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A matrix-continued-fraction algorithm which basically relies on an expansion of the eigenfunc-
tions into complete sets is presented for calculating the eigenvalues of the one-dimensional
Schrodinger equation with rational potentials. The method also applies to the corresponding
three-dimensional central-force potentials. In particular, we investigate the one-dimensional
nonpolynomial-oscillator potential V»o(x)=x +As /(1+gx'), the eigenvalues of which are ob-
tained for a large range of parameters k and g. In the three-dimensional case we check the shifted
1!N expansion which has been applied to the nonpolynomial potential VNpo(r) very recently. In
addition to the numerical results, analytically exact solutions are given for a restricted class of such
potentials. Moreover, we point out that the continued-fraction algorithm applies to a wider class of
polynomial and nonpolynomial (rational) potentials. In summary, the matrix-continued-fraction al-

gorithm is shown to produce the eigenvalues of essentially one-dimensional Schrodinger equations
for a wide class of rational potentials with very high accuracy, and the proposed technique seems to
offer several computational advantages compared to other numerical approaches applied in the
field. Finally, an application of the continued-fraction algorithm to the two-variable Schrodinger
equation is suggested.

I. INTRODUCTION

In quantum mechanics the calculation of the eigenval-
ues of the Schrodinger equation (SE} is a very important
task. These eigenvalues can be obtained analytically for
only few potentials, e.g., for the Coulomb potential, the
Morse potential, the square-well potential, and the har-
monic oscillator. Recently much effort has been given to
generating (new) families of isospectral Hamiltonians' in
order to extend the class of solvable quantum-mechanical
potentials. Along this 1ine of actual research, exact solu-
tions were also found for the Hill equation and the
Poeschl-Teller equation. On the contrary, (one-
dimensional) rational potentials, such as the nonpolyno-
mial oscillator (NPO) VNpo(x)=x +Ax /(1+gx ), be-
long to a class of quantum-mechanical potentials which
cannot be solved exactly in general. [The potential
VNpo(x) is of importance in nonlinear Lagrangian field
theory and nonlinear optics as well as in elementary par-
ticle physics. ~'5] Nevertheless, a great deal of interest
has been devoted to the investigation of the one-
dimensional NPO VNpo(x) in the last few years. " ' A
wide spectrum of approaches, such as variational tech-
niques, the Fade approximant method, the finite
difference method, perturbation schemes, ' and expan-
sions into complete sets, '" ' have been applied to the
NPO. Only in a few cases has it been possible to obtain
exact analytical solutions. ' ' Very recently, the concept
of supersymrnetric quantum mechanics was applied to
the NPO. ' At present this property is also used in a
variety of other fields of current interest. ' However, all
procedures mentioned above are somehow restricted.
Most of the numerical methods which have been used up
to now can only be applied to a limited range of the po-
tential parameters, while the perturbation tools by

definition are restricted to small deviations from the un-
perturbed problem. On the other hand, exact analytical
solutions have only been found for a certain parameter
dependence A. =A, (g) and A. (0. '

The three-dimensional NPO has recently been investi-
gated' by means of the shifted 1/X method. ' Particu-
lar emphasis was given to the study of the level splittings
of certain energy levels which are degenerate in the limit
A, =O or g =0. For the following two reasons the accura-
cy of the computed energy eigenvalues and level split-
tings is an open problem On the one hand, no quanti-
tative error bounds can be derived from the employed
shifted 1/N expansion. There is only a rough estimate
for the (A, ,g) parameter domain where at least some of
the calculated levels are no longer reliable,
k'~ /g =3—30; see Ref. 13. On the other hand, no eigen-
values for the three-dimensional NPO (l&0} have been
obtained by any other method. Therefore the calculation
of these eigenvalues seems to be very important.

Another point of current interest is the eigenvalue
problem of the SE with polynomial anharmonic potential
which plays an important role in describing the dynamics
of molecular vibrations. Such a type of problem has at-
tracted the attention of many investigators over the
years; see, e.g. , Ref. 17. Recently a modified operator
method (MOM) consisting of an appropriate partitioning
of the Harniltonian has been put forward by Fernandez
et al. ' The MOM applies to symmetric as well as asym-
metric potentials, provided the potential is a
polynomial function of the coordinates. ' " The same
authors also obtained eigenvalues for a special type of
parity-invariant anharmonic quantum-mechanical osci1-
lators by means of the Rayleigh-Ritz variational method
and expanding the eigenfunctions of the SE into a tri-
gonometric basis set. ' Very recently special interest has
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been devoted by Fernandez and Castro to one-
dimensional SE's with unsymmetric potentials. They
used a generalization of the power-series method pro-
posed by Killingbeck. '

In this paper a continued-fraction method is intro-
duced for calculating the eigenvalues of the SE numeri-
cally. The algorithm is applicable to any effectively one-
or two-dimensional potential which is represented by a
rational (or polynomial) function and admits a discrete
spectrum. For the one-dimensional SE with the nonpoly-
nomial potential VNpo(x) the eigenvalues are obtained by
evaluating an ordinary continued fraction (OCF), while
the three-dimensional case with the central-force poten-
tial VNpo(r) and SE's with more complicated potentials
are solved by means of matrix continued fractions
(MCF). ' We show that for a large range of potential
parameters A, and g, the eigenvalues and eigenfunctions of
the SE with the NPO can be calculated very effectively,
i.e., the method is fast and leads to accurate results.

The outline of the paper is the following. In Sec. II we
briefly summarize the basic features of the potential un-
der study and its (physical) applications. In Sec. III the
OCF algorithm is applied to the one-dimensional SE with
the NPO potential VNpo(x). Various eigenvalues of the
one-dimensional NPO for a wide range of potential pa-
rameters and a detailed comparison with the results of
other authors are also presented in this section. In Sec.
IV we treat the three-dimensional SE with the central-
force potential VNpo(r). The usual expansion into spher-
ical harmonics leads to an effectively one-dimensional SE.
A comparison of our numerical results with recent per-
turbational calculations of Varshni' is also given. In
Sec. V it is pointed out that a generalization of the MCF
algorithm can be applied to solve the SE with a class of
polynomial as well as nonpolynomial potentials. Finally,
in Sec. VI we briefly summarize our results and propose
an application of the MCF algorithm to effectively two-
dimensional SE's.

FIG. 1. Solid curve, nonpolynomial potential (2.2) with
X=100 and g =20; dotted and dashed curves, harmonic poten-
tials describing the asymptotic behavior x'+A, /g (dashed line)
and (1+A, )x (dotted line).

(r, 8,$)=(l/r)4„1(r)Y& (8,$),
then leads to the one-dimensional SE

(2.4)

d
, + V'.s(r) +n, i(r) =En, ('Pn, i(r»

dT
(2.5)

with the effective potential

In the three-dimensional case with the central-force
potential VNpo(r) the corresponding SE takes the form

+ VNPO(r)]4, (, (r, 8,$)=E,I, p I (r, 8,$) .

(2.3)

The usual expansion of the eigenfunction 4„ I ( r, 8,P )
into the radial part and spherical harmonics YI (8,$),
1.e.,

II. MODEL AND ITS APPLICATIONS

d2
+ VNpo(x) 0'„(x)=E„%'„(x)

dx
(2.1)

We investigate the time-independent (one-dimensional)
SE

V,&(r)= VNpo(r)+l(l +1)/r, r &0 .

III. SOLUTION OF THE ONE-DIMENSIONAL
SCHRODINGER EQUATION IN TERMS

OF CONTINUED FRACTIONS

(2.6)

with the NPO potential

VNpo(x)=x +Ax /(1+gx ), g &0, —oo &x & oo

(2.2)

The SE (2.1) and the NPO potential (2.2) have been nor-
malized in such a way that A /2m and the factor in front
of x in Eq. (2.2) are equal to 1. The NPO potential (2.2)
occurs in several areas of physics, e.g., in laser theory, in
quantum field theory, ' and in general relativity. ' ' '

Moreover, such a type of potential may also find applica-
tion in macromolecular systems of biological origin.
The asymptotic behavior of the potential (2.2) for very
large and very small x is evidently given by harmonic po-
tentials; see Fig. l.

The solution of the eigenvalue problem of the one-
dimensional SE by means of the OCF algorithm requires
four steps. In the first step the eigenfunctions are ex-
panded into an appropriate complete set. Next, we insert
this expansion into the SE and obtain a tridiagonal re-
currence relation for the expansion coefficients. In the
third step this recurrence relation is solved by OCF's.
(For the theory of continued fractions see, e.g. , Ref. 24.)

Finally, in the fourth step, the eigenvalues are obtained
numerically by a root-finding technique.

A. Expansion of the eigenfunct:ions

As a complete set we use the eigenfunctions
~
v) of

Eqs. (2.1) and (2.2) for A. =O, i.e., the harmonic-oscillator
eigenfunctions which are defined through the relation
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a =(x —d/dx)/&2, a=(x +d/dx)/&2,

[a,at]=l .
(3.2)

a~a v =v v (3.1)

where a and a are the creation and annihilation opera-
tors

B. Tridiagonal recurrence relation

In order to obtain a recurrence relation for the expan-
sion coefficients c" we multiply the SE (2.1) with the
denominator 1+gx of the NPO (2.2) and insert the ex-

pansion (3.3). Using

The generally infinite expansion for A,&0 then reads [see
also Ref. 8(c)]

(3.3)

x =(a+a )/v'2, d/dx =(a—a )/V'2,

this equation then reads

(3.4)

[(a +a )[g(2a a+1 E„) +—A] +g[4a a(a a+1)+1]+(2aa+1)(A+2 —gE„)—2E„I g c„" v&=0.
v&0

(3.5)

On employing the well-known relations

a
I

v& =&v+ I
I

v&, a
I

v& =&v
I
v —1&, (3.6)

tion of the eigenfunctions (and the corresponding eigen-
values) with even or odd parity are completely decoupled
problems; see below.

Eq. (3.5} is easily evaluated. Reordering the expansion
terms and making use of the completeness of the expan-
sion set

I
v& immediately yields a tridiagonal recurrence

relation for the expansion coefficients c "„

C. Continued-fraction algorithm

On defining the transfer coefficients S through the re-
lation

Q„c "„2+Q„c„"+Q+2„"+z——0,
where the coefficients Q, and Q„*are given by

Q„=&v(v—1)[g(2v —3 E„)+A,]—,

(3.7) C v+2 SvC v,

the recurrence relation (3.7) reads (v & 1)

(Q, /S„2+g„+g+S„)c"=0 .

(3.9)

(3.10)

Q„=(2v+1)[g(2v+1 E„)+A,+2—]—2E„, (3.8)

Q+ =&(v+1)(v+2)[g(2v+5 E„)+A,] . —

The coupling of the coefficients c "„ in Eq. (3.7) to nearest
but one neighbors is an immediate consequence of the
symmetry properties of the potential function (2.2) and
the harmonic-oscillator eigenstates. Thus the determina-

S„=—(Q +2+g„+2S„+2) Q„+ (3.11)

On repeatedly iterating Eq. (3.11) the S„can be expressed
by OCF's 21,22

In general the expansion coefficients c ", are different from
zero. Therefore the transfer coefficients S obey the
two-term recurrence relation (v& 0)

S.=[—g„+,—g„'+,[—Q.+4 —Q.'+. S.+~.,„]Q.+4] Q.+2 (3.12)

(Qk+Qk+Sk )c "„=0, k =0, 1 . (3.13)

Here Sk Sk(E„}is calcula——ted by imposing the terminat-
ing condition S~ =0, thus implying c ~ +2

——0 for the
max max +

expansion coefficients. The convergence of the continued
fraction Sk has to be ensured by a suitable choice of the

terminating index N,„, which represents the maximum
oscillator eigenstate being considered [N,„ is the upper
bound of the truncated sum (3.3)]. Because the
harmonic-oscillator eigenfunctions (3.1) form a complete
set the expansion (3.3) should always work provided that
the terminating index N,„ is large enough. Approxi-

From the recurrence relation (3.7) we obtain for v=k,
k =0, or k = 1, depending on the parity of the eigenfunc-
tions, even or odd, respectively,

mate values for N, „may be obtained from the asymp-
totic solution of the recursion (3.7); for details see Ref.
11(a). In our numerical calculations N, „was deter-
mined in such a way that a further increase of N, „did
not alter the final result within the prescribed accuracy
(for further details see below).

D. Determination of eigenvalues

Depending on the parity of the eigenfunctions either
all expansion coefficients c,", with odd v are zero (even
eigenfunction} or all c "„with even indices are zero (odd
eigenfunctions). The first expansion coefficient c o is gen-
erally different from zero for the even eigenfunctions,
while for the odd eigenfunctions c 1 is a nonvanishing
quantity. Thus Eq. (3.13) leads to
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D/, (g, A, E, „)=Q/, + Qk+Sk(En }=0 (3.14)
I I I Il i i I II I I I ll I I I I

where k =0, 1 is valid for even and odd eigenfunctions,
respectively. From Eq. (3.14) the eigenvalues E„are
determined as the roots of Dk ——0. By using some root-

finding technique, the eigenvalues are thus obtained nu-

merically.

102—

E. Determination of eigenfunctions

The coefficients c," with v) 2 can be easily computed

by repeatedly employing Eq. (3.9); i.e.,

c "=S 2(E„)S, 4(E„) Sk(E„)c k, k =0, 1 . (3.15)

By summing up the series (3.3) the (unnormalized) eigen-
function is thus obtained. It should be noted that the
preceding procedure is numerically stable, whereas the
repeated iteration of Eq. (3.10) starting with c k and
c k+z

——SkV'k (k =0, 1) is numerically unstable (see Chap
9 of Ref. 21).

10

10'
10' 102

i i al a i s s I i a a il

I I I I) l I I f) I I I I/ I I ~

F. Numerical results

In Fig. 2(a) the five lowest eigenvalues of the one-
dimensional NPO (2.2) are displayed as a function of g
for A, =500. Obviously the asymptotically harmonic be-
havior of the potential (2.2) for very small g values is
rejected by the corresponding energy levels in Fig. 2(a).
[Clearly, in the limit of very large g values the energy lev-
els in Fig. 2(a) will also approach the corresponding
harmonic-oscillator eigenvalues. ] Of course, there exists
an intermediate region of g values where the anharmoni-
city of the potential leads to a decrease of the eigenvalues
with increasing g. A more detailed analysis of the level
dynamics in that region is demonstrated in Fig. 2(b). The
level spacings between two neighboring energy levels,
hE =Ez„Ez„, (n =—1,2), corresponding to an even
and an odd eigenfunction, respectively, exhibit (absolute)
minima as a function of g. On the other hand, the spac-
ing AE =Ez„, E2„2 (n =1—, 2) shows a relative max-
imum (n =2) or is even a strictly monotonic function
(n =1).

In Table I we present a detailed comparison of the
lowest eigenvalue of the one-dimensional NPO (2.2) with
a variety of previously reported results. The most reli-
able results are those which have been calculated by
Mitra "and Hautot. '""'

For the sake of completeness we give a brief account
on the accuracy of our eigenvalues reported in Table I
and Figs. 2. For demonstration we calculate the error of
the ground-state energy Fo of the one-dimensional NPO
(2.2) for /(, =g = 1. If we choose N, „=20 (120) the abso-
lute error of the ground-state energy is 1 & 10
(3X10 '

), while for the precision requested in Table I
(nine reliable digits) %,„=80. It should be mentioned
that for very large A, and/or g the necessary truncation
index X,„ increases considerably (up to several
thousand). However, such a problem is easily circum-
vented by introducing an appropriate scaling of the ex-
pansion set; see, e.g. , Sec. IV.

h, E

10"—

100 I I l i/ I ~ ~ I/ I ~ l I/ I I I I

10' 102
9

FIG. 2. One-dimensional NPO (2.1) and (2.2). (a) The five

lowest eigenvalues E„(n =0—4) as a function of g for A. =500.
(b) Level spacings as a function of g for A, =500: solid line,
E& —Eo,' dashed line, E2 —E&, dotted line, E3 —E2', dotted-
dashed line, E4 —E3.

IV. SOLUTION OF THE THREE-DIMENSIONAL
SCHRODINGER EQUATION IN TERMS
OF MATRIX CONTINUED FRACTIONS

The three-dimensional SE (2.3) with the central-force
potential VN po(r) reduces to a one-dimensional problem.
Therefore we have to solve the one-dimensional eigenval-
ue equation (2.5} with the effective potential (2.6}. The
procedure is similar to the one-dimensional case dis-
cussed in Sec. III.

A. Expansion of the eigenfunction

%e employ the rescaled expansion into the complete
set of the Laguerre functions C/'„(ar),
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TABLE I. Lowest eigenvalue of the one-dimensional NPO (2.1) and (2.2) for k, g = 1, 10, 100.

10
10
10
10

100
100
100
100
100
100

Results

MCF
Hautot'
Mitrab
Bessis et al. '
Chaudhuri et al.
Lai et al. '
Kaushal'

MCF
Hautot'
Mitra
Bessis et al. '

MCF
Hautot'
Mitra
Bessis et al. '
Chaudhuri
Galacia et al. g

1.232 350 72
1.232 35
1.232 35
1.232 372 05
1.242 13
1.232 353 53
1.227

1.059 296 88
1.059 30
1.059 29
1.059 297 00

1.008 410 60
1.008 41
1.008 41
1.008 410 6

10

2.782 330 52
2.782 33
2.782 33
2.782 330

2.782 330 54
2.754

1.580 022 33
1.58002
1.58002
1.580 024 9

1.084 063 34
1.08406
1.08406
1.084 064 3
1.084 11

9.359418 03
9.359 42
9.3594
9.359 418 03

9.359 418 03
9.3567

5.793 942 30
5.793 94
5.794
5.793 947

1.836 335 83
1.836 34
1.8364
1.836 385 0
1.8411
1.836 337 3

'Reference 11(b)~

Reference 7(a).
'Reference 7(b) ~

Reference 10(a).
'Reference 9(b).
Reference 9(a).
~Reference 6.

%„&(ar)= g [v!I (v+l +—,')]' c"„'4&'„(ar),
v&0

@l(r) ~ r I + iexp( r2/2)L, !+i/2(r2)
(4.1)

where L~ denotes the generalized Laguerre polynomials
and N„„ is a suitable normalization constant. The scal-
ing factor a allows for an improved convergence since
through variation of a the expansion can be better adjust-
ed to the exact eigenfunction. A systematic way for
finding an appropriate scaling a has been presented in
Ref. 11. It should be mentioned that the one-dimensional
NPO (2.2) may be incorporated in the expansion (4.1) by
setting I = —1 and I =0 for the eigenstates with even and
odd parity, respectively. (However, the normalization of
the expansion coefficients is different; see below. )

(4.2)

where the coefficients Q„, Q
+—

, and Q
+—are given by

B. Tridiagonal vector recurrence relation

Inserting the expansion (4.1) into the eigenvalue equa-
tion (2.5) and using recurrence relations and
differentiation formulas for the Laguerre polynomials,
we obtain, after some algebra, the pentadiagonal re-
currence relation

Q„=8(a —1)g,

Q, = 8[(2g+a }(1—a )+a A,

+g(4v+2! —1 —a E)],
Q„=g(1—a )[4l(l+1)—3]

+4a (4v+21+3)(gE —k —a~ —1)

—g (4v+ 2l +3) (a + 3)+8a~E,

Q,+ =8(v+ 1)(v+1 + —,
' )[ (2g —a2)(a4 —1)+a2A,

+g (4v+2l +7 aE)], —
Q'„+ =8g (a —1)(v+1)(v+2}(v+l +—', )(v+ 1 + —,

'
) .

(4.3}

1=0,—1 .

For a&1 the pentadiagonal recurrence relation (4.2) can
be cast into a tridiagonal vector recurrence relation. On
introducing the two-dimensional vectors

n, l
C2

n, l
cv n, l

C2v+1

Eq. (4.2) takes the form

With a scaling factor a=1, the pentadiagonal recurrence
relation (4.2) reduces to the tridiagonal recurrence rela-
tion (3.7) and the eigenvalue problem is solved by com-
puting an OCF; see Sec. III. In that case the expansion
(4.1) is related to Eq. (3.3) by setting

&
2n +1+1

( 1)v(ir)1/4[(2v+ 1+l)i/(22v+l)]1/2&n, l
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(4.5)

Q2—

0

Q2„

Q2.

Q2.+ l

Q+.

where the matrices Q, and Q
—in Eq. (4.5) are given by

1.2

hE

0.8—

a a a I a a a a I a a

/ q
I

I
I

I
I

I
I I
j I

~ I

Q2.+ l

Q2+
Q2.+ l

0

(4.6)

Q. = + 2+
+

Q2v+1 Q2v+1 0.4-

C. Matrix-continued-fraction algorithm

On defining the transfer matrices S through

n, l n, l
Cv+ 1 Svcv (4.7)

we obtain by insertion of Eq. (4.7) into the tridiagonal
vector recursion (4.5) the matrix version of Eq. (3.11),

S,= —(Q.+l+Q.++lS.+l) 'Q.+l (4.8)

D. Determination of eigenvalues

Insertion of Eq. (4.7) into Eq. (4.5) leads for v=0 to

(Q.+Q:S.)c."'=0, (4.9)

Repeated iteration of Eq. (4.8) leads to the MCF for the
transfer matrices S„. They are thus given by Eq. (3.12)
after replacing the scalar quantities Qk, Qk—,and Sk in

Eq. (3.12) with the corresponding 2)&2 matrices (4.6) and
(4.8). [Note that the index (v) notation in Eqs. (3.11) and
(4.8) is different, since we have a nearest-neighbor cou-
pling of the expansion vectors in Eq. (4.5), whereas c „"

couples to c ",+2 in the one-dimensional case; see Eq.
(3.7).]

0.2-

0 ~ ekt ~' I a a a a

10-' 10& 10'

FIG. 3. Three-dimensional NPO (2.1) and (2.2). Level split-
ting EE=E„I—E„ I vs g for X=10. Solid line, Epz —E& p,
dashed line, Ep 3

—E& „dotted line E& z
—Ez p, dotted-dashed

line, Ep4 —E& z.

analytical energy levels, e.g. , k= —1040, g =10, n =0,
l =1, and Eo &

———95 with aa absolute error less than
10 ' setting a=1.6 and using 12 matrix inversions.
(Note that a&1 leads to a nonterminating MCF. )

Numerical-integration methods similar to those em-
ployed in Ref. 6 and perturbational approaches have also
been used (see the Appendix) and are in agreement with
our numerical MCF results.

In Figs. 3 and 4 we have plotted the same level spac-
ings as in Figs. 2 and 3 of Ref. 13 (despite a factor of 0.5
which has been introduced in Ref. 13). We immediately

~ ~ a al a a a al a a a al
where So is given by a MCF; see the matrix version of Eq.
(3.12). The homogeneous system of Eqs. (4.9) admits to
nontrivial solutions if and only if the determinant van-
ishes,

8 (g, A, ,E„l, l) =Det(QO+Qo+So) =0 . (4.10)

The eigenvalues are again computed by some root-Gnding
technique, while the eigenfunctions are obtained in close
analogy to the OCF case; see Eq. (3.15).

j l
j l
I
I! I ~ii' il

I I Il

~ = 1000

E. Numerical results

The eigenvalues were calculated from Eq. (4.10) in dou-
ble precision (16 digits). The results have been checked
to be independent of the scaling parameter cx. It should
be mentioned, however, that different choices for the
scaling parameter 0, require a new adjustment of the trun-
cation index N, „. In other words, an appropriate scal-
ing of the expansion leads to a minimum number of itera-
tions N, „necessary for achieving good convergence of
the continued fraction (for more details, see, e.g. , Ref.
11). Moreover, our algorithm has reproduced some exact

'~+ra&
a a a a

$
a a a ~ ) a a a a

100 102
g

FIG. 4. Three-dimensional NPO (2.5) and (2.6). Level split-
ting hE vs g for A, =1000- Sol&d hne Ep, z

—El,o dashed line

Ep 3
—E», dotted line E& z

—Ez p', dotted-dashed line, Ep4
—El, z
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recognize that curves D and 8 of Fig. 2 in Ref. 13 are
almost identical, while the level splittings hE
=E( ld) E—(2s) and, in particular, AE =E(2d)

E—(3s) disagree completely. We conclude that the rela-
tive extrema of curves A and C for intermediate g values
in Fig. 2 of Ref. 13 are an artifact of the perturbation
method employed. Moreover, the results for large values
of g in Ref. 13 also differ from our results, though the
quantitative deviation is quite small. In general, the same
arguments hold for the comparison of our Fig. 4 with
Fig. 3 of Ref. 13. Substantial deviations are indicated by
comparing curve C of Ref. 13 with our dotted line.
Apart from the region g & 1 the actual shape of
AE =E(21)—E(3s) is quite different from that reported
in Ref. 13; see, in particular, the positions of the extrema
and the negative values in the region g =25-45 in Ref.
13.

Figure 5 shows the same level splittings as reported
above as a function of A, for g =10. As demonstrated by
our results the curves drawn in Fig. 5 of Ref. 13 are
correct for A, (100 but coincide only partially with our
results for larger A, values. However, curve C in Ref. 13
disagrees with our results approximately by a factor of 2
over the whole A, range reported. Moreover, contrary to
what was stated in Ref. 13, we confirm that the level

102

100

10 2-

I I
100

I I

102
I I

104

FIG. 5. Three-dimensional NPO (2.5) and (2.6). Level split-

ting hE vs A, for g =10. Solid line, Ep& —E& p', dashed line,

Ep3 —E& i,' dotted line Ei p
—Egp dotted-dashed line, Ep4

—E

TABLE II. Nine lowest eigenvalues of the three-dimensional NPO (2.5) and (2.6) (MCF results) for
A, =10,100,1000 and g =1,10,100,1000. (Note that for comparison with Ref. 13 our results have to be
multiplied with a factor 0.5.)

10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0

1.00

7.417 506
11.073 300
13.388 323
14.085 383
16.016 128
16.719 332
18.120 215
18.543 473
19.137 821

26.705 966
42.237 560
53.839093
55.977 804
64.819422
67.960 806
72.780 597
74.437 213
78.238 380

91.256 611
149.656 319
203.363 285
206.106 805
256.161 362
260.609 186
304.521 713
307.114014
313.164 667

10.00

3.879 037
5.940 860
7.903 154
7.962 230
9.944 898
9.972 455

11.916609
11.963 343
11.978 365

11.572 197
14.368 811
15.988 434
16.610 869
18.423 981
18.719999
20.156 177
20.624 022
20.781 416

64.825 083
89.123 452
94.875 967

100.703 996
101.225 824
105.507 579
103.184 601
105.945 406
108.527 834

100.00

3.089 317
5.099 344
7.098 449
7.099 603
9.099 352
9.099 715

11.098 539
11.099 604
11.099 778

3.983 098
5.993 439
7 984 AHA

7.996025
9.993 516
9.997 154

11.985 356
11.996 039
11.997 784

12.823 345
14.933 774
16.839 571
16.960 106
18.934 595
18.971 485
20.850 027
20.960 255
20.977 814

1000.00

3.009 981
5.009 993
7.009 982
7.009 996
9.009 993
9.009 997

11.009 982
11.009 996
11.009 998

3.099 811
5.099 933
7.099 816
7.099 960
9.099 934
9.099 971

11.099 820
11.099 960
11.099 978

3.998 107
5.999 335
7.998 158
7.999 600
9.999 335
9.999 714

11.998 195
11.999 600
11.999 778
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splittings drawn in Fig. 5 (also) approach a constant value

in the limit k~oo. This asymptotic behavior may also
be demonstrated by means of a perturbation approach;
see the Appendix.

In Table II we depict the first nine energy levels of the
three-dimensional NPO for different values of A, and g.
In the parameter range which is not considered in our
Table II but in Table II of Ref. 13 our results and those
of Ref. 13 coincide (with only minor deviations on the
last two decimal places). In Table II we focus on the

"critical parameter region" A,
'~ /g=3 —30 as stated in

Ref. 13. However, we find that even for smaller values
A, '~2/g =0. 1 —1 the shifted I/N expansion does not lead
to accurate results. For A, =10 and g =1, for example,
the 2p and 3s levels reported in Ref. 13 disagree with our
results in all digits.

F. Analytical results for negative A,

For negative A, an application of the three-dimensional
NPO to the shell model of the nucleus was also suggested
in Ref. 13. According to the calculations carried out in
Ref. 5 for the one-dimensional NPO (2.2), we make an
ansatz for polynomial solutions of the form

0'„1(r)=P(r)r'+'exp( r /2), P(r—)= g a r2" .

(4.11)

Insertion of Eq. (4.11) into the SE (2.5) leads to a (finite)
three-term recurrence relation for the coefficients a „,

V. APPLICATION OF THE
CONTINUED-FRACTION ALGORITHM TO OTHER

RATIONAL AND POLYNOMIAL POTENTIALS

The continued-fraction algorithms outlined in Secs. III
and IV may also be applied to more complicated rational
potentials. In the following, however, explicit expres-
sions are restricted to one-dimensional problems. If, for
instance, the potential has the form of a generalized
parity-invariant rational function

M
V(x)=x + g A, 2 x

M
1+ gg2 x

(5.1)

x L~(x )= —(v+1)L~+, (x )+(2v+p+1)L~(x )

(v+P)L~—, (x ), (5.2)

we arrive at a recurrence relation of the form

—2M n —2M+2 n 2M n
Qv Cv 2M+Qv Cv —2M+2+ +Qv Cv+2M

the expansions (3.3) and (4.1) may be applied to the one-

dimensional problem and to the three-dimensional
central-force potential, respectively. [We assume that the
coefficients g2 of the potential (5.1) are chosen in such a
way that the denominator never vanishes. ] Multiplying
the one-dimensional SE again with the denominator of
the potential (5.1) and expressing x in terms of a and a
[see Eq. (3.4)], or repeatedly using the recurrence relation
for the generalized Laguerre functions

a~„,+P~„+y~„+,——0,
a„=g [E—1,/g + 1 —2( 1 +2v) ],
P„=E —3 —21 —4v+ 2g v[2( 1 +v) + 1],
y„=2( v+ I)[2( I +v)+ 3]

(4.12)

(5.3)
I

[For the three-dimensional SE with the central-force po-
tential V(r), Eq. (5.1), a similar expression is obtained.
The only difference is again in the next-nearest-neighbor
coupling of the expansion coefficients as already dis-

cussed for the NPO potential in Secs. III and IV.] Intro-
ducing the M-dimensional vector

It can be shown that the nonzero roots A, of the deter-
minant D of Eq. (4.12) are all negative. In other words,
for fixed g & 0 polynomial solutions of the type (4.11) ex-
ist only for A. &0. Terminating solutions (4.11) of Eq.
(4.12} are obtained by requiring a„=O for v& m +1 (and
v & 0). Thus the eigenenergies are given by

c 'nl
n

n, l
C2v

n, l
C Zv+2

n, l
C 2v+2M

(5.4)

E„,=4m +21 +3+A, /g, (4.13)

while a certain algebraic relation between A, and g has to
be a fulfilled, namely, D =0. As an example we calcu-
late the ground-state energy Eo &

(with m = 1)

Eo l
——2l +7+A./g,

k= —4g —2g2(21+3) (or A, =O) .
(4.14)

T~aus the 1p level for A, = —0.5 and g =0. 1 is given by
Eo, =4.0, which supports the value reported in Table III
of Ref. 13. [The trivial solutions A, =O may be suppressed
by splitting off a factor (1+gr ) from P (r).]

V(x) =(1+F2)x + Aux, A4 & 0 (5.5)

which has been solved by means of 2)& 2 MCF's (Ref. 26)
for A,2& —1 (monostable potential) and also for A,2& —1

the recurrence relation (5.3) can again be cast into a tridi-
agonal vector recurrence relation like Eq. (4.5), where the
M XM matrices Q„and Q„+— follow from the coefficients
Q* (m =0, 1,2, . . . , M) of Eq. (5.3}. [Explicit expres-
sions for transforming a recurrence relation with a finite
coupling length into a tridiagonal vector recurrence rela-
tion can be found in Eqs. (9.17)—(9.19) of Ref. 21.]

Moreover, it should be mentioned that our generalized
potential (5.1) also contains parity-invariant polynomial
potentials for g2 ——0. If we choose A,2

——0 for m ~ 2, we

simply obtain the quartic potential
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(bistable potential}. The recurrence relation correspond-
ing to the monostable quartic potential (5.5) has already
been given in Eq. (9.23) of Ref. 21. Thus it is demonstrat-
ed that the continued-fraction algorithm is also
applicable to polynomial potentials. Of course, the appli-
cation is not restricted to parity-invariant potentials. The
one-dimensional SE with the unsymmetric potential

2M

V(x) =x + g A,~x
2M

1+ g g~x (5.6)

leads to a recurrence relation of the form

Here one has to introduce vectors of dimension 2M,

c

cv+ i

Qv cv —2M+Qv cv —2M+1+ +Qv cv+2M
—2M 2M +1C 2MC 0

(5.7)

MCF

0.489 497 520 976 06
0.489 498 132 721 21

1.421 839 142 981 9
1.421 931 744 644 8

2.265 520000 152 4
2.270 646 160254 7

2.934 615 451 512 7
3.030 663 815 953 6

3.455 764 408 804 3
3.790 577 592 777 3

'Reference 18(b).

Fernandez et al. '

0.489 497 827 01

1.421 885 68

2.268 171

2.9792

3.558
3.80

TABLE III. Ten lowest eigenvalues of the anharmonic poly-
nomial oscillator (5.9) for A, 3

——0.2 and A,4
——0.01 ~

Enn
Results

Cv= (5.8)

C v+2M

leading to 2M X2M MCF's. (We remark that the solu-
tion of the three-dimensional counterpart of the unsym-
metric potential (5.6) requires some modifications of the
employed expansion set, because the recurrence relations
for the generalized Laguerre functions [see Eq. (5.2)] do
not supply an expression for a term like rLI„(r~)}.

For A, =0, m&3, 4, and g =0 the potential (5.6)
reads

V(x)=x +A3x +A4x (5.9)

The anharmonic polynomial oscillator (5.9) has recently
been investigated' ' ' by means of an improved perturba-
tional approach and eigenvalues of the SE have been cal-
culated for small A,3. We solved the SE with the potential
(5.9), e.g. , for A, 3

——0.2 and A,4
——0.01. [Despite an overall

factor of 0.5 in the SE this choice corresponds to a'=0. 1

and P'=0.005 in Ref. 18(b}.] For these parameters, how-
ever, the potential (5.9) denotes a double-well potential.
This bistable structure of the potential produces closely
spaced pairs of energy levels provided that the potential
barrier between the two wells is high enough. That
property of the eigenvalue spectrum has not been recog-
nized in Ref. 18(b). Therefore the eigenvalues reported in
Ref. 18(b) denote a sort of mean value of the two closely
neighbored exact eigenvalues; see Table III. We remark
that our eigenvalues reported in Table III are reliable in
all digits. They have been checked by employing a 32-
digit arithmetic and an increased truncation index N,„.
In order to achieve the required accuracy, N, „was
chosen to be 15. Because the potential (5.9) represents a
special case of the general potential form (5.6) with
M =2, this problem leads to a 4X4 MCF. Therefore
N,„=15 corresponds to considering 4)& 15=60 terms of
the relevant expansion set. (Increasing N, „up to 400
and thus taking into account 1600 expansion terms leads
to exactly the same results in all digits as reported in
Table III.) However, we want to stress that the eigenval-
ues which have been presented in Ref. 18(b) for mono-

stable anharmonic potentials (5.9) agree with our results,
despite some deviations in the last four digits for the po-
tential parameters a'=0. 1 and P'=0. 2 (A,3=0.2 and
A,4

——0.02 in our units).
Very recently the concept of supersymmetric quantum

mechanics was applied to the one-dimensional SE with
the quartic double-well potential (5.5) for A,2& —1 and
A,4

——1. The authors focused on calculating the tunnel-
ing rate in the limit of high potential barriers by a pertur-
bational approach. For deep potential wells this tunnel-
ing rate is proportional to the energy difference of the
lowest lying pair of eigenvalues. ' In general, however,
the smallness of the energy differences AE=E& —Eo
causes computational difficulties. This problem has been
circumvented in Ref. 28 by regarding the supersymmetric
partner potential. We have verified the tunneling rates
reported in Ref. 28 by means of the MCF algorithm.

VI. CONCLUSIONS

It was our intention throughout the present investiga-
tion to demonstrate the power of the MCF algorithm for
calculating the eigenvalues and eigenfunctions of the
one-dimensional SE with arbitrary polynomial and non-
polynomial potentials which admit a discrete spectrum.
We have pointed out that our numerical results may be
obtained over a wide range of potential parameters with
high accuracy. This was demonstrated for the one-
dimensional NPO VNpo(x) and for its three-dimensional
counterpart. In the latter case our results provide an ac-
curate check on the shifted 1 !N expansion which has
been applied to the three-dimensional NPO very recent-
ly. ' Moreover, we presented certain exact analytic solu-
tions for the three-dimensional NPO. Our calculations
for the three-dimensional NPO (see Figs. 3—5 and Table
II) confirm that the perturbation approach employed in
Ref. 13 does not lead to accurate results in the critical pa-
rameter range A,

' /g =0. 1 —30.
A possible application of the MCF algorithm of SE's

with more general rational potentials was also outlined.
It was shown explicitly that the MCF method produces
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reliable results for quartic (anharmonic) potentials. For
bistable polynomial potentials (with high potential bar-
riers) we have calculated the energy spectrum which con-
sists of closely spaced pairs of energy levels. This enables
us to confirm the tunneling rates which have been deter-
mined very recently in Ref. 28.

We also want to point out that in our opinion the pro-
posed MCF algorithm for calculating eigenvalues of the
time-independent SE is preferable to similar methods
which have been suggested recently because of its clear
computational structure. The methods discussed, e.g., in
Ref. 29 basically consist of solving the recurrence relation
for the expansion coefficients directly. Another advan-
tage of the MCF algorithm is that the precision of the
calculated quantities may be easily checked and improved
by increasing the relevant number of iterations N,„.
Since the computation time is proportional to N,„a
considerable increase of N, „ in general causes no com-
putational problems.

Very recently, doubts have again been raised on the ap-
plicability of three-term recurrence relations to the eigen-
value problem of certain SE's. '" We would like to
stress that the MCF algorithm does not suffer from these
problems which led to some controversy in the recent
literature on SE's with anharmonic polynomial poten-
tials. The expansion of the eigenfunctions of the SE
into complete sets which have been employed herein
should always guarantee the convergence of the MCF
solution to the required solution of the SE. Finally, we
state that from our experience discretization methods
(see, e.g., Ref. 17) generally require more computation
time than the MCF algorithm in order to achieve the
same accuracy.

We conclude with suggesting the application of the
MCF method to essentially two-dimensional SE's. For
two-dimensional Fokker-Planck equations, eigenvalues
and eigenfunctions have already been obtained by means
of the MCF method. ' ' In such a case one has to em-
ploy an expansion into two complete sets. Truncating
one of these sets at M,„, the dimension of the matrices
to be inverted is of the order M,„, while the other ter-
minating index N, „still gives the number of iterations
of the MCF. Therefore, compared with the one-
dimensional case, the dimension of the matrices occur-
ring in the MCF s increases considerably. Since two-
dimensional Fokker-Planck equations are typically of the
same structure as two-dimensional SE's, the method
should also work for the SE with two variables. A non-
trivial example, which is of importance in physics and
chemistry, is the two-dimensional SE with the potential
V(x,y)=coix +co2y +k,x +k2y —){xy . For such a
potential of two nonlinearly coupled nonlinear oscillators
an expansion into two sets of Hermite functions will lead
to a recursion for the expansion coefficients with a finite
coupling length and the MCF algorithm should therefore
also be applicable.
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APPENDIX: PERTURBATION THEORY
FOR THE THREE-DIMKNSIONAI. NPO

A first-order perturbation theory is carried out for the
three-dimensional NPO (2.5) and (2.6) in the limit A.~ oo.
Thus an analytic expression is given for the level split-
tings hE depicted in Fig. 5. The effective potential (2.6}
reads

V',fr(r)=r +I(I +1)Ir + V(r),

and we expand the denominator of V(r),

V(r)=kr l(1+gr )=Ar [1—gr +O(g r )] .

(A 1)

(A2)

dH = — +l(I+1)lr +(X+1)r
dr

H'= Agr +O(Ag—r ) .
The solution of the unperturbed problem

H''P.
, ((r)=En, iq'. , l(r}

(A3)

(A4)

is given by

E„&——(4n + 21 + 3 )(1+I, )'/

I+ lg I + I/2( 2(1+g)1/2)
n, I norm~ n

Xexp[ r(1+))—'I]
(A5)

=—(1+A, )'"P„,(r (1+A, )'"),
with the normalization constant N„,„~ and P„&(r) denot-

ing the solution of the SE in the case ){,=0 (harmonic os-
cillator). Thus we obtain in first-order perturbation
theory

g &~„,(.}
~
"(1+)}

~
~„,(.))1+k

—A.g [6n'+3(2l + 3)n +l'+4l + —", ] . (A6)

[It can be shown that in the limit A,~ oo the infinite sum
of the higher-order terms resulting from the expansion of
the potential (A2) converges to zero. ] The energy
difference between two levels which are degenerate for
g =0 is now calculated in the limit A, —+ oo,

lim bE =g(n, nz)[2(n, n2+l, —)+1],—

b,E =E„ I E„ I, 12 2ni —2n2+Ii . — (A7}——
Thus we obtain for the level splittings reported in Fig. S
in the limit k Do Eo 2

—E& 0 ——E& 2
—E2 0 ——3g, E(j 3—E& &

——Sg, and E04 —E] z
——7g, in agreement with our

numerical results in Fig. S.

The expansion in Eq. (A2) is valid for r «1/g, a con-
straint which may be equally well replaced by
& r ) « 1/'g. Thus our approximated Hamiltonian
operator is given by

H=H +H',



38 EIGENVALUES OF THE SCHRODINGER EQUATION WITH. . . 3959

'P. B. Abrahams and H. E. Moses, Phys. Rev. A 22, 1333
(1980); M. M. Nieto, Phys. Lett. 145B, 208 (1984); B. Mielnik,
J. Math. Phys. 25, 3387 (1984); M. Luban and D. L. Pursey,
Phys. Rev. D 33, 431 (1986); D. L. Pursey, ibid. 33, 1048
(1986);33, 2267 (1986);36, 1103 (1987).

L. W. Casperson, Phys. Rev. A 30, 2749 (1984); 31, 2743(E)
(1985); S.-M. Wu and C.-C. Shih, ibid. A32, 3736 (1985); A. B.
Nassar and F. L. A. Machado, ibid. 35, 3159 (1987).

H. Risken and H. D. Vollmer, Z. Phys. 201, 323 {1967);H.
Haken, in Laser Theory, Vol. XXV/2c of Encyclopedia of
Physics (Springer-Verlag, Berlin, 1970).

4S. N. Biswas, K. Datta, R. P. Saxena, P. K. Srivastava, and V.
S. Varma, J. Math. Phys. 14, 1190(1973).

~R. R. Whitehead, A. Watt, G. P. Flessas, and M. A. Nagara-
jan, J. Phys. A 15, 1217 (1982).

S. Galicia and J. Killingbeck, Phys. Lett. 71A, 17 (1979).
~(a) A. K. Mitra, J. Math. Phys. 19, 2018 (1978); (b) N. Bessis

and G. Bessis, ibid. 21, 278 {1980).
(a) G. P. Flessas, Phys. Lett. 83A, 121 (1981); (b) V. S. Varma,
J. Phys. A 14, L489 {1981);(c) M. Znojil, ibid. 16, 293 (1983).

(a) S. R. Kaushal, J. Phys. A 12, L253 (1979); (b) C. S. Lai and
H. E. Lin, ibid. 15, 1495 (1982).

' (a) R. N. Chaudhuri and B. Mukherjee, J. Phys. A 16, 4031
(1983); (b) G. Marcilhacy and R. Pons, ibid. 18, 2441 (1985);
(c) C. R. Handy, ibid. 18, 3593 (1985).

(a) A. Hautot and A. Magnus, J. Comput. Appl. Math. 5, 3
(1979); (b) A. Hautot, J. Comput. Phys. 39, 72 (1981).

' M. H. Blecher and P. G. L. Leach, J. Phys. A 20, 5923 (1987).
' Y. P. Varshni, Phys. Rev. A 36, 3009 (1987)~

R. Roy and R. Roychoudhury, Phys. Lett. A 122, 275 (1987).
'5M. Bernstein and L. S. Brown, Phys. Rev. Lett. 52, 1933

(1984); V. A. Kostelecky and M. M. Nieto, ibid. 53, 2285
(1984); T. D. Imbo and U. P. Sukhatme, ibid. 54, 2184 (1985);
P. Kumar, M. Ruiz-Altaba, and B. S. Thomas, ibid. 57, 2749
(1986); R. Dutt, A. Khare, and Y. P. Varshni, Phys. Lett. A
123, 375 (1987); for a review see, e.g., B. Freedman and F.
Cooper, Physica 15D, 138 (1985).

' T. Imbo, A. Pagnamento, and U. Sukhatme, Phys. Rev. D 29,
1669 (1986); S. A. Maluendes, F. M. Fernandez, and E. A.
Castro, Phys. Lett. A 124, 215 (1987).

' J. P. Killingbeck, Rep. Prog. Phys. 48, 53 (1985), and refer-
ences therein.
(a) F. M. Fernandez, A. M. Meson, and E. A. Castro, Phys.

Lett. A 104, 401 (1984); (b) Mol. Phys. 58, 365 (1986).
' A. M. Meson, F. M. Fernandez, and E. A. Castro, Z. Natur-

forsch. 38a, 473 (1983).
~OF. M. Fernandez and E. A. Castro, Phys. Lett. A 124, 1

(1987).
~ ~ H. Risken, The Fokker-Planck Equation (Springer-Verlag,

Berlin, 1984).
H. Scherrer, Diploma thesis, University of Ulm, 1987.
W. Nadler and K. Schulten, J. Chem. Phys. 84, 4015 (1986).

~40. Perron, Die Lehre Uon den Kettenbruchen (Teubner,
Stuttgart, 1977i; Vols. I and II; H. S. Wall, Analytic Theory of
Continued Fractions (Chelsea, New York, 1973); W. B. Jones
and W. J. Thron, in Continued Fractions, Vol. 11 of Encyclo-
pedia of Mathematics and its Applications (Addison-Wesley,
Reading, MA, 1980).

Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1970).
H. Denk, Ph. D. thesis, University of Ulm, 1984.

z~L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Per-
gamon, New York, 1977).
W.-Y. Keung, E. Kovacs, and U. P. Sukhatme, Phys. Rev.
Lett. 60, 41 (1988).

A. Hautot, Phys. Rev. D 33, 437 (1986); F. M. Fernandez, J.
F. Ogilvie, and R. H. Tipping, J. Chem. Phys. 85, 5850 (1986);
D. A. Estri'n, F. M. Fernandez, and E. A. Castro, ibid. 87,
7059 (1987).

(a) R. Roychoudhury and Y. P. Varshni, Phys. Rev. A 37,
2309 (1988); (b) A. Hautot and M. Nicolas, J. Phys. A 16,
2953 (1983); J. Killingbeck, ibid. 18, L1025 (1985); R. N.
Chaudhuri, Phys. Rev. D 31, 2687 (1985); J. Killingbeck, J.
Phys. A 20, 1285 (1987);and references therein.

'H. D. Vollmer and H. Risken, Z. Phys. B 34, 313 (1979); Phy-
sica 110A, 106 (1982); K. Voigtlaender and H. Risken, J. Stat.
Phys. 40, 397 (1985); P. Jung and H. Risken, Z. Phys. B 61,
367 (1985); T. Leiber, P. Jung, and H. Risken, ibid. 68, 123
(1987); K. Vogel, H. Risken, W. Schleich, M. James, F. Moss,
and P. V. E. McClintock, Phys. Rev. A 35, 463 (1987); K.
Vogel, T. Leiber, H. Risken, P. Hanggi, and W. Schleich,
ibI'd. 35, 4882 (1987); T. Leiber, F. Marchesoni, and H. Risk-
en, Phys. Rev. Lett. 59, 1381 (1987); T. Leiber, F. Mar-
chesoni, and H. Risken, Phys. Rev. A 38, 983 (1988); K.
Vogel and H. Risken, ibid. 38, 2409 (1988).


