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Formation of arcs by nearly circular gravitational lenses
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An extended source located near the axis of a nearly circular, sufficiently nonlinear lens can pro-
duce extended-arc-like images. Examples of these may have been found near three distant clusters

of galaxies which seem to be acting as gravitational lenses. We propose a simple geometrical
method for locating images of objects using the Einstein ring and the corresponding caustic. We
also give an approximate theory of lenses for which deviations from circularity are small perturba-

tions. We discuss noncircular perturbations of practical interest for gravitational lensing and prop-
erties of the arcs that are thus formed.

I. INTRODUCTION

Recently, almost circular "giant luminous arcs" associ-
ated with the cores of two distant clusters of galaxies
(A370, 2242-02, and A963) were reported. ' Gravitational
lensing, one possible explanation for these arcs, has been
proposed by several authors. In this paper, we analyze
the geometrical optics of an almost circular gravitational
lens and elucidate the conditions under which extended
arcs may be formed.

Although inspired by hypothetical gravitational-lens
action, our analysis is quite general. As regards geome-
trical optics, lenses made of gravitational fields differ lit-
tle from lenses made of other substances, such as glass for
light or electromagnetic fields for electrons. Gravitation-
al lenses are remarkable in that they are achromatic and
because the cases so far discovered are at cosmological
distances. The latter fact requires the use of non-
Euclidean angular-diameter distances (the ratio of the
transverse size of an object to its angular size) but this is
not relevant for general features of the observed images.

Having in mind the astrophysical applications of gravi-
tational lensing we restrict ourselves to these and assume
achromaticity, geometrical optics, paraxiality (i.e., small
angles of deflection), and a flat source (object). It is im-
portant to distinguish lenses used in common optical in-
struments from gravitational lenses. The former are usu-
ally constructed so that the deflection depends linearly on
the positions of incoming and outgoing rays. This means
that, typically, only one ray will connect points on oppo-
site sides of a lens. Gravitational lenses are usually non-
linear in this sense; in particular, a point source may be
connected to an observer by several rays. In fact, the ex-
pression grauitational lens is conventionally taken to im-

ply the presence of multiple images of a more distant
source, and it is by this means that the few examples we
have were discovered (see recent reviews ).

We should also remember that in a gravitational lens

there is generally only one point of relevance on the
observer's side of the lens: our location in space. Howev-
er, a telescope at this point can measure the directions of
incoming rays. We are therefore interested in mapping
the object plane onto the ray direction at the observer. It
is conventional to use angular coordinates for an object
point defined by the direction that the ray would have
had at the observer had the lens been absent, and to in-
troduce similar angular coordinates for the image. (See
Fig. 1.) These angular coordinates lie in the source plane
and image plane, respectively.

When the lens is circularly symmetric, we can define an
optic axis passing through the observer position and the
lens center. If the lens is strong enough, it will deflect
rays from a small source on the optic axis towards the ob-
server so that he will see a thin ring image centered on
the optic axis. This is called the Einstein ring. If the
source is displaced slightly off the optic axis, the observer
will see an arc and a counter-arc lying near the Einstein
ring and diametrically opposed with respect to the lens
center.

The angular extent of each arc is the angular size of the
source viewed from the axis: it is determined by the radi-
al projections of the source on the Einstein ring. Howev-
er, if a lens deviates slightly from circularity, this projec-
tion method is not applicable; it turns out that the arcs
need not be diametrically opposed. In this paper, we
present a simple approximate method for calculating the
widths and lengths of the arc images.

In Sec. II we define notation and review the theory of
thin lenses. This is specialized to the almost circular lens
case in Sec. III, where the relations between the source
and image positions with respect to critical curves and
caustics are derived, and a simple construction that can
be used to locate the image of a point source is described.
A simple interpretation of this construction in three di-
mensions and a generalization to a thick lens are offered
in Sec. IV.
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a ( r ) =o ( r ) /o „(zI,z, ). (2.4)

cr(r) is the surface mass density of the lens, and the criti
cal density o.

„

is determined by a combination of the an-
gular diameter distances,

c dos
0

4m 6 doLdLs
(2.5)

(b) ra

The shapes of images of sufficiently small sources can be
described using either the transformation matrix

(2.6)

0

FIG. 1. Geometry of a nonlinear lens. (a) Rays leaving the
source (S) are defiected by the lens (L) to meet at the observer
(0). In this example, three images of a point source will be
created. (b) Source plane, as seen by the observer. s is a small
angle vector connecting the optic axis (0) to a point source. (c)
Image plane as seen by the observer. r„rb,and r, are the posi-
tions of the three images.

II. THE THIN LENS

We make the paraxial (i.e., small-angle) approximation
and measure the position of a point image on the sky,
r=(x,y), by the projection of the unit vector in the direc-
tion to the image on a plane normal to a conveniently
chosen lens axis. The axis corresponds to the origin in
the approximately flat image plane. The position of the
corresponding point source, s=(s„,s ), measured in the
same way, is the position at which the source would be
observed in the absence of the lens. A thin lens can be
approximated by a deflection at a single thin screen. The
lens equation, which relates the source position to the im-

age position, is a Lagrangian mapping,

or its inverse, 3;~ =M~, the magnijication matrix which
is symmetric for the thin lens.

Equation (2.1) must be solved to find images for a given
source position. As the source is moved in the source
plane t s ], images can appear or disappear in pairs of op-
posite sign ~~A%~~ (parity). If the inass distribution is
bounded, transparent, and nonsingular, there is an odd
number of images, and multiple imaging is possible if and
only if ~~JR(r)~~ &0 somewhere in the sky [the latter is
guaranteed if a(r)&1 somewhere. ] We shall call the
locus of merging solutions in the image plane the critical
lines, and the corresponding lines in the source plane s
the caustic lines. The inverse mapping, s~r, is singular
on caustics; in particular, the image magnification, ~~A ~~,

is divergent. Equivalently, at least one eigenvalue of At is
zero and changes sign on crossing the critical line. The
eigenvector of JR with zero eigenvalue, the degeneracy
eigenuector hereafter, gives the direction of infinite
elongation of the images of an infinitesimal source located
on the caustic. This direction is also the direction of a
straight line connecting point images merging at this
point on the critical line. The caustic lines are fold catas-
trophes which can exhibit singular points. The only
generic singularity on a plane is a cusp, which occurs at
points at which the degeneracy eigenvector is tangential
to the critical line. The degeneracy eigenvector as a
function of a point on a critical curve is periodic for an
even number of cusps and antiperiodic for an odd num-
ber of cusps.

Before applying perturbations, let us first consider a
precisely circularly symmetric lens, with potential

r~s=r —P',4(r). (2.1) 4(r)=f(r /2), (2.7)

For a gravitational lens, the effective deflection V,4 is a
gradient of a two-dimensional potential

d Ls N

doLdos h~e of s'gh
(2.2)

V' @=2x(r), (2.3)

where

where P~ is the Newtonian gravitational potential and

dos, do„,and d„sare the observer-source, observer-lens,
and the lens-source angular diameter distances, respec-
tively (see Fig. 1). The quantity (1—2Pz/c ) behaves
like a refractive index. 4 satisfies Poisson's equation

able to produce more than one image. This example is
nongeneric. A source placed at the origin will, from Eq.
(2.1), produce an Einstein ring image of radius r„satisfy-
ing

(2.&)

(Note that the prime denotes diff'erentiation with respect
to the argument, r /2. ) There can be more than one such
ring (although this is astronomically unlikely), and if the
potential is sufficiently regular at the center, there is also
an image at the origin, r =0. The Einstein ring is in fact
a critical line, the degeneracy eigenvector is tangential to
the circle at its every point, and the corresponding caus-
tic is a single point. We shall call these critical and caus-
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tic lines tangential. There may also be other critical
curves. In particular, there may be a radial critical curve
at which the radial eigenvalue of AL vanishes. If a point
source is displaced by a small distance from the center,
there will be two diametrically opposed images near each
Einstein ring, all the images, the source, and the origin
lying on the same straight line (if there were a central im-

age, it would remain close to the center).
In Sec. III we consider what happens in the generic

case when the lens is not precisely circular. Also, we re-
strict ourselves to configurations producing arcs, i.e., we
only study the results of perturbations on the tangential
caustics and critical curves, while the radial ones concern
us no further.

III. THE NEARLY CIRCULAR LENS

The tangential caustic associated with our exactly cir-
cular lens is a structurally unstable point and any small
noncircular perturbation will cause it to unfold into a
short continuous curve exhibiting at least four cusps (Fig.
2). Let the potential be written

to first order in e and in the displacement Dr=nor. Con-
sider the positions of point sources which would produce
images on a guiding radius P=((i, = const near the criti-
cal circle. All these sources lie on a straight line or spoke
parallel to n((()& ) and at a perpendicular distance

b,,=Et Vg-er„
from the guiding radius, where

t=( —sing, cosP)

(3.4)

(3.5)

is a unit tangential vector (Fig. 3).
For an approximately circular lens, this property can

be used in reverse to locate the approximate image posi-
tions given a source position close to the origin. To do
this, we must first locate the perturbed caustic and criti-
cal lines. The tangential critical lines are the loci of
tangentially merging images (Fig. 4), so the tangential
caustic is an envelope of the spokes. Since Ar is a curve
parameter for a spoke given by Eq. (3.3), the envelope is
given by the condition that the t component of the varia-
tion of Eq. (3.3) with respect to (t vanish:

Ci(r)=f (r /2)+eg(r, P), (3.1) r,f"(r,12)—b,r,„;,(P)=0,
where the spherical part f is assumed to have only one
tangential caustic; the perturbation parameter e is small,
a&&1; and the perturbing potential is arbitrary, except
that the deflection which would be produced by the per-
turbation with e= 1 is of the same order of magnitude as
that produced by the spherical part of the potential

I vf
I

—
I
vf

I

.
Let us consider an image point near the Einstein ring,

r = ( r, + b,r )n, where the unit radial vector is

(3.6)

where br«„(P) is the small radial perturbation of the
critical curve. [Alternatively, we can require that the
Jacobian of Eq. (2.1)

n = (cosP, sing), (3.2)

and consider the position of a point source which would
produce an image at this point, =0,

a iaaf
Br r r)qb

(3.7)

s= EVE(r„g) hrf—"(r, l2)r, n, — (3.3)

(b)

r

s'

FIG. 2. InAuence of noncircular perturbations. (a) Image
plane. A circular lens will produce a critical circle (solid line)
radius r, . When a noncircular perturbation is applied, in this
case proportional to cos2$, the critical circle is deformed into
an ellipse (dashed line). (b) Source plane. The perturbation
modifies the caustic from a degenerate point at 0 to a curve
c(P), in this case a four-cusped asteroid.

FIG. 3. Mapping from the image plane to the source plane
with an almost circular lens. (a) Critical circle in the image
plane. (b) The source plane in the vicinity of the caustic. [This
diagram is magnified with respect to (a)]. A tangent is shown

touching the caustic curve at T. Sources lying on the line seg-
ment TS wi11 produce images lying on the segment T'S' in the
image plane. The lines TS and T'S' are parallel to n and or-
thogonal to t.
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(a)

FIG. 4. Behavior of images near a critical line. (a) In a
tangential merger, the image separation vector (degeneracy
eigenvector) lies almost parallel to the critical line (dashed line).
(b) The source (open circle) lies close to the caustic (solid line)
which is orthogonal to the degeneracy eigenvector connecting
the two image points in (a) (when the lens is thin).

vanish on the perturbed critical curve to derive Eq. (3.6).]
Mapping this perturbation to the source plane using Eq.
(3.3) gives the equation for the caustic curve:

c(P)=—n —t +O(e ).
e Bl( BP

BP ~P r=r n

(3.8)

Note that the caustic depends only on the tangential
derivatives of P at the Einstein ring to first order in e, and
that the curve parameter P is the polar angle of the
relevant point on the critical curve, not to be confused
with the polar angle of the point on the caustic.

We are now in a position to describe a geometrical con-
struction for locating the images of a point source near
the center of a nearly circular lens with known potential
(see Fig. 5).

(i) Draw the caustic c(P) given by Eq. (3.8), allowing P
to increase from 0 to 2m.

(ii) Draw the Einstein circle with radius r, given by Eq.
(2.8).

(iii) Draw all tangents from the source (S) to the caustic
(points of tangency T;) and extend them parallel to the
guiding radius P =P; until they intersect the ring PTO.

The sense of the direction of extension of the tangent,
given formally by Eq. (3.8), can usually be determined by
inspection. In particular, if we know that the lens is
overfocusing (i.e., producing a larger than average
deflection) along some direction n, then the relevant
tangent point must be on the opposite side of the caustic
from the image. If we determine the sense of extension
for one direction, then the senses for all other directions
can be obtained by continuously sliding the tangent along
the caustic curve.

The intersections of the tangents with the ring give im-
age positions with error

~

b,r;
~

-er, -s —the size of the
caustic. We illustrate this construction with some exam-
ples in Sec. V. A reduction in the tangential error would
require a higher order approximation of the lens equa-
tion, since the direction of a tangent (a spoke) deviates
from the direction of the corresponding n (a guiding ra-

FIG. 5. Illustration of geometrical construction for locating
the images of a point source S located near the caustic. In this
case, the four images are formed along directions parallel to
tangents of the caustic passing through S. The points of tangen-
cy are designated T&, T2, T3, T4. A source lying within the
caustic therefore produces four images near the critical curve.
A source just outside the caustic has two tangents which pro-
duce two images.

d
=D(P) nO+(e ),

where

(3.9)

dius) by O(e). The radial error can be improved to
O(e r, ) within Eq. (3.3), by the following additional con-
struction.

(a) Draw the perturbed critical line given by
r(P)=r, +br„;,(P), where r, and br„;,are determined
by Eqs. (2.8) and (3.6), respectively.

(b) Measure the distance T;S and place an image on the
tangent at a radial distance —T;Slf"(r, /2)r, from the
perturbed critical line.

For sources for which our construction is applicable,
the tangents to caustics often pass near a cusp. This im-
plies a further simplification: image positions can be
roughly approximated by points of intersection of the
Einstein ring with straight lines connecting the source
and the cusps. For a point source inside and near a cusp,
three nearby images are formed.

The positions and the number of the cusps can be
found in the following way. Cusps are points at which
the direction of a tangent to the caustic is reversed. The
direction of the tangent c(P) is given by
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(3.10)

vanishes, and the convolution,

f D(P)cos(P —Po)dg=O (3.12)

vanishes for any phase $0. Any continuous periodic func-
tion of zero average must have at least two zeros within a
period. Let P„P2 be two zeros separated by

~ P, —P2 ~

(m and suppose that these were the only two
zeros. Now let go=(P, +$2)/2. It is then straightfor-
ward to see that the integral (3.12) cannot be zero. At
least four zeros are required, and so at least four cusps
must be produced in a perturbed tangential caustic.

It must be emphasized that this result only applies to
tangentially merging images created by a perturbed circu-
lar lens easily able to produce multiple images. Two
cusped caustics can be produced by nearly circular mar-
ginal lenses. However, these cannot be treated by a per-
turbation approach.

IV. GEOMETRICAL INTERPRETATION

The constructions of the previous sections based on the
two-dimensional (2D) mappings have a simple interpreta-
tion in terms of traditional three-dimensional ray trac-
ing. We consider a lens with its axis directed to the point
on the sky taken to be the origin of our 2D coordinates,
and we trace the light rays backwards in time: the rays
emanate from the observer. The "image plane" is the set
of directions of the rays at the observer. All the source
points are assumed to lie in a "physical" source plane
normal to the lens axis, the projection of this plane on the
sky is what we call a "source plane. " By a conjugate
point we shall understand any point on a ray at which the
number of other rays connecting it to the observer
changes as we move along the ray (rather than only the
traditional first such point). The conjugate points lie in
caustic surfaces which are also envelopes of the rays.

There may be several caustic surfaces, but we consider
only one which envelops the rays which merge approxi-
mately tangentially, in a nearly circular lens. Its section
at the physical source plane projected on the sky is the
tangential caustic introduced in Sec. III, the rays con-
necting this section to the observer form the critical line

At a cusp, D ( P) =0 and changes sign.
If the perturbation is sufficiently regular that the

tangential critical curve and D(P) are continuous, then
D(P) must be periodic with period 2m. . This is because
the curve is nearly circular and the degeneracy eigenvec-
tor is nearly tangent along all of it, so it must turn by 2m

when traced along the curve. Therefore, the number of
zeros and hence the number of cusps must be even. We
now prove that the number of cusps is at least 4 for a
continuous D(P). Consider the expansion of D(P) in a
Fourier series. From the definition, Eq. (3.10), the
Fourier coefficients of the constant and the fundamental
terms are zero. In other words, the average,

f D(P)dg= 0, (3.11)

V. EXAMPLES OF PERTURBATIONS

The illustrations below are provided by first few har-
monics of the multipole expansion

g(r)= gP„(r)cosn(P—a„). (5.1)

Since image locations are determined by the angular
dependence of 1( at the Einstein ring, we substitute r, for

0

FICx. 6. Evolution of ray congruence in three dimensions. A
thin pencil of rays travelling backwards from the observer 0
will be converged and sheared by the lens L. A pencil with cir-
cular cross section close to 0 will develop an elliptical cross sec-
tion behind the lens which will degenerate to a line (spoke) at
the conjugate point C. The rays and the spoke are both tangent
to the caustic surface at the conjugate point.

in the image plane. Consider one of the critical line rays
and a thin pencil of adjacent rays. The cross section of
this pencil (by a plane normal to the axis) is roughly cir-
cular near the observer but becomes very narrow near the
physical source plane. The cross section of an
infinitesimally thin pencil becomes linear (Fig. 6), tangen-
tial to the caustic at the conjugate point. This line is a
spoke. Now let us displace the pencil slightly. A tangen-
tial displacement shifts the cross section to another con-
jugate point; a radial displacement shifts the cross section
along itself, so it remains on the same spoke: the guiding
radius in the vicinity of the critical line is mapped onto
the parallel spoke in the vicinity of the tangential caustic.

Let us now consider the relative orientation of a spoke
and its guiding radius, starting from a perfectly circular
lens. In a thin circular lens, any ray lies in an axial plane,
a tangential caustic surface degenerates to a line segment
on the axis, all spokes are radial and collinear with their
guiding radii. A small nonradial perturbation deflects the
spokes sideways, so they remain approximately collinear
with their guiding radii up to an error of order 0(e) in
their direction. This explains our approximate method
for a thin lens.

The same method with a small modification can also be
applied to an almost circular thick lens, in which there
are two or more separate lenses along the line of sight. In
this case, there can be more than one Einstein ring and
consequently more than one arc.

The method can also be adapted for use with almost
circular electron lenses. In this case, the unperturbed
deflection angle need not be derivable from a scalar po-
tential and will have a curl. It turns out that the effect of
this is simply to shift the source position, and arclike
features could also be observed.
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r. There are types of lens models for which this expan-
sion is useful. For instance, if the angular scale of varia-
tion of the perturbation over the sky is very much greater
than r„aTaylor expansion of the potential is appropri-
ate. Its first-order terms (a dipole) are a first harmonic,
the second order contains a monopole and a quadrupole,
the third order contains a dipole and a third harmonic,
etc. An example of a great usefulness for modeling is an
elliptic potential, dominated by its monopole and quadru-
pole moments. A practical model for lensing by clusters
of galaxies is that of a group of several circular potential
wells

(b)

(5.2)

where the origin is taken at a convenient point, e.g. , the
center of the dominant component or the center of mass,
etc. If the separations between the centers -d are small-
er, then the common Einstein radius, r„de6ned by

(5.3)

the potential can be approximated by a Taylor expansion
in powers of the coordinates of the centers of the com-
ponents (again, the first-order terms are a dipole moment,
the second-order terms contain a quadrupole, etc.). Only
the structure of the potential at the "common" Einstein
ring is important: the perturbation can be very struc-
tured far inside the ring and still be dominated by low
harmonics in its effect on the tangential caustic.

Let us now investigate examples of low harmonics.
The first harmonic, gi(r)cos(P —ai), as it follows from
Eq. (3.7), only shifts the caustic point to

FIG. 7. Simple types of caustic produced by a nearly circular
lens. (a) Four-cusped asteroid produced by a nonradial pertur-
bation l(zcos2$. (b) Three-cusped deltoid produced by a pertur-
bation t(3cos3$. This case is in fact degenerate and the curve is
traced twice as P advances from 0 to 2m. An additional pertur-
bation will produce a six-cusped figure. Six images are created
by a source located within the caustic and two by a source out-
side the caustic. (c) Eight-cusped octoid produced by a pertur-
bation proportional to cos4tI}. The number of images associated
with each region of the diagram is indicated. (d) Mixture of
cos2$ and cos3$ perturbations showing the change from four to
six cusps through a swallowtail catastrophe.

c=e[l(ti(r, )!r,](sinai, cosa, —). (5.4)

The action is simply that of a prism defiecting all the rays
through a constant angle.

The second harmonic, a quadrupole, is the simplest
nontrivial case. The source plane caustic is a four-cusped
asteroid given by the parametric equation

c„=( 4eg2/r, )—cos P,

c =(4egz/r, )sin t)},
(5.5)

setting az ——0 without loss of generality [Fig. 7(a)]. Four
tangents pass through a source point lying within the as-
teroid, and therefore four images are produced at the
critical circle. When the source point lies outside the
caustic only two images are created.

The third harmonic produces a degenerate caustic, as
does any odd-order harmonic,

c„= (3A/3/r, )( 2 cos2$+ cos4—$ ),

c =(3eg3/r, )(2sin2$ —sin4$)
(5.6}

(for a3 ——0) [Fig. 7(b)]. This is the parametric equation
for a three-cusped deltoid, which is traced twice as n ro-
tates through 2m so that the actual number of cusps is 6.
A small perturbation will remove the degeneracy and
bring out all the six cusps. Note that because the caustic

c„=16eg4/r,(5 cos P —6cos P),

cr =16@/~/r, (5 cos P —6cos P)
(5.7)

There are eight cusps [Fig. 7(c}]. A source lying com-
pletely outside the caustic produces two images near the
Einstein ring. As it is moved towards the origin, the
number of images changes by 2 each time a caustic line is
crossed, giving a total of eight images when the source is
near the origin.

It is interesting to see transitions between various types
of caustics. An example of such is the combination of
second and third harmonics,

g(r) =gz(r)cos2$+ $3(r )cos3($—a3 }, (5.8)

which demonstrates the transition between four-cusp and
six-cusp caustics. The boundary in the function space be-
tween the four-cusp and the six-cusp caustics is itself a
curve of the same type as the source plane caustics. This
can be seen by defining the perturbation g by two con-
stants,

is traced twice, the number of images changes by +4
when the source crosses the deltoid.

The fourth harmonic produces a self-intersecting caus-
tic,
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(5.9)

and a3. Now let this 2D parameter space be a plane Iaj
with polar coordinates (a, a3). Then the boundary in this

parameter space between four-cusp and six-cusp caustics
can be computed by noting that the number of cusps
equals the number of roots of the equation D(4)=0,
where D(4) is given by Eq. (3.10). The result is an as-
teroidlike curve, given in a parametric form by

a(X)= cos X 1 ——,'cos2X, sin X 1+—2cos2X, 0&X&2m . (5.10)

As we change the potential so as to cross the curve, there
will be a transition between the four-cusp and six-cusp
caustics via a swallowtail singularity [Fig. 7(d)].

VI. FORMATION OF ARCS
BY EXTENDED SOURCES

Point sources create point images. However, extended
sources create arclike images. We can use the construc-
tion in its simpler and less accurate version to determine
the approximate arc lengths by drawing the common
tangents to the source and the caustic (see Fig. 8). The
intersection of these limiting spokes with the critical cir-
cle will mark the ends of the arcs. The thickness of the
arc will be proportional to the length of spoke crossing
the source. A large source (of size s & -er, ) that covers
the caustic will create a complete circular image of radius
r, and thickness -s. A small source (of size s « er, ) will

usually only produce short arcs. However, when the
source is located close to a cusp an extended arc can be
produced. For an asteroid caustic created by a quadru-
pole perturbation, each source point within the caustic
will map onto three image points on an extended arc and
one image point on a shorter counterarc. If the source
does not cover the caustic, then discontinuous arc seg-
ments will be created. The merging of these discontinu-
ous segments is governed by the caustic-touching

I

theorem. ' Some more examples of continuous and
discontinuous arcs are shown in Fig. 9.

It is important to realize that the length of the coun-
terarc can be very short compared with the length of the
main arc. If we take the simplest example of an asteroid
caustic and assume that we have a circular source which
lies within and just touches two branches of the caustic
curve, then the arc lengths will be functions of the ratio
of the radius of the source to the arm length of the as-
teroid caustic. For example, when this ratio is 0. 1, the
arc is 113' long and yet the counterarc is only 7' long. In
a more contrived example, a line source extending from
the origin to the cusp will produce a 180' arc and an
infinitesimal counterarc.

Although our discussion so far has been couched in the
framework of nearly circular lenses, it is possible to relax
this requirement. It can happen that the critical line of a
noncircular lens contains a nearly circular segment which
is mapped onto a cusp or several cusps in the source
plane. If a small source is located close to this part of the
caustic, then the geometrical construction described in
Sec. IV is valid for the images near the round part of the
critical curve, with a possible correction for the dipole

- (b)

(b

/
/

I
I

I

I

\

I

I

I

I
/

/
/

/

I

:(c) : (d)

FIG. 8. Arc formation by an extended source. (a) In this ex-
ample, a circular source is located close to a cusp. (b) An arc
and a shorter counterarc are formed. The limits of these arcs
can be located by drawing the common tangents (spokes) to the
caustic and the source in the source plane. The arcs are bound-
ed by the intersection of these tangents with the critical circle.
The arc thickness is proportional to the length of the chord
formed when a spoke crosses the source.

FIG. 9. Images of circular sources computed for noncircular
lenses of different ellipticities. The solid lines are caustics, the
dashed circle delineates the source. When the ellipticity of the
lens is small the arcs are located close to the position given by
the approximate constructions. However, the method is less
precise for lenses of larger ellipticity. (a) A long arc and a small
counterarc, small ellipticity. (b) A large arc and a tiny coun-
terarc, large ellipticity. (c) An almost complete Einstein circle,
small ellipticity. (d) A discontinuous arc, large ellipticity.
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moment (a translation of the caustic with respect to the
lens on the sky). The departure from circular symmetry
need not be weak in this case. However, a counterarc
would not necessarily lie on the same circle as the main
arc or even exist. If the giant luminous arcs are indeed
produced by gravitational lensing of distant galaxies, the
absence of the counter arcs may also be due to a
configuration of this kind. The fractional accuracy of our
construction in this case is given by the ratio of the size
of the relevant part of the caustic to the radius of the
relevant part of the critical curve.

VII. CONCLUSION

In this paper we have derived a simple geometrical
construction for locating images formed by a nearly cir-
cular lens in the vicinity of a nearly circular critical
curve, for a point source in the vicinity of the corre-
sponding caustic curve. This construction leads to un-
derstanding how a small extended source can be imaged

as a single extended arc or several such arcs. We find
that a similar construction is applicable for a thick lens.
We hope that this construction may be helpful in under-
standing the structure of the gravitational fields of clus-
ters A370, A963, and 2242-02, if the giant luminous arcs
are indeed gravitationally lensed images of distant galax-
ies.
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