A B)C-
2I„B—A +BC—ACa —1

(a(A —1) B ——1
2I„ 2a

6 [ [a ( A —1) B —1]—~

(38)

—4a(B —A +BC —ACa+1)j' ) .

A (1—Ca) —1
&B &X1+C

where

(39)

X =a(A +1)—1+2aC

—2&aA (a —1)—aC(1 —a —aC) .

For the solution of Eq. (38), it is necessary to make the
restriction as follows:

Io (A —B)C
for B&A,

2I,. B —A +BC—ACa +1
Io =0 for B~A,2I„

In order to make the problem clear, we only pay atten-
tion to the bistability. The turning points of the bistable
domain are just the two ends of Io/2I„. By some
analysis' the two ends of I/2I„are

to keep the physical significance of the solution.
If we properly select C &1/A (a —1), we could find

A & [A (1+Ca)—1/(1+C)]. Because C is the intensity
of the spontaneous emission, it is much smaller than the
intensity of the output light, and this selection for C is
suitable.

Computer testing tells us that if C =0.01, a =2, and
A =20,21,22, Eqs. (38) and (39) are fulfilled. Figure 6
shows the bistable cycles in the presence of spontaneous
emission. It shows that Io/2I„has a nonzero value in
the bistable domain, but when B~A, the curve of
Io/2I„—+ ~. This is not a good behavior. On the other
hand, if the (EI/2I„) term is kept in the iteration, we
can overcome this indefiniteness, but the solution is so
complicated that we must analyze the existence of
EI /2I„.

V. CONCLUSION

We have introduced a simple mode to describe a ring
cavity with an absorbing cell, and we have studied it by
quantum-mechanical Lan gevin equations. The
mathematical analyses in this paper are simpler than any
others used previously.

In Sec. IV the bistable-loop area formula where spon-
taneous emission exists is not derived because the deriva-
tion method is so tedious and hardly explains any new
feature. The increase of the bistable-loop area with the
increase of Doppler broadening can be seen in Fig. 6
clearly. The result of our analysis is that the bistable-
loop area increases with increasing Doppler broadening.
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