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van der Waals and resonance interaction in the tluasimolecular system Eu-Sr
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The authors outline an asymptotic calculation of adiabatic potential curves for diatomic quasi-
molecular systems that happens to be quite accurate in the domain of long-range forces, even for
atoms with complex electronic configurations. A formula for the molecular oscillator strength ex-

pressed via the oscillator strengths of the constituent atoms and the eigenfunctions of the effective
Hamiltonian is presented. Quite general theoretical results on the electrostatic interaction within

these quasimolecular systems are then applied to a calculation of the dipole-dipole interaction for
the quasimolecule Eu-Sr, leading to the adiabatic potentials in the region of interatomic distances
larger than approximately 1.0 nm. These results are checked by comparing the quasistatic absorp-
tion coefficient for the blue quasistatic wing of the Eu resonance line broadened by the influence of
Sr atoms to the experimentally derived profile [K. Niemax, Phys. Rev. Lett. 55. 56 (1985)]. Excel-
lent agreement is obtained. A great influence of the molecular oscillator strengths on the shape of
the quasistatic profile is found, so that, in general, the character of the interaction potential could
not be judged from log-log plots of the absorption coefficient alone.

I. INTRODUCTION

Not long ago Niemax' reported on the transition from
second- to first-order dipole-dipole interaction (van der
Waals to resonance) in the excited molecule Eu-Sr. This
is quite a rare behavior, but possible for heteronuclear
systems. ' In this theoretical approach we have per-
formed asymptotic calculations of adiabatic potential
curves for the quasimolecule Eu-Sr, assuming that ex-
change effects could be neglected in the region of large in-
teratomic distances. Also, the molecular electronic-
transition oscillator strengths were calculated as func-
tions. of interatomic distance. %'ith this as a basis, quasi-
static absorption coefficients were calculated for the euro-
pium resonance triplet (4f 6s S7&2 4f 6s6p PJ)—for
which we shall use the notation (a S7&2 —y Pj), with
wavelengths 459.53, 462.85, and 466.32 nm for J=9/2,
7/2, and 5/2, respectively, broadened by strontium; and
for the 460.86-nm strontium resonance line
(Ss 'Sc —Ss5P 'P, ) broadened by euroPium, both Per-
turbers being in their ground states. Eu and Sr atoms
have two valence electrons and, furthermore, europium
exhibits complicated electronic structure. For such sys-
tems, which include atoms with unfilled inner shells, ab
initio methods would require a lot of computing time
with a risk of numerical failure, while the relatively sim-
ple perturbation treatment can provide a good theoretical
approach.

For proper calculation of an absorption coefficient of
spectral lines for certain atoms A and B, within the gen-
eral mixture of a two-component gas or vapor A-B, con-
sideration of all three diatomic molecules A-A, A-B, and
B-B is needed. Let us denote by I.„'

' the reduced line
profile of atom A broadened by the electrostatic influence
of atom B in a quasimolecular system A-B, and by N„
(Ntt) the concentrations of atoms A (8). Then for the
absorption coefficient we write

In the physical conditions where the concentration of
perturbing atoms (let us say 8) greatly exceeds the con-
centration of emitting atoms ( A), only the second and
the last term in (1) will be important. This is exactly the
case of an experiment' where the vapor pressure of Eu
was five to six orders of magnitude smaller than that of
Sr. In the quasistatic wings of europium resonance lines,
the contribution of the far wings of the strontium reso-
nance line [corresponding to the last term in (1)] is shown
to be small. However, this contribution is subtracted in
Niemax's work, and thereafter reproduces a spectrum
such that it is sufficient to analyze the quasimolecule Eu-
Sr. This will also give us information on the Sr resonance
line broadened by europium in vapor mixtures with re-
verse concentrations.

For the system Eu-Sr not only are the atomic reso-
nance energy levels close to each other, but, moreover,
the Sr resonance singlet level 5s5p 'P& falls between the
J =—', and —', components of the Eu resonance triplet
4f 6s6p PJ. Corresponding energy differences
E(Eu'(J)) —E(Sr') are 62.78 and —93.31 cm ' for J=—',
and —'„respectively. This results in a strong coupling be-
tween the two resonance states (marked by asterisks),
and, consequently, the molecular oscillator strengths will
become exceedingly important for the behavior of the
quasistatic absorption coefficient.

II. PERTURBATION TREATMENT
OF ELECTROSTATIC INTERACTION

The electronic Hamiltonian under consideration will
now be written in the form of an effective Hamiltonian,
suitable for the perturbation calculation of quasidegen-
erate levels: '
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H, ~(R) = W„(R}+Vd;, (R)+H„+H~, (2)

where W„denotes the electrostatic interaction between
two multipoles separated by distance R and HI (I = A, B)
is the Hamiltonian of the unperturbed atom. Vd, , is the
dispersive contribution of the polarization interaction,
and is defined by

Vd;, ——
IVes I(()k&~ 4i&aa&4'I I ~&0k I

IV.s

k, k~ko
A B A B

Ek, +El, —Ek —El
1, l~lo

(3)

In (3), Ek"~ I~
' represents the energy of unperturbed atomic

levels and the subscript zero refers to initial (not neces-
sarily ground) states of atoms before the electronic transi-
tion in a quasimolecule has happened. Also, we have as-
sumed the molecular electronic wave functions to be of
the product form

I
4 ) =

I p „)I pe ) which is justified in

regions ~here exchange effects, i.e., the overlapping of
the wave functions of the two atoms, are small. To esti-
mate the limits of the domain where exchange effects do
become important, one can calculate the sum of average
atomic radii in a molecular state under consideration (one
atom in resonance and the other in the ground state}. By
the use of the tables of atomic radii we have found that
for distances 0.6—0.7 nm the electrons' orbits will come
"in touch. " To be sure, we shall take the domain of our
calculation as the distances R & 1.0 nm.

The electronic Hamiltonian in the form (2) is very
practical because electronic energies of the quasimolecule
are obtainable up to the correction of second order by

simply calculating the matrix elements between desired
quantum states:

+ & 4
I Vd;, (R )

I

4" ) +E105q,q;,
E„ for

I

ql) of type
I
A'B)

gO
Ez for

I
4) of type I

AB*) .
(4)

na, L„S,J„MA &
I na,'L,Sz J~M, )

=
I
n;LSJM) „ I

n;LSJM)s .

The symmetry of the molecular state in the coupled ap-
proximation is characterized by the quantum number
0=

I
M„+M+ I

. For the electrostatic interaction the
most appropriate expression is the multipole expansion

The first step of our work is the calculation of angular
parts of matrix elements in (4). They can be derived "ex-
actly, " keeping in mind the approximation of

I
4) as a

nonantisymmetrized product. To account for the levels
that correspond to the components of fine structure of
atomic terms, we shall use the so-called coupled represen-
tation (Hund s case c, i.e., the spin-orbit coupling
stronger than the electrostatic interaction). In other
words, we can write electronic wave functions of a partic-
ular atom I as kets

I
n; LSJM )I, where J is the total an-

gular momentum formed by addition of orbital (L) and
spin (S) atomic angular momenta. M is the projection of
J on the axis of a quasimolecule. Therefore, the total
asymptotic wave function will be of the form

4me ( —) (a+b)!r r Y, (r;)Yb.(r~)
R'+ +'(2 + 1)(2b + 1)[(a —a)!(a +a)!(b —a)!(b +a)!]

(6)

y erk Y:(r„):—y eP:(r, )
—=~g

k=1 k=i
(7)

where r; and r are distances of electrons from the corre-
sponding atoms A and 8, r, and r are unit vectors point-
ing from atoms to electrons, a (b) is the order of mul-
tipole for atom A (B), and Y,

~ & ~
denotes the spherical

harmonic with a as the projection value of the smaller of
the two numbers a and b. For neutral species, a, b &1,
and the lowest possible interaction is of the dipole-dipole
type. In practice, the sum g, , reduces to the outer
(valence) electrons only. Here we deal with atoms which
have two outer electrons. This approximation is a bit less
applicable to the electronic configuration of Eu where the

4f subshell is half-filled, but, nevertheless, the interaction
between the deep-lying 4f electrons and the outer elec-
trons can be considered as negligible. '

The summation of valence electrons can be separated,
so that, for a particular atom,

represents a multipole moment of order a for the atom
with p valence electrons. For a =1 we shall have the di-
pole moment operator At& ——2P. Here we deal with the
states where equivalent electrons exist and (fractional)
parentage coefficient schemes ought to be used for a
description of the atomic quantum states. Because the
radial integrals will be expressed via oscillator strengths,
the angular parts of matrix elements will be calculated
down to the reduced matrix elements of a multipole mo-
ment for the atom as a whole. In that way we ensure the
clear separation between the part of our calculation
where the known angular parts of wave functions appear,
and the part where experimental values or semiempirical
methods (Coulomb approximation, see Appendix) enter
for the radial integrals.

By use of the Wigner-Eckart theorem and the concept
of the relative line strength, '" one can derive the follow-
ing expression for the matrix elements of the first-order
electrostatic interaction in the general case:
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J„' a J„
xg M~ —a —Mqa

with the notation abbreviated as in (5):

a+b (

(el w„le'&=( —)
"' '

(2J„+1)(2J„'+1)

(2S„+1 }

(2Js+1)(2Js+ 1)

(2S~+ 1)

JB

'(nL (S}IIAf,(r„}IIn'L'(S') & „5
L~ a A A

JB SB
'(nL (S)IIJR),(rI) }lln'L'(S') &s5

B B B

b JB
1

MB . [(~ —(z)!(~ +(z)!(b —&)!(b+(z)!]'

(8)

(n„L„(S„)II%,(r„)lln„'L„'(S„' ) & = (nL (S)IIAt, (r„)lln'L'(S'} & „.
Here,

I
4 & and

I

4'
& are of form (5). We have put the spin number (S) in parentheses to remind us that the reduced

matrix element (relative multiplet line strength) depends on the way of coupling of the electronic angular momenta in a
total orbital (L} and spin (S) angular momentum of the atom. The specialization for the dipole-dipole interaction
(a =b =1}gives

(4
I
w„(a =b =1) IV' &= ( —)

"

(2J„+1)(2J„+1) ' L„J„S
'

I
( nL (S)IID& Iln'L'(S') & „ I 5s s,2S„+1 A A

(2'+ 1)(2J~ +1) La

(2Sq+ 1) Jg

xg I
Mg —a —M„MB

JB SB
I

& nL(S}IIDalln L'(S') &s I 5s s,
B B B

1 JB 2
a —Ms (1 ~)!(1+(z)!

'

Considering the sign, note that the absolute values of reduced matrix elements are given for straightforward substitu-
tion of square roots of oscillator strengths.

On the other hand, the matrix elements of the dispersive potential Vd;, are of the form

&'p
I ~d. I

p"
&

I I I

I I I
&B LB JB

5 o
JA+ JA+L A+L A

—MA —MA+ JB+JB+LB+LB—MB —MB
IIO

SA SA SBSB
a, a', a
b, b', a'

16m.
a+b+a'+b'+2

(~+b)!(u'+b')![(2J„+1)(2J„"+1)(2J+1)(2Jg+1)]'~'(2J„'+1)(2J'+1)
X

I (2a + 1)(2b + 1)(2a'+ 1)(2b'+ 1)[(a —a)!(a +a )!(b —a)!(b +a)!(a' a')!(a'+a'}!(—b' a')!(b'+a')!—] J
'~

Jw Lw Sw JB LB

L„' J~ a LB JB

SB J
b L~ a' LB' JB' b'

L q Sq JB LB SB

a J~ JB b JB J„' a' J„" JB b' JB'

—a M~ —MB a MB —M~ —a' Mq —MB a' MB'

(nL( }Sllik, lln'L'( )S&„(n'L'( S) JINNI, , lln
"L"(S)& „(nL (S)IIJKblln'L'(S) &s(n'L'(S)IIJ$tb IIn

"L"(S)&s

~~ (nSLJ) ~ (n'SL'J') +~ (nSLJ) ~ (n'SL'I') }
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To get further simplification of (10) one should specify the order of multipoles in the interaction. Also, the approxi-

mation E(„IsJ) =E(„I) is made in the cases where the differences of weighted energies of the multiplets [under the sum-

mation sign in (10)] are much larger than the energy differences between the components of fine structure for each

atom. In our case, this approximation brought in an error of at most 5%. Because of the summation over J this is ac-

tually a much better approximation. Also, let atom 8 be in its ground state such that L~ =0, Jz ——Sz, then we can

write

&%
/
v„, [

)p"
&

=~s s-~s s-~M ~-~~ ~-[(~~+'}(~"+')]'"
R6

I
nA+n A

LA

5 „5 S„
A A A A

(2L„+1)(2J„+1) ML ( —ML +Mg ) —MJ+3
A

S~
X

ML ( —ML +MJ ) —MJ
A A A A

—ML, ML, 0 —ML, M 0
A A A A

& «(S)[~D~ (~n'L'(S} & ~ & n'L'(S) IID~ ~~n
"L"(S)& ~ & «(S)IIDS l[n

'L'(S) &a & n'L'(S) ~~Dr l~n
"L"(S)&s

X
(E(nSL) E(n'SL') +E(nSL) E(n'SL') }

The angular parts of the matrix elements of the effective Hamiltonian can now be calculated up to the second order
of perturbation by substitution of wave functions in the formulas (8) [(9)] and (10) [(11)]for general (dipole-dipole) in-

teraction, respectively. For the case of the quasimolecule Eu-Sr the set of basis functions is presented in Table I.
Let us now denote the product of reduced matrix elements of dipole moment by

f
& nL (S)//D„//n'L'(S) & z & nL (S)//Dz//n'L'(S) &z f

= C3 (12)

and the sums of the products in (11)by

I

I
ng+ng

I
& nL (S}IID A Iln 'L '(S) & 2 I

'
I

& n 0(S)IIDi) Iln
'l(S) & 8 I

'
A A B B

(E(nsL) E(n SL ) +E(„S—L) E(n SL )
)— L„=l, L„'=0

Lq ——1, L„'=2

P; L„=O, L„' =Ls ——1

( A, B =Eu, Sr) . (13)

Formula (13) is written for atom 8 initially being in its
ground state (Ls =0, L~ = 1). For the sums 4 the addi-
tional condition exists: the resonance transitions in
atoms must be excluded, i.e., n „'&n „and nJ'i&ns in for-
mula (13). P stands for the case where both atoms are in-
itially and finally in the ground state, and it describes the
interaction potential of the ground state of a quasi-
molecule. The values of reduced matrix elements defined
in (12}and (13) can be calculated by means of atomic os-
cillator strengths, which are presented in the Appendix
for Eu and Sr atoms. For the Eu-Sr quasimolecule, the
results of radial parts are presented in Table II. The
figures quoted there were obtained by prior use of experi-

mentally measured oscillator strengths (when available).
The uncertainties were estimated by comparing the
values calculated via experimental and theoretical oscilla-
tor strengths and/or the values obtained by the use of
difFerent possible coupling schemes for Eu terms (see Ap-
pendix).

Now we shall present the symmetric matrices of the
effective Hamiltonian or, in other words, the C3 and C6
constants for the Eu-Sr system. The matrix element
M;;.(0}means the transition among different states of 0
symmetry, distinguished by indices & and i, the selection
rule for the quantum number 0 being 60=0 [see formu-
las (8}—(11)]. The submatrices are as follows.
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It is very instructive to draw the adiabatic potential
curves versus R (Fig. 2). On such plots one can in-

spect the character of potentials, since in the region of
domination of the van der Waals interaction the potential
curves are parabolic, and in the region of domination of
the resonance interaction the potential curves are straight
lines.

In Fig. 2 one can see that the transition from van der
Waals to resonance interaction is a common property of
all potentials for the quasimolecule Eu-Sr and reinforce
the discussion of Niemax. ' The region of transition
moves toward smaller distances for the potentials with
lower energies. For the group of potentials with symme-
try zX+, it happens at about 1.7-2.0 nm, and for zX+ at
about 1.2 —1.4 nm (here the region of domination of the
resonance interaction is very short}.

For the potential curves that have the same uncoupled
symmetry but originate from different asymptotes, the
great mutual interaction results in a complex behavior,
i.e., intensive competition of contributions of different
character: repulsive versus attractive, van der Waals
versus resonance. This is especially noticeable for the fol-
lowing states denotes as (Q, y): ( —'„2), ( —'„3), ( —,',3), and

( —',,3).
One case where the type of interaction (resonance or

van der Waals) that can be approximately foreseen
analytically is for the 2 X 2 submatrices (in our case it is
for Q =—', ). This matrix is for the heteronuclear system of
the following form:

CA
6

R

C3

R3

( B

E
R

1+—
2

C A CB 4C26 6 ~E 3

R R6 (15)

If the system under consideration had been homonu-
clear ( A =B), an additional term of resonance character
would have appeared on the diagonal in (14}and the ex-
pression for the eigenvalues would read

' 2 1/2

V("= )(R)= 6 3 2 bE 3

R6+ R3 4
+ R3

(15')

Here it is easily seen that for great (small) interatomic
distances the resonance (van der Waals) interaction will
dominate.

Let us go back to the heteronuclear systems. For large
distances where

We choose our quasidegenerate (reference) level to be
in the middle of EA and EB levels and put it to be 0, i.e.,

(E„+Es)I2=E„r, E„= Es—=bE/2 .

Thus, for eigenvalues, we get

CA +CB
V) ~(R)=

7/2 4
5/2 6
3/2 6
1/2 6

9/2 2
7/2 3
5/2 5
3/2 5
1/2 5

2 1/2 I,
3/2 4
5/2 4

~ E~/, »
C3 7/2 2
CO 5/2 3

3/2 3
1/2 3
1/2 2
3/2 2
5/2 2

7/2 14 —5/2 1

3/2 1

1/2

I I I I I I I 'IIIII
)

Eu(9/2)'

Sr~

Eu(7/2)

Eu(5/2) .

A BC, -C,
R )) =Ro,

the first term, in parentheses under the square root in
(15), can be neglected compared to the bE. Now by sim-
ple calculation we can get the condition for the domina-
tion of resonance interaction:

C3
V=%

R

for distances

=Ri ((R ((R2 ——

C3

1/3
3

hE

(17a)

(R) R2 »Ro) . (17b)

For R ~&R2 the adiabatic potential curves can be writ-
ten as

( A+(B (2
2R' aER6

I I I I I I I IIII I

1.5 2.0 co
R{ nrn)

FIG. 2. Adiabatic potential curves vs R . The resonance
interaction (-R ) appears as straight lines and the van der
Waals interaction ( —R ) as parabolic curves (see text).

and competition between the attractive and repulsive po-
tentials will occur ( C6 constants are negative in 2 X2 sub-
matrices}. Here we can see how C3 constants contribute
to the potentials that behave like R

For R &&R, another region of van der Waals interac-
tion domination emerges, but now only due to the C6
constants and, consequently, of attractive character. The
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unfulfillment of the condition in (17) may cause the reso-
nance interaction to be weak compared to the van der
Waals interaction, which is, in fact, the case for a great
majority of heteronuclear systems. More often than not,
Rz is smaller than R&, or R2 falls in the region of ex-

change effects.
In the case of the Eu-Sr quasimolecule, one obtains

Ro 0.8 nm, R
&
=0.6 nm, and R2= 1.6 nrn. It turns out

that Ro & R &, i.e., R
&

does not fulfill the condition in the
parentheses in (17), but it is quite obvious that in the re-
gion of about 1.0-1.6 nm we shall have the domination
of resonance interaction. At about 2.0 nm, the intense
van der Waals interaction occurs that will prolong itself
up to infinity.

IV. MOLECULAR OSCILLATOR STRENGTHS
Besides the eigenvalues of H,z, we are also interested

in the eigenvectors, i.e., the eigenfunctions of perturbed
states. After having them, we shall look at the matrix
elements of the electronic dipole moment operator be-
tween certain electronic states of a quasimolecule, in or-
der to get the absorption coefficient (see Sec. V). It is

usual to define the molecular oscillator strength for a
transition

I f & ~
I
P' & in strict analogy to the atomic os-

cillator strength
(E, E ) 2 I & q'&

I
D .) I

'P'(x'
& I

' .
3A' e gy aa'

(19)

Here
I f& and

I

g' & are initial- and final-state wave func-
tions, and g& is the multiplicity of the initial state. The
sum is taken over the sublevels of initial and final states.
We are interested in the molecular transitions from the
ground state to the states where one of the atoms is in a
resonance state. For the ground state we rewrite the ket
vector simply as

I &oro & =
I L~S~J~M~ &

I LaSa Ja~a & (20)

In an excited state of a quasimolecule, the wave functions
will be certain linear combinations of basis vectors (for
the Eu-Sr quasimolecule presented in Table I):

(21)

where 2t;z is a matrix element of the n xn submatrix of
eigenvectors written by columns. Now we search for the
matrix elements of the molecular dipole moment that can
be written in a first approximation simply as
D,&

——D„+DB. D,~
is decomposed into spherical

components, and the calculation gives the expression for
( Qo7 o I Dmo) I Q7 & in terms of the atomic diPole rnomen-
ta, i.e., the molecular oscillator strengths in terms of the
atomic oscillator strengths:

2(E(ny) E(n y ) )f(Q y(o)J() ~Ay ) =
2JO+1

JA 1 JA (2Lg + 1)
X ~ (2Jo+1)

L S Lo f

'[(2Jo+1)(2J +1)(2J'+1)(2J +1)] '

X
J~ Lq S~

1

JB LB SB

Lo Jo 1 Mq

JO JB

MB —qB —MB
0

A B
x (2L g + 1)(2Lg + 1)

hE "AE
(22)

We have denoted gE) —EI —g 0 0 0, f =f 0 0 0,, 5n, = 1 when
I
L,S,J, & is an excited (resonance) state,

and fi + ——0 for
I L)S(J) & =

I

LoSoJo &. Also, it is implicitly supposed that just one atom at a time is in the excited
state.

The sign in the formula for molecular oscillator strengths must be consistent with the signs in formulas for matrix
elements of H (Sec. II). It is, in fact, the choice of phase which is arbitrary but has to be the same throughout the calcu-
lation. Practically speaking, when using the Wigner-Eckart theorem and Racah algebra the kets

I
nLSJ & must not be

mixed with the kets
I
nSLJ &. In this paper we have used the form

I
nLSJ &.

If in the ground state of a quasimolecule l =0 for both atoms, (21) is simplified to the form
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2«(ny( —&(n,;,) )

f (&origo f)r )=
2Jo+1

fAg2 fBg2

(2L +1)i(/A AA (2L +1)i(EB BB

' 1/2
M'+M'+1 +J, +L„+1., (2JA+1)(2JB+1)

0

X MP

Jq J~
—qq —M~ M~p —q~ —M~

f AfB

aE ~aE~ ir—i r q&q&
. A. , $

(23)

Here it is obvious that q„+qB ——2(QQ —Q).
In accordance with the approximation of the basis set

of wave functions as a finite set (Table I), we can neglect
the R dependence of the energy di6'erence E~zr) —Et„r iOro

because it is just 1 —5% (depending on the particular
transition) of the energy of resonance levels. So we write

E(z )
—E~z )

=const =AE& =DER .oro (24)

Thus, in a first approximation, the R dependence in for-
mulas (23) and (24) remains only in the coefficients %;z of
the eigenvectors. Now, the sum of oscillator strengths of

all the states for a given submatrix 0 will stay constant,
and is equal to the sum of oscillator strengths of particu-
lar atoms (fA +fB ) divided by the dimension of the
effective Hamiltonian (for the Eu-Sr system it is 24) and
multiplied by the dimension of the specific submatrix.
Consequently, the sum of all the oscillator strengths, for
all existing states, is consistent and is equal to the sum of
atomic oscillator strengths (f„+fB ). With the abbrevia-
tion 8;z ——(i ), 8;g; z

——(ii ' ), we list the angular parts
of the molecular oscillator strengths for the quasi-
molecule Eu-Sr (y = 1, . . . , n )

0=—,', n =2,

f „(y)= ,', [f„(1)'+f—(2)'+2+f„f(12)] .

0=—'„n =4,

(25a)

f .(()')= f (&1&'+&2)')+f ((3)'+(4)')
12

+2V'f Af, (» &+ & 14&+ (23& — (24& (25b)

0=—,', n =6,

f ((y)= f„(&1&'+&2&'+ & 3)')+fB((4)'+ & 5&'+ &6)')
12

+2+f„fB 2(v 7/3(14)+ (15)+—,'(16)+2v 2/21(24) — —(25) — (26)
v'14 S v'2

(34&+—,'v'6/7(35)+ (36&
1 v'3

2v'7 2
(25c)

0=—,', n =6,

f, (y)(= fA(&1&'+ &2&'+ &3&')+fB((4&'+ & S)'+ &6&')
12

+2+fA fB —'v 5/3(14)+ —(15)+ —(16)+v'10/21(24) — —(25) —2v'2/21(26)8 v'2 2v'3 v'7

+ —,
' v 3/7 ( 34 ) ——,

' v 10/7( 35 & + & 36 )
v 15/7 (25d)
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0=—,', n =6,

f .)(r)=,
2 f (&»'+&2&'+&3&')+f (&4&'+&5&'+&6&')
1

+2V fgfg &14&+ &15&+-,'v'2/3&16&+-,'&2/7&24& — &25&
&10 v5

4 1

—&10/21& 26 & +T)&6/7& 34 &
—&3/7& 35 &+ —,

' &10/7& 36 & (25e)

9/2 2 I I I I

7/2 3
5/2 5
3/2 5
1/2 5
1/2 4
3/2 4
5/2 4

7/2 4
5/2 6
312 6
1/2 6

I I ( I
I

I ( ) I

Eu

9/2
7/2
5/2 3

01 —3(2 3
1/2 3
1/2 2
3/2 2

5/2 2

) 1 ( I I I I I

I I

I I I I—5r

Eu

I

I I I I I I I I I I I

()

The results for molecular oscillator strengths are
presented in Figs. 3(a)—3(c). As R gets smaller, the
values of the molecular oscillator strengths increase for
the states of zX+ and zH symmetry and decrease for the
states of s3X+ and s(II symmetry. There are two asymptot-
ic values of molecular oscillator strengths: fz/12 and

fz/12, which can easily be deduced from the expressions
(25).

V. QUASISTATIC ABSORPTION COEFFICIENT

In order to construct the absorption line profiles we
have analyzed the adiabatic approximation conditions for
the relevant adiabatic molecular states. All adiabatic po-
tential curves exhibit monotonic behavior in the region
where the calculations are performed, and there is no evi-
dent anticrossing among adiabatic potential curves for
the states of the same symmetry. We have checked the
corresponding Massey parameters for all pairs of molecu-
lar states with the same symmetry, for temperatures near
1000 K. All values of Massey parameters are bigger than
70, i.e., the adiabatic approximation is acceptable. More-
over, for temperatures up to a few thousand kelvins, and
for interatomic distances larger than 1 nm, we have ar-
rived at the conclusion that the nonadiabatic transitions
among the relevant molecular states are negligible. So
one can assume that all strong nonadiabatic effects,
which are important for the excitation transfer, would
occur at the small interatomic distances, below the region
of validity of our calculations. Consequently, these
effects are of no importance for the construction of the
absorption profile in the neighborhood of the Eu and Sr
resonance lines.

The quasistatic approximation will be acceptable for
neutral gases and vapors at temperatures up to a few
thousand kelvins and pressures up to several hundred
torr, and the absorption coefficient is given by a simple
formula'

5/2
3/2 1

1/2
I I I I I I I I l l I I I I

k
(A0y0~ Qy )

4m. e
N„Xs g

P7lC

Xe

f,)(R, )R,
d I'(n, -n, r, )

dR

E(g )(R )/kT
0~0 (26)

1.5 2.0

FIG. 3. Molecular oscillator strengths. The highest X poten-
tial (zX+) and lowest H potentials (&H) correspond to the states
which have decreasing oscillator strengths as internuclear dis-
tance decreases. In other words, the transitions to these states
will be less probable for small R. The lower X potentials (zX+ )
and higher H potentials (2H) correspond to the states with in-
creasing molecular oscillator strengths, i.e., the molecular tran-
sitions to these states prevail at small R.

( Qy Q y ) is the differential potential and the summation
oyo

is over all Condon points R, defined by the following
condition for the photon's frequency ~:

Rco= V(o~ o y )(R, ) .

E(o ~ ) is the energy of initial (ground) state, f „ is the
Oy0

molecular oscillator strength, and the other symbols are
conventional.

By calculating the quasistatic absorption coefficient for
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the europium line 459.53 nm (a 'S7/2 y P9/& )

broadened by strontium (the line that is experimentally
measured by Niemax'), we can test our theoretical ap-
proach. From the behavior of the potentials we can see
that only the blue wing is quasistatic, the red one being
antistatic. In Fig. 4(a) one can see good relative agree-
ment with the experiment; namely, the experimental ab-
sorption coefficient resulted in relative units due to the
method of laser induced fluorescence. The experimental
curve is matched to the theoretical results at the point
(b,k( =0.1 nm. The contributions of particular states
(Qy), with the common asymptote Eu' y P9/2, are
shown by thin lines. Note how the absorption coefficient,
originating from the state ( —'„2) and having the symmetry

&II, differs from the other states with the same asymptotic
energy and makes the greatest contribution to the total
absorption coefficient, especially in the far-wing regions.
[The same situation is repeated for the state ( —'„1) of the
europium line 462.85 nm. j

The slope of the curve loglck =f (logIII (
h)I.

(
) will give

the exponent p of a dependence k (b,A. )-
(

b, A,
~

and is
shown in Fig. 4(b). By approximating the oscillator
strengths as being constant in formula (25) one can easily

show that for a differential potential of the form V-R
the quasistatic absorption coefficient is proportional to

~

b,k( "+ '. With this approximate assumption the
far wings due to the van der Waals interaction should
have the exponent p = —1.5, and for resonance interac-
tion p= —2. The differences p & —2 for (b,A, &2.0 nm
originate from the R-dependent molecular oscillator
strength.

As we have seen from the analysis of the adiabatic po-
tential curves, the transition from van der Waals to reso-
nance interaction is a general property of the system
Eu-Sr. Niemax' could not precisely measure the absorp-
tion coefficient of the europium line 462.85 nm
(a S7/2 —y 'P7/2), broadened by strontium, because the
red quasistatic wing was masked by the blue antistatic
wing of the line 466.32 nm Eu' (a S7/2 J7 P5/ )2. For
these lines the absorption coefficients are presented in
Fig. 5(a). In Fig. 5(b) we can see the behavior of the cor-

Eu 462;8
red wl

f u 466.3
red wi

10 - 9(2 2-2

-7/2 &

5/2 6
3/2 6
112 6

E
O

I

1
z'.

Eu 459.5
10:blue w

0 I

0.1

102
Sr 4609

blue w

I

CO

L

10
I Sr 460,'9:red win

0.5 '1.0
Ih, & I (nm)

I

0.1
I I I I I I III

0.5 1.0
Ih& I (nm)

I I I I I I I II

d( log1pKj I d( log1plkhl j
-1.5—

I

I I I I I

I I I I I I

5.0

0
CA
O

O

I

2 Eu
Sr

E.u

Sr3-

& 66.3nm
4 60.9nm
blue w,

462.8nm
460.9 nm
red w.

FIG. 4. Quasistatic absorption coefficient {the uppermost
line) for the blue wings of the europium line 459.53 nm
(a 'S7/2 y 'P9/2) broadened by strontium. The crosses denote
the experimental values (Ref. 1). The contributions of the states
with di6'erent 0 symmetry are shown by the 5ve lower lines. (b)
The value of the slope of the tangents on the curve in (a). For
this spectral line the transition from van der Waals to resonance
interaction is not masked by the influence of molecular oscilla-
tor strengths.

I

0.1 0.5 1.0
(nm)

FIG. 5. {a) Quasistatic absorption coefficients and corre-
sponding slopes p for red wings of the europium lines 462.85 nm
(a S7/2 y P7/2) and 466.32 nm (a S7/2 y P&/2), broadened
by strontium; and for blue and red wings of the strontium line
460.86 nm (5s 'So —5s5p 'P& ) broadened by europium (in mix-
tures where the concentration of Eu highly exceeds the concen-
tration of Sr).
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responding exponents (slopes) P. For the 462.85-nm euro-

pium line the slope p =p (log)0
l

b, A,
l

) reflects the charac-
ter of the potentials (transition from van der Waals to
resonance interaction) with a slight peculiarity at the far
end. On the other hand, a rather great inhuence of in-

creasing oscillator strengths can be seen for the line
466.32 nm Eu*, where a small but existing region of dom-
ination of the resonance interaction (compare to Fig. 2)
cannot be predicted from the line profile alone.

Our calculations also give us the quasistatic blue and
red wings of the strontium line 460.86 nm
(Ss 'SQ —SsSP 'P, ) broadened by europium (Figs. 5).
Such a spectrum would be observed from mixtures where
the vapor pressures of Eu highly exceed the vapor pres-
sures of Sr (Eu atoms as predominant perturbers, i.e., the
conditions just opposite those of the Niemax experi-
ment'). The transition from van der Waals to resonance
interaction is here again masked by rising (falling) oscilla-
tor strengths for the blue (red) wing. Especially drastic
absorption occurs in the far region (

l
b, A,

l
& 1.0 nm) of

the red wing. These results still await experimental
verification.

VI. DISCUSSION AND CONCLUSION

The perturbation treatment of the electrostatic interac-
tion in a quasirnolecular system yields very reliable adia-
batic potential curves. The exchange effects can be easily
neglected at distances much greater than the sum of
atomic radii. In a first approximation the dipole-dipole
interaction usually suSces. For angular parts, all that is
necessary is to form a basis set for the quantum levels un-
der consideration, and to use the formulas (8) and (9) for
the first-order, and formula (11) for the second-order,
perturbation calculation. The whole procedure, includ-
ing the angular parts in algebraic form a&b Ic&d, is
covered by computing algorithms.

The most delicate part is the calculation of radial in-

tegrals. If possible, the experimental oscillator strengths
ought to be used, at least for the dominant transitions.

The adiabatic potential curves and the molecular oscil-
lator strengths are results of the diagonalization of the
effective Hamiltonian (3), i.e., of the submatrices specified
by quantum number Q.

Concerning the quasirnolecule Eu-Sr, it is a system
with very close resonance levels, so that the electrostatic
inhuence of two atoms results in a strong resonance in-
teraction (C3 constants are big) that goes like R and
predominates in the region of 1.0—2.0 nrn.

As a general remark for the experimental approach we
can say that only a rough insight into the potentials' be-
havior can be obtained by analyzing the absorption
coe%cient; namely, in strongly interacting systems with
close resonance levels, besides the differential potentials,
there are also the molecular oscillator strengths that can
produce significant changes in line shapes.
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APPENDIX: ATOMIC OSCILLATOR STRENGTHS
OF Eu AND Sr ATOMS

(BY COULOMB APPROXIMATION)

To obtain the C3 and C6 constants it is necessary to
calculate the radial integrals of the dipole moment opera-
tor for the transitions from the resonant P level to nS and
nD levels for the constituents of a quasimolecular system,
as well as those for the transitions from the ground S lev-
el to P levels [see Eq. (13)]. For the former transitions
(from the P resonance state) there are no available experi-
mental data for either Eu or Sr atoms, and it was an un-
avoidable task to calculate them. Although Eu exhibits a
very complex electronic configuration, some recent pa-
pers ' showed that for lanthanides the Coulomb approxi-
mation is usually as reliable as the model-potential
methods and often better then ab initio calculations
which hardly account for atoms with complex electronic
structure.

We start from the definition of an oscillator strength
for the electronic transition in terms of the matrix ele-
ment of the dipole moment:

(Al)

Further, the multiplet oscillator strength is introduced:

1
f(ysL~y'sL') g (2~+ )f(yJ~y'J')

gi J J'
(A2)

where g, is the multiplicity of the initial state. The con-
nection between the multiplet oscillator strength and re-
duced matrix elements, which appear in the formulas (12)
and (13), can be deduced:

(E(y J ) E(yJ)
f(ysL~y sL') 3~p p'(21 +1)

Therefore, to get the values for reduced matrix elements
of dipole operator it is enough to take the multiplet oscil-
lator strengths from the experimental data or to calculate
them.

For the Coulomb approximation we have used the
tables of radial integrals by Oertel and Shomo. ' The
complex electronic configuration of lanthanides gives rise
to several possible coupling schemes for ground and reso-
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TABLE III. Possible coupling schemes for the electronic configuration of ground and resonant
states of lanthanides with unfilled 4f subshell (v ( 14).

Index

0 (ground state)
C
D

1 (excited state)
A

B
C
D

Configuration
(Grandparent) (parent) term

f (SpL p )s (SiiL i2 ) SL
f (SpLp& Jp )s (S] Lpig& Jig ) J

f" (S pL p )p (Sp2L pi )s SL
f" (SoLo)s (Sp, Loi )p SL
f (SpLp)sp (S]2Lii) SL
f (SpLp' Jp)sp (Si2L iii J&i ) J

Coupling
type

SL
J-J

SL
SL
SL
J-J

TABLE IV. The multiplet oscillator strengths for Eu for the transitions from ground level
4f'6s'a sS,&z to n' P multiplets, calculated by Coulomb approximation. Dashes denote nonadequacy
of the Coulomb approximation. The compilation of experimental results is made from the National
Bureau of Standards catalog (Ref. 11) and some recent measurements (Ref. 14), and is of an uncertainty
of 15—20%%uo.

Final
multiplet

z'p
y 8p

y8p

y 8p

y Sp

y 8p

y Sp

v'p

E (cm ')

16211.65
21 630.0
31 255.36
34478.8
36 528.98
39 064.49
40 550.35
41 284.5

0.799
1.05

0.030
0.109
0.0012
0.029
0.005

2.02

Coupling
C (D)

0
1.86

0
0.194
0.0022
0
0.0009

2.06

Mix

0(C)
1.46

0.015
0.152
0.0017
0.015
0.007

1.64

Experiment
(compilation)

0.0077
1.45
0.15
0.035
0.015
0.0015
0.021
0.0007

1.73

TABLE V. The rnultiplet oscillator strengths of Eu for transitions from the resonant level

4f 6s6py 'P to n' 'S and n' 'D multiplets. For the resonant level, the two most probable (B and C) cou-
pling schemes were taken.

Final
multiplet State E (cm ')

B-C

Coupling transition

C-C

g 8SO

e 8SO

8SO

g 8SO
~ SSO

0.00
29 517.86
31 217.30
36 659.56
39 242.56

—0.349
0.178
0.140
0.0040
0.0044

—0.621
0.100
0.061
0.027
0.0019

a 'D'
b 8D'

SD0

SDO

g SDO

h D

A?
A?

15 629.32
19406.98

35 081.42
35 505.12

36 162.41
36493.38

B-X

—0.0007
—0.008

0.009
0.413

0.138
0.114

C-X

—0.026
—0.0035

0.305
0.184

0.052
0.050

g O65 0.12
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TABLE VI. The (multiplet) oscillator strengths of Sr for
transitions from ground state Ss 'So to n' 'P levels. The uncer-
tainty of experimental results is 20—25 %.

TABLE VII. The (multiplet) oscillator strengths of Sr for the
transitions from the resonant levels SsSp 'P to n''S and n''D
levels (multiplets).

Final 'P
multiplet

SsSp
Ss6p
Ss7p
Ss8p
Ss9p

Ss10p
Ssl lp
Ss12p
Ss13p
Ss14p
Ss15p
Ss16p
Ss17p

E (cm ')

21 698.482
34098.44
38 906.90
41 172.15
42 462.36
43 327.94
43 937
44 365.9
44 676
44 903.5
45 075
45 208
45 312

Coulomb
approx.

1.86
0.22
0.027
0.0263
0.0081

l.94

Experiment
(Ref. 11)

1.919
0.007 35
0.0157
0.0451
0.0449
0.0287
0.0156
0.008 45
0.005 18
0.003 57
0.002 65
0.001 87
0.001 44

2.100

Final
multiplet

5$2 1S

Ss6s S

Sp 'S

Ss7s 'S
Ss8s S
Ss9s 'S
Ss10s 'S

Ss4d 'D

Ss4d 'D

5 'D

Ss6d 'D
Ss7d 'D
Ss8d 'D
Ss9d 'D

E (cm ')

0.00
30 591.8

37 160.278

38 444.054
41 052.5
42 596.0
43 512.6

20 149.7
34 727.483

36 960.881

39 733.114
41 831.7
43 020.9
43 780.6

Coulomb
approx.

—0.675
0.160

0.065

0.015
0.0053
0.0025
0.0005

—0.089
0.675

0.602

0.112
0.044
0.022

nance states, ' which are presented in Table III.
For the case of Eu, v=7 in Table III. In the resonance

state the coupling types C and D are suggested, and we
have performed calculations for S-P transitions just to
test the method and to provide a ground for an estima-
tion of the uncertainties (see also works ' "on the oscil-
lator strengths of lanthanides). For S Ptransition-s of Eu
between the coupling types C-C and D-D one obtains the
same figures. We suggest the "intermediate (BC) cou-
pling" (in a first approximation it will be taken simply as
a mean value of the results for coupling transitions C-8
and C-C) because of its best agreement with the experi-
mental data. "' (However, for the lowest z P multiplet,
the C coupling scheme seems to be the best. )

We can see that the values shown in Table IV are good,
considering the crudity arising when calculating the radi-
al integrals with approximate wave functions. For transi-
tions from the y P resonance level to S and D levels the
results are presented in the Table V. Because of the lack

0.94

of experimental data the only reasonable check that we
can make is to apply the sum rule for the oscillator
strengths. In this case it should be 1, and we see that
probably a few more P-D transitions ought to be taken
into account, but either there were no data for the ener-
gies or the Coulomb approximation ceased to be valid.

A much simpler electronic configuration is that of the
strontium atom. Theoretical results for oscillator
strengths for S-P transitions (Table VI) are precise only
for the resonance line. However, the sum rule is repro-
duced fairly well. The values for P-S and P-D transitions
are presented in Table VII.

As a conclusion of this appendix we can say that the
Coulomb approximation gives good results for the most
intense (resonant) lines of europium and strontium, and
nearly reproduces the trend of changes in oscillator
strengths for the other lines.
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