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It is shown that the joint distribution of energy eigenvalues for systems with a varying degree of
nonintegrability which has been obtained dynamically by T. Yukawa [Phys. Rev. Lett. 54, 1883
(1985)] can also be deduced by putting his equations of motion in the form of stochastic differential
equations. We obtain an interpolation formula for the nearest-neighbor-spacing distribution as a
smooth one-parameter family of density functions P, (S), 0 <A < «. This distribution retains a non-
analytic nature near A—0; when A=0 it agrees with the Poissonian distribution but whenever A0
it is proportional to S for small S, as predicted by M. Robnik [J. Phys. A 20, L495 (1987)]. A con-
siderable improvement on the agreement between the energy-level histogram in a real system (hy-
drogen in a magnetic field) and theoretical formulas which have been studied by Wintgen and
Friedrich [Phys. Rev. A 35, 1464 (1987)] is demonstrated.

There has been growing interest in energy-level statis-
tics for quantum systems with Hamiltonians which lie in
the intermediate regime of transition from integrability to
chaos.! A convenient way to describe the statistics for
such systems presently adopted by many authors is to
compute energy levels from secular determinants of very
high dimension and to plot the frequency histogram of
the nearest-neighbor level spacings (NNS), which may be
compared with theoretical predictions [two well-known
limiting distributions, Poisson-type and Gaussian-
orthogonal-ensemble (GOE) type (or Wigner type), have
so far been used]. For example, the quantum spectrum of
the hydrogen atom in static magnetic fields of laboratory
strength is regarded as an ideal system for this study?
both theoretically and experimentally, where the diamag-
netic effects allow one to see the development of quantum
chaos. Another example is a driven quantum system
such as the driven anisotropic spin, where a transition
from regular to irregular behavior is found in the
quasienergy spectrum with increasing strength of the
driving magnetic field.3

The theoretical prediction for the statistics in such a
controllable situation seems unestablished to date. The
first explicit evidence that the proposed interpolation for-
mula due to Berry and Robnik! is inadequate for guiding
the actual frequency histogram has been reported by
Wintgen and Friedrich? in their study of the hydrogen-
atom levels in a magnetic field. Robnik* has accordingly
discussed the reason for this inadequacy, proposing some
examples of improvement. Our specific aim here is to
provide an explicit answer to the question raised by these
two recent works.

We report a result which is motivated by recent work
of Yukawa.> Our approach is to transform his dynamical
equations of motion into stochastic ones, which allows us
to find the distribution by means of the standard theory
of Brownian motion and stochastic differential equations.
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Thus the stationary solution of a relevant Fokker-Planck
equation will give the distribution. This is an approach
basically suggested in Dyson’s paper in 1962 (Ref. 6) and
reformulated recently by Tanaka and Sugano.7 These
treatments, however, are only to give the joint distribu-
tion of a Gaussian ensemble without discussing how the
degree of regularity can be taken into account. Here we
wish to note the importance of distinguishing the prob-
lem of obtaining the NNS distribution from that of justi-
fying the joint distribution in the random-matrix theory.
We begin with the latter problem along the line of mak-
ing Yukawa’s equation of motion stochastic before
proceeding to the NNS problem.

Let H,=H,+tV be an N XN real, symmetry Hamil-
tonian matrix represented on a certain fixed orthogonal
basis [we confine ourselves to the GOE case—a discus-
sion about the Gaussian unitary ensemble (GUE) is given
later], where H, is the Hamiltonian of a regular system
and tV a perturbation with strength ¢ which is regarded
as the time variable in the dynamics under study (Dyson’s
fictitious time). On converting to the diagonal represen-
tation of H, with eigenvalues labeled as [x(2),x,(¢),. . .]
all assumed nondegenerate, Yukawa obtained the two
sets of equations of motion

2
xn =Pn> pn:2 2 Ln/)j’

n=12,...,N (1)
n'(s4n) (xn —Xp

and a third set giving f,, in terms of {x,] and
{ fnm>»n==m} which close the equations for the full system
described by N canonical pairs {x,,p, }¥_, together with
additional ;N (N —1) variables { f,,, ] that are noncanon-
ical. Then it follows that this dynamical system is a com-
pletely integrable one.>® It is worth noting that in this
virtual dynamics the canonical momentum p, conjugate
to the eigenvalue x,, is given by V,,, and the other vari-
ables f,,,(ns=m) related to V,,,,, by
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fnm:(‘xn —xm)Vnm ’ (2)

i.e., the diagonal and off-diagonal elements of the pertur-
bation V, respectively, with respect to the exact eigenvec-
tors of the H,. Among a number of possible constants of
motion which exist owing to the complete integrability,
Yukawa chooses two specific forms, namely, the energy

N, fom
K= 3P+ 2 T
n=1 n,m (x,,—xm)
(n£m)
J
Py —C (X, —X,, ) 172
Xiy.ooohXy)=
: Ve I,I,, 14+(y /B)(x, —x,, )2
(n>m)
=C [I |x,—x,]|exp —ﬂz(x,,——
nm 2B (n)
(n>m)

where Eq. (3'), nothing but the joint GOE distribution
from the random-matrix theory, is deduced in the limit
y[~O(N~1)]—0. Yukawa implies that Eq. (3) yields
the intermediate situation between the chaotic and regu-
lar limits in terms of the ratio y /B, when varied in the
range (0,0 ). We aim to find the NNS distribution for-
mula in such situations by a stochastic reformulation of
Yukawa’s Eq. (1).
Let us first replace (1) by a set of Langevin equations,

X, =Dy »

Pn=—Tp,+ 2

n'(s£n) Xn

+R, (1), (1)

— X,

-0

with a friction constant I' and external noise forces R, (¢)
of Gaussian white character. The friction constant I is
related to the strength o of the Gaussian white noise
R,(t) as 0*=2B7'T (this assures the equipartition value
B~!of p} as t— ). The set of equations for {x,,p,} is
then analogous to that for the Ornstein-Uhlenbeck
Brownian motion, which may reduce to the Smoluchow-
sky type with the momentum p, being dropped from the
process, provided a coarse graining of the time scale is as-
sumed (that is to say, the dynamics is described on a time
scale much coarser than ['~!). A simple but correct way
of performing this is to put p, =0 and to insert the result-
ing p, from the last equation into the first one %, =p,
(“adiabatic elimination”). This gives
1 Vr%n’
X, == —+R, (1) | . 4)
"r n'én) Xn—%Xp !

It is a many-body Langevin equation which appears
equivalent to Dyson’s formulation of the Brownian
motions of the eigenvalues [his Smoluchowski equation
(19) (Ref. 6) with friction constant f which is identified to
our I']. We find that the averaging procedure for ¥2,, in

and the angular momentum
2
Qo =% E f nm >
n,m
(nsem)
in the “canonical equilibrium distribution” e X =7, and
integrates the latter over all irrelevant variables {p, } and

{fam ] to obtain the density of the joint distribution for
{x,] as follows:

(3)

2|, x=— ﬁv; x 39
’ N( n

-

the above equation adopted by Dyson, only provides the
prefactor

II (x,—x,)

(n>m)

of the GOE limit distribution (3’), and hence it must be
replaced by a more relevant treatment.
Combining any pair of (4), we replace it by the equa-

tion of motion for x,,, =x, —x,, as
2 2
. 1 Vi 2V
Xnm = F 2 — +R,p,
n'(s=n,m) Xnn' Xn'm
4y}
nm . (4:)
I'x

nm

Our method of treating this equation can be stated as fol-
lows.

(i) All the unknown quantities V,,’s are regarded as in-
dependent, Gaussian random variables each of which
tends to a white noise in the limit N — .

(i) As a starting approximation to the many-body
character of the equation, Eq. (4') is simplified as a single
equation for x,,(n >m) by absorbing x,,. (or x,,,) of
the denominator into the random variable of the respec-
tive numerator, except that the variable x,,, of the same
pair is retained as in the last part of (4') (this appears as a
process-dependent noise force which is essential for the
level-repulsion effect).

The approximation (ii) implies that the correlations be-
tween different spacings are ignored to zeroth order and
hence all x,,,(n > m)’s are statistically independent.

The treatment of process-dependent noise forces in the
theory of Brownian motion requires special care, because
it gives rise to the problem of how to define the multipli-
cation rule of the process and the white noise. Following
the fact that the white limit of a sequence of nonwhite
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noises yields the symmetrized product (so called ““Strato-
novich product”),9 we now write our stochastic
differential equation (SDE) for x,,, as follows:

dx,,(t)=cdB,,, (1)+ odB,,, (1) . (5)

X (1)
Here B,,(t) and B,,(t) are two orthogonal standard
Brownian motions [the orthogonality can be seen from
their respective sources, i.e., the weighted sum of V2,
over n'(s£n,m) for the former and the single term V;,
for the latter], ¢ and A are constants to represent the
strength of the respective Brownian motion, and the sym-
bol o implies the symmetrized product of x,,(t)~' and
dB,,.(t). It is then possible to study the process x,,, ()
and its distribution using the standard theory of SDE, 10
in particular, subjected to the rule of transformation be-
tween the Stratonovich SDE and the It6 SDE (the so-
called stochastic calculus!!).

The stationary distribution of the process x,,,(¢) sub-
ject to the SDE (5) is determined by the stationary solu-
tion of the associated Fokker-Planck equation. We will
show that this is of the form

{x2, /[14+(a /M) %2, 1112

Hence by virtue of the statistical independence of all the
processes Xx,,,(t), n >m, the joint probability density for
the eigenvalues x,(¢) is identical to (3), if

y/B=(a /L) . 6)

This allows an interpretation of Yukawa’s parameters 3
and y as being related to two different kinds of fluctua-
tions, B(t) and B(t): B [AB(t)] represents the fluctua-
tions associated with the level-repulsion effect, whereas y
[aﬁ(t)] represents all other fluctuations.

In order to assure that Eq. (5) as SDE yields a station-
ary distribution of the above-stated form, we give here a
more general result about a specific class of SDE. We
consider a one-dimensional SDE of the form

dx,= 3 b(x,)edB"(t), ¥
(i=1)

where b;(x) is a smooth function of the variable x, and r
real Brownian motions {B'"(¢)] satisfy the standard
correlation properties E dB'"(1)dB"(t)=8,dt. Then,
the Fokker-Planck equation for the probability density
P,(x) of the process x,, defined by means of the condi-
tional expectation of the diffusion processes:

E[f(x)|x,co=x]= [ f(x)P,(x)dx

is given by
9 p )= L 9
atP,(x)— 3x P,(x) |3D"(x)+D(x) 3% logP,(x)
(8)
with

9)

The stationary solution of Eq. (8) is obtained, in the gen-
eric cases, from

d
1 ’ —_ i
iD (x)+D(x)dtlogP(x)—O

which yields
N

é b;(x)?

(i=1)

P(x)=N[2D(x)]"*= 7 - (10)

The solution to Eq. (5) follows from this general result for
r=2, by=o0, b=A/x,,,. The formal analysis to ascer-
tain this result is to compute the drift velocity and the
diffusion coefficient D (x) of the solution process x, of (7),
for which two expressions in (9) give the answer. Note
that for such a process with nonconstant diffusion
coefficient special care is necessary for dealing with the
drift velocity, and each symmetrized product
b;(x,)o dB'"(2) of the defining SDE (7) yields the contri-
bution —1b;(x)b;(x) to the total drift (to be summed up
by virtue of E dB'"dB"Y =0, i+j) when the diffusion
operator is written in the symmetrized form as in (8); a
fact which can be deduced by the Stratonovich-It6 trans-
formation, a general prediction being Yo dX =Y dX
+1dYdX in the stochastic calculus.'"'> To be
mathematically rigorous about the above result it is
necessary to specify the boundary condition for the
diffusion process x,, which is beyond the present analysis:
In fact, Yukawa’s distribution (3) by itself is unnormaliz-
able in the whole space, and we might introduce a con-
ventional convergence factor to avoid the difficulty so
that we replace the constant ¢ by oe® (e>0) and then
let € tend to zero in converting from (3) to (3’). This con-
cludes an outline of the stochastic derivation of Yukawa’s
result.

As an application, we now wish to derive an explicit in-
terpolation formula for the NNS distribution which may
replace the two familiar ones so far used,! the one due to
Brody and the other due to Berry and Robnik. In order
to do this we must restrict (5) to pairs (n,m) which
represent a nearest-neighbor spacing, and we would have
to account for many-body correlation effects which force
the pair (n,m) to be an NNS. To avoid the complexity of
a rigorous procedure we assume that all such effects can
be lumped together in an appropriate dependence of the
two noise-strength parameters o and A on the NNS vari-
able S =x,,,. These functions o(S) and A(S) can be
determined in the two limiting situations by exploiting a
known result about the statistics for NNS: Namely, if
u(x) denotes a level density, the expression
exp— f oi(x)dx represents the conditional probability
that the open interval (0,S) is empty of levels if 0 is occu-
pied by one level. Typically one has u(x)=const(=p) for
the Poissonian and u(x)=const(=p)x for the Wigner sur-
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mise. !> When A =0, the desired SDE must yield the Pois-
sonian stationary distribution and can be derived by re-

placing dx,,,, (1) in (5 by e "' dS,, thus
dS,=ae”edB (1), i.e., a(S)=ce?S . (11)

Similarly, when o =0, the SDE with the Wigner surmise
as the stationary distribution is given by

=22 —
ds,:sie“/”” %odB(1), i.e., A(S)=%e”252. (12)

t

In each case the average level density p or p is deter-
mined from the scaling normalization, i.e., (S)
[= [P(S)SdS]=1 to give p=1 for the Poissonian and
[6=(7r/2)'/ 2 for the Wigner surmise, but for the inter-
mediate purpose they may play the role of parameters.

To bridge both limits for such intermediate situations
we thus make an ansatz by writing the SDE as the sum of
the two types of noises in (11) and (12):

1.0
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FIG. 1. A least-square fit of the nearest-neighbor spacing his-
togram computed by Wintgen and Friedrich in Fig. 2 of Ref. 2
[Phys. Rev. A 35, 1464 (1987)] to the formula (14). The compu-
tation was made by Wunner. The scaling unit D is unity in the
formula (14), and the scaled energy € is equal to B~2/°E in
terms of the magnetic field strength B and the actual energy E.

2 2¢2
dS,=oe” o dB(1)+ té—e‘“ 2P dB (1) (13)
t
with
a=p/p . (13a)

Then, we can apply the result (10) for the stated class of
SDE (7) to get

NpSe —,oS—(az/Z}sz2

Pi(S)= (p2S%e ~T¥S L )2 ~25)172] 0<S < (14)
where the constant o has been absorbed into the normali-
zation factor N and into a renormalization of the strength
A of the repulsive noise dB(t). The third constant a is
left free to represent a characteristic of individual sys-
tems. The normalization {1) =1 and the scaling normal-
ization (S ) =1 [which can be performed analytically by
the use of (14) (Ref. 13)] will determine N and p as func-
tions of A and a. If one plots this simple interpolation
formula for values of the nonintegrability parameter A
varying from O to infinity (the other parameter a being
fixed), one gets a smooth one-parameter family of curves
which satisfies the aspect of the NNS distribution to be
anticipated,'® in particular, the universality near S=0
discussed by Robnik.* Namely, in the absence of level
repulsion (i.e., A=0) P, (S) reduces to the Poissonian, but
its presence, no matter how small, makes P, (S) propor-
tional to S for S <A. This nonanalytic nature is just what
Robnik argues to be universal for all those nearly regular
systems which tend to characteristic of GOE distribution
in the chaotic limit, and not equipped with in the Berry-
Robnik as well as Brody formulas. On the other hand,
the allowance of the third parameter @ makes the present
formula not universal in the whole range of A, which also
conforms to his argument.

In spite of the lack of such a global universality, Rob-
nik* argued the existence of a family of P(S) which
shows an overall good fit to the NNS histogram in many
cases. He proposed an expression for P(S) from the prin-
ciple of maximum entropy under the constraint
(S?) =prescribed (besides {1)=(S)=1), which corre-
sponds essentially to our formula (14) with the square-
root denominator being omitted. (We note, however,
that the underlying variational principle to deduce this
result is not the principle of maximum entropy but rather
the principle of minimum entropy production for the sta-
tionary solution of a Fokker-Planck equation.'*) Thus,
the result (14) provides an answer in favor of his ansatz.
More precisely, the ansatz can be regarded as ideally
satisfied if the extra parameter a in (14) appears insensi-
tive to the nonintegrability parameter A for an individual
system. In Fig. 1 a comparison of the formula (14) is
made with the NNS histogram of Wintgen and Friedrich
computed for the hydrogen atom in a magnetic field in
the transition regime,2 and one sees an excellent fit to
remedy the deficiency of the Berry-Robnik formula. It
would be interesting to study further the role of the pa-
rameter a in developing the chaos.

Finally, we remark about the possibility of extending



38 STOCHASTIC FORMULATION OF ENERGY-LEVEL STATISTICS 399

the present approach to the case of GUS: the applicabili-
ty of the equation-of-motion method to the energy-level
statistics in GUS was first mentioned by Yukawa* and
then discussed in detail by Robnik!> with an emphasis of
distinction between the absence and presence of an extra
antiunitary symmetry (the latter situation yields the
GOE). It is hoped to obtain a satisfactory extension, but

so far an adequate form of SDE has not been found.
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