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Hamiltonian description of nonlinear propagation in optical fibers
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Nonlinear propagation in single-mode and multimode fibers in the presence of the optical Kerr
effect is described in terms of a number of parameters (four for each propagating mode) which can

be interpreted as conjugate variables of a suitable Hamiltonian system. The formal simplicity of this

approach, which admittedly furnishes a limited description of nonlinear propagation because of the

finiteness of the number of variables employed, is, however, very useful for gaining a straightfor-

ward physical insight into the problem. The solution of the pertinent equations, either analytical or
numerical, presents a much less formidable task than the solution of the set of nonlinear equations

fully describing propagation.

I. INTRODUCTION

A light pulse propagating in a fiber undergoes a self-
induced change of both amplitude and phase associated
with the nonlinear contribution to the refractive index of
silica proportional to the instantaneous optical intensity
(the optical Kerr effect). This process, whose basic
features depend on the interplay between the spectral
self-broadening associated with the nonlinearity of the re-
fractive index and chromatic dispersion, can become
significant, because of the low-loss interaction length pro-
vided by the fiber, for values of the pertinent parameters
(such as fiber length, pulse width, and input intensity)
which can occur in the framework of fiber-optic telecom-
munications. This accounts for the great deal of interest,
during the last few years, in investigating this kind of
nonlinear propagation, especially in view of the possibili-
ty of propagating, in a single-mode fiber and in the re-
gime of negative group-velocity dispersion (A, ) 1.3 pm
for silica), a distortionless pulse of suitable amplitude and
shape (fundamental envelope soliton). This possibility,
together with the realization of the existence of higher-
order envelope solitons reproducing themselves after a
certain fiber length, has been exploited for conceiving
new schemes of high-rate data transmission ' or pulse
reshaping, and more generally has promoted the study,
mainly based on numerical approaches, of the set of non-
linear partial differential equations which provides the
complete analytical description of the problem of pulse
evolution in a single or multimode optical fiber.

The basic purpose of this paper is to present an ap-
proach to the problem which, besides being more amen-
able to a computational analysis than the cumbersome
numerical integration of the corresponding set of non-
linear equations, is able to provide a simple physical pic-
ture. This is accomplished by limiting the description of
a pulse propagating on a given mode to the introduction

of four parameters, two representing the width and the
velocity of the center of mass of its envelope and two ac-
counting for shift and modulation of its instantaneous
frequency, thus renouncing a priori any detailed informa-
tion on the fine structure of the pulse itself (as, for exam-
ple, that associated with higher-order solitons). Remark-
ably, it turns out that the 4XN parameters (where N is
the number of modes supported by the fiber) introduced
for describing nonlinear propagation obey a Hamiltonian
formalism, that is, they can be interpreted as conjugate
variables of a suitable Hamiltonian system. The corre-
sponding Hamilton equations, whose numerical integra-
tion is obviously much less involved than that pertaining
to the complete problem, are simple enough to allow one
to draw some general conclusions on the dynamical be-
havior of the system and, in particular, whenever more
than one mode is present, to express in a more quantita-
tive way the qualitative results on pulse attraction and
self-confinement first obtained by Hasegawa. '

The set of 4)&N ordinary differential Hamilton equa-
tions which constitutes the main result of our paper has
been worked out under the assumption that the pulse en-
velope maintains a given shape during its evolution. Our
formalism finds thus its most natural application in the
study of the interaction among pulses which, in the ab-
sence of mode coupling, would exhibit a distortionless
solitonlike behavior, and is particularly apt for investigat-
ing the evolution of the mutual distances of their centers
of mass and of their widths.

We wish to point out that an approach, which can be
considered as the Lagrangian counterpart of our formal-
ism, has been developed in the literature. ' The method
described there basically refers to propagation in a
single-mode fiber supporting one polarization state and is
appropriate for the study of the evolution of one soliton
or for soliton interaction, but does not concern propaga-
tion over different modes possessing different group ve-
locities.
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II. HAMILTONIAN FORMALISM

The electromagnetic field propagating inside a mul-
timode fiber can be written as

modal amplitude. The optical Kerr effect is associated
with the presence of a nonlinear term proportional to the
instantaneous optical intensity I =

~
E(r,z, t) ~, which

adds up to the linear refractive index n i (r, co) of the prop-
agation medium to give a refractive index of the form

E(r,z, t)= QE„(r)e ' " ' 4„(z,t),
n(r, ~)=n, (r, co)+ nzI, (2)

where the z axis coincides with the fiber axis, r=(x,y),
E„(r) and p„are, respectively, the spatial configuration
and the propagation constant of the nth guided mode, coo

the rnid-frequency of the carrier, and P„(z,t) the complex

where n 2 is called the nonlinear refractive-index
coefficient [n z -= 10 (m/V) for silica].

The nonlinear part of the refractive index is responsible
for a coupling mechanism among the various modes
whose evolution is characterized by the following set of
coupled differential equations:

3 1 8 i 8 N N

+ ~
n=1 m =l

m&n

(3)

where

U m

dP
d ct)

d P
de ~02 (4)

N =f dt~@ (zt)~', (10)

where N, r~(z), and M =o (z) represent, respective-
ly, the zeroth-, first-, and second-order moment of the
function

~

4 (z, t)
~

are, respectively, the group velocity and the group-
velocity dispersion of the mth mode and

R „= f fd xdy~E„(r)~ E (r)~, (5)
r (z)= f dt t

~

4 (z t)
~

',
Nm

where

f dxdy ~E„(r)~ =1.

The set of Eqs. (3) properly describes the case of a mul-
timode polarization-preserving optical fiber or, for N =2,
of a single-mode high-birefringence fiber supporting two
mutually orthogonal linearly polarized states [provided
R,2 is substituted in Eqs. (3) by (1/3)R, 2]. Also, if the
last case is the most relevant in practice, it is possible,
without increasing too much the degree of formal com-
plexity of our approach, to investigate the situation per-
taining to a generic N.

We write the amplitude of the mth mode as

(z, t)=
~

@ (z, t)
~

e

and assume that 4 (z, t) and Bg /Bt can be expressed,
in the spirit of our approach, as

(z, t)
~

=N F[(t r(z))/cr (z)—]/a (z),

m =1,2, . . . , N (8)

al(. (z, t) = —2I ( (z)+2i) (z)[t —~ (z)]] /N
at

m =1,2, . . . , N (9)

M (z)= f dt(t r)
~

4 —(z, t)
~

&m

m =1,2, . . . , N (12)

f dx F(x)= f dx x F(x)=1 . (13)

It is possible to prove (see the Appendix) that the set of
equations describing the z evolution of the unknowns ~
M, g, and r) corresponds to that pertaining to a
Hamiltonian system with 2XN degrees of freedom, g
and g being the variables conjugate, respectively, to w

and M . Note that the functional dependence of
~

4
on o. and ~ is determined by the boundary condition
at the fiber input z =0 through Eq. (g), so that, from a
physical point of view, propagation is described in terms
of the average position and width of the pulse traveling
on the mth mode, while Eq. (9) allows both for a shift and
a modulation of its instantaneous frequency. The Hamil-
tonian of the system reads (see the Appendix)

and F(x) is an arbitrary positive-definite even function of
the argument normalized to 1 and possessing variance 1,
that is,
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H(r„. . . , r~, M„. . . , M~)= g
m Vm

(g' +4M g' )—
R N b

4M'
m

+ V(r, , . . . , r~, M„. . . , M~), (14)

where

R „N N„~~ 2 (M M„)'"

dM,

dz

d gf

dz

aH
BMq

8q)M)

4g)

N)A)

(24)

N)a R))N)b
4A &M 8M

(25)

and

+ 00 t —r 7
X f dj' F 1/2 F 1/2—00 M M„

'2

(15) with

H=
g2

Ni Ai

4M) g)

Ni Ai

N)a

4AiMi

R ))N2)b

4M'" (26)
1

a= f dx—,b= f dxF (x),+~ 1 dF +~
F dx

the corresponding Hamilton equations being
d «i d 1

dz dz dz u, Ni Ai
=0,

Equations (22) and (23) immediately yield

(27)

rm BH
dz =ay. =

Vm

2g

N A
(17)

dM

dz

8g M

N A

4q'

dz BM N

N a

4A M

R N b

8Mm

a
BM

V(~)). . . ) rq)Mi). . . ) Mq) .

(20)

Obviously, the Hamiltonian H is a first integral and be-
sides, since it is invariant under translation, that is, under
the displacement ~;~~, +~ for every i, the "total
momentum" of the system

(21)

d4 BH V(r„. . . , r~, M), . . . ) M~) )
dz a~. at.

(18)

so that r& and g, can be expressed in terms of their values
at the fiber input z =0. This fact allows us to study sepa-
rately the behavior of the dynamical system described by
the variables M, and g& in terms of the reduced Hamil-
tonian HQ ——TQ+ VQ, with

4M) g) N)a
TO ——

N]A& 4AjM&

R iiNib
4M'

(28)
1

Vo

Vo I

The potential VQ consists, in the case of negative
group-velocity dispersion ( A, & 0), of a repulsive part
and of an attractive tail associated with the nonlinear in-
teraction (see Fig. 1), the corresponding trajectories
HQ =E in the phase space g&, M, being reported in Fig. 2.

The minimum value E of E is achieved for g, =0 and
M& ——M&

——[2(a/b)/R» A, N~], where M, is the value
of M, at which the potential has a minimum (see Fig. 1).
If E =E, then the solution reads

is also a constant of motion.

III. PROPAGATION IN A SINGLE-MODE FIBER

In the case N = 1 pertaining to a single-mode fiber (that
is, to a single-mode polarization preserving fiber support-
ing one linearly polarized state), the previous equations
become

M~

Mi

dr, gH 1 2g

dz Bg, U, N A,
(22)

dk
dz

(23) FIG. 1. TyPical behavior of Vp/Vp as a function of Ml /M&,
where Vp= —Vp(M& ).
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9f

M, (z}=M i, rI, (z)==0 (29)

ss ro agation of the pulse,which describes a distortionless propag
that is

Ni
i
@i(z,t)

i
= F

t —Z/Vi
(30)

/V inace orbits for the Hamiltonian p p1''1 dfi db h 191/91~ 1 1M /M space, where g1is imp icit y e
tion Hp( g» M1)=0.

IV. PROPAGATION IN A TWO-0-MODE FIBER

(35)
(2n}

i
' ', '

modal otential can be explicit-With this choice, the intermo a po
1 evaluated thus getting see Eq. (15)]y eva

R i2NiN2

(2 )'" (M, +M, )'"
( —i /2)(&1 2 /(M

1
+ 2

2 M )
Xe (36)

a =1 and b =1/2&ir.
(17)—(20) dWe can noww consider Eqs.

er mode; ur e); f th rmore we have
'

e for a single-mode birefringent er,in practice, or a sin
R —=R „/3. we negneglect, as a first ap-

f h 'bl M dMp roximation, the z ev olution o t e va
'

and assume [see Eq. (2 )]9

N =2, we are dealing with ya d namical sys-
our de reesof free om an

1 1 hin sim le analytica resu s,
d lf h-N =1. We are, however, able, un er

1 sions. More pre-some general conc usion .po o o g
1 let us assume F (x) to possess a acise y, e ossess a a

that is, after imposing Eqs.

e
—x 2/2F(x}=,

q2
e

where
M (z)=M2(z)=M, (0)=M2(0)=M, =M2,i (37)

a 1

b Rii i
Ai iNi

(31}
letel described by Eqs. (17)7 and (18).p

Starting rom em,
'f th m it is straightforwar o

the preceding hypotheses,
f F a hyperbolic-secant s ap,a e that is,If we choose or a

taking into account Eqs. ,s. , 13),

F(x)=(m/4il3)sech (irx/2 3 (32)

und and read

I&a =4(a Ib )(
~

A, ~R„N, )zo ——(iA, iM, / a= a

(33)

In the case of the hyperbolic-secant sh psha e it reduces to

=6 A
~

cr i/ir, (34)Zo

1 with the so-called soliton p eriod, thatwhich is identica wi
h hi her-order solitonsis, the fiber length after whic ig er-o

reproduce their initial shape.

=&3ir/18, and Eq. (31) reproduces ex-
ofh f d tlactly tne con

' '
h dition for the existence o e

.o h p 1 sofarbitraryshap Fg ppo

t follows from the intrinsicSH
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asymptotically emerging solitons, a ter ra ia
cess energy.

th mall-oscillation periodIt is interesting to evaluate t e sma-
corresponding to harmonic osci a

'
zp of Hp~ co

ential. Its expression can be easi-the minimum of the potentia . s
ly fo

((i+a)=0
dz

d2
z (ri+r2) =0,

dz'

(ki —(2)= —2
dz 7]

V([r], [MJ) .
dZ

(38)

(39)

(40)

(41)

r b recalling Eqs. (36) and (, q.37) E . (41)
f th' "'"' utu'1furnishes the evolution equation o t e a

modal delay y =Ti —72 in the form

d 4y —
~ A, ~& /(4zp)—sgn(A, ) e

dz2 3z0
(42)

M see Eq. (33)] and sgn(x) is the sign ofwhere zo=AiM, [see q.
the adimensionalthe real num er x.1 b x. After introducing t e a

'
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~

Ai /zo y,
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-velocity dispersionthe case of negative group-

d
2+ '

d
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'

ditions
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y(0)=0, dy 1

dz , P V1

that is

X(0)=0, dX =6,
dg go

V2 V
(45)

(46)

tion provided by Eqs. (3) still applies to nonlinear propa-
gation in a highly twisted single-mode birefringent fiber,
provided that 4, and 4z are substituted by the corre-
sponding right and left circularly polarized states 4, and
4& and R;;~(2/3)R;, , R,2~2R, 2,

' in this case, in fact,
1/U ~0 and the case 5=0 is included in our treatment.

V. CONCLUSION

with 5=&3(zo
~

3
& ~

)' /4U, in the form

(dX/dg) =5 —1+e (47)

g =4f (5 1+— )
' dX, (48)

p

where X is the (positive) root of the equation
5 —1+ exp( —X ) =0, that is,

By inspecting Eq. (47), it is not difficult to show that
the temporal interval y between the two pulses traveling
on modes 1 and 2 increases without bound or possesses a
periodic behavior as a function of the fiber length z ac-
cording to whether 5 & 1 or 5 &1, respectively [a fact
which provides a simple analytical confirm of the results
obtained numerically in Ref. (10)]. In practice, the fact
that zp scales as the inverse of the pulse peak power im-

plies the existence of a critical injected power above
which the splitting between the two pulses started togeth-
er at the fiber input never exceeds a certain value X.
More precisely, for 5 & 1, the period g~ of the solution of
Eq. (47) is given by the expression

The problem of nonlinear propagation in an optical
fiber (in the presence of modal and chrotnatic dispersion
and optical Kerr effect), which requires the solution
(most often numerical, see, e.g., Refs. 10 and 13) of a non-
linear set of partial differential equations, has been ap-
proached through a simplified formalism which greatly
reduces its complexity. It basically consists in describing
the pulse propagating in each mode by means of four
quantitie, connected in a simple way to its amplitude
and phase, which can be interpreted as conjugate vari-
ables of a suitable Hamiltonian system. The associated
set of equations proves manageable enough to provide in
some case exact solutions and to allow the drawing of
general analytical conclusions on the nonlinear pulse evo-
lution.
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X= [
—in(i —5')]'" . (49)

APPENDIX
For 5 &&1 the preceding integration can be explicitly

performed, thus getting g =2m, while a numerical evalu-
ation of the behavior of gz as a function of 5 is reported
in Fig. 3 (g~ obviously diverges when 5 ~1). Typical
values of the physical parameters involved are A1 ——10
km/sec (around A, =1.3 pm) and zo (km)=-I/2P (where
P is the peak power launched into the fiber, expressed in
watts) for a core size of about 4 pm, while 1/v ranges in
the interval 10 —10 ' sec/km.

It is worthwhile to note that the limit 5—+0 cannot be
considered in the frame of our approach, since this would
imply a low-birefringence fiber, while the set of Eqs. (3)
correctly describes only the case of a high-birefringence
fiber (see, e.g., Ref. 11). However, the analytic descrip-

By inserting Eq. (7) into Eq. (3) and taking the real and
imaginary part of the resulting equation, we obtain, re-
spectively,

a. .. ar ~. ar ar
+ +

=0, (A 1)
a'@.
at

+
ap 1 ag

m Bt 2A Bt

+2/ 4
~

4 ~'+V ([4j) =0, (A2)

where we have set

0
0

I

Q2
I

0.4
I

0.6
I

0.8 g $2

N N
& ((@))= g g R „~4„~'.

n =1m =1
num

(A3)

F&G. 3. Plot of g~ as a function of 5'.
After multiplying Eqs. (Al) and (A2) by

~

@
~

we
have
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I'"(z, t)=—
I
4

Bz

2B

Vm

'2

B

I'"(z, t) —=
Bz v~ BtB,B

+~ Bt I-I'B =0 (A4)

(A12)

it is possible to obtain, recalling Eq. (12),

s' "(z},
dz m

where

(A13)

4g M

(A14)

the last equality following from Eq. (9}. In a similar way,
starting from

dtt —7 I zt=0,

+2
I
@

I 2 I
@

I
+I' ([~'t}

the last equality following from Eq. (9). In order to
evaluate dg /dz and dry /dz, we consider Eqs. (A4),
(A5), and (A6) and write

(A5) dt I"' z, t —I"'z, t =0 (A15)

while multiplying Eq. (A2) by B
I

4
I

/Bt we get

B B
+

B B

+
2A Bt Bt

and

f dt I"'(z, t) —I"'(z, t) (t —r )

+ f+ dtI"'(z, t)=0. (A16)

A Bt

B[e
+2

I
4 I'+v (th)) =0.

at

(A6)

Equation (A4) furnishes

From Eqs. (A15) and (A16) it, respectively, follows, after
some tedious, if not straightforward, algebra,

dS"'

and

ds'" I „, d „, I . B
I

a

f dt I' "(z,t) =0, (A7) f dtI4

which, provided the vanishing of the
I
4

I

's for
t ~+ oo is sufficiently rapid, yields

'2

+ ' f '"«
I ~.

I

'
m m

—00 ai

f dt
I
4 (z t) I'= N =0. (A8) 2 +-, BI' ([@l}

em t —7m

d
(z) =

dZ Vm

s(0)(z)
+ (A 10)

Equation (A8) states that the normalization coefficients
N are independent from z and expresses energy conser-
vation in each mode. By multiplying Eq. (A4) by t and
integrating, we have

dt tI z, t =0, (A9}

from which it is not difficult to derive, after recalling Eq.
(11),

(A18)

2g

N
(A19)

and

Finally, by taking the z derivative of Eqs. (Al 1) and (A14)
and keeping in mind Eqs. (A10), (A13), (A17), and (A18),
it is possible to deduce two equations for dg /dz and

dg /dz which, together with [see Eqs. (A10) and (All)
and Eqs. (A13) and (A14)]

g(0)
+

V

where we have defined

B 2s"'(z)= f+ dt Ic
N — Bt N

(Al 1)

dM 2 „, 8g M

dz A N A

reproduce Eqs. (17)—(20) of the paper.

(A20)
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