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Shifted large-N expansion for the energy levels of relativistic particles
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The shifted large-N expansion method, which was developed to obtain accurate energy eigenval-
ues for nonrelativistic-potential problems, has been extended to deal with relativistic particle (with
or without spin) bound in a spherically symmetric potential. The calculations are carried out for
any arbitrary quantum state using expansion in terms of a parameter 1/k, where k contains the di-

mension of the space N and the so-called shift parameter. Similar to the work of T. Imbo, A. Pag-
namenta, and U. Sukhatme [Phys. Rev. D 29, 1669 (1984)] we suggest determination of the shift pa-
rameter in such a way that the exact analytic result for the nonrelativistic Coulomb binding energy
is restored. As a consequence of this choice, we obtain also a highly convergent expansion for the
relativistic part of the energy eigenvalue. Although the formalism is developed for spin-zero and
spin-2 particles in any arbitrary spherically symmetric potential, it is illustrated for the Coulomb

potential as a special case. Our results are consistently better than those previously obtained by us-

ing the unshifted 1/N expansion technique. The shifted 1/N expansion is seen to be applicable to a
much wider class of relativistic potentials which may have applications in atomic processes. A few

interesting aspects of our approach are briefly discussed.

I. INTRODUCTION

The application of the large-N expansion technique,
where N is the number of spatial dimensions, has proved
itself to be quite rewarding in a variety of potential prob-
lems in the context of Schrodinger quantum mechan-
ics. ' ' The underlying idea of this method is that if N is
the dimensionality of the theory, then the theory may
have large-N generalization which can be solved explicit-
ly in the limit N~ ~. For spherically symmetric poten-
tials, such a solution allows one to calculate physical ob-
servables such as the energy eigenvalues and eigenfunc-
tions in the original N =3 dimensions by expanding them
systematically in powers of 1/k where k =N+2l. How-
ever, in certain cases the expansion suffers from slow con-
vergence particularly for the s states.

Recently, Sukhatme and co-workers ' proposed a
modification of this method, called the shifted 1/N ex-

pansion, which considerably improves the analytic struc™-

ture and convergence of the perturbation series for the
energy eigenvalue. The modification consists of using
ilk as an expansion parameter, where k =(k —a ) and a
is a suitable shift. The shift parameter is chosen in such a
way that the first-order correction to the large-k energy
vanishes. This simple modification gives rise to dramatic
consequences; not only does it lead to the exact energy ei-
genvalues and eigenfunctions for the harmonic oscillator
and Coulomb potential in the leading order of the 1/k
series (higher-order corrections vanish identically), but it
also yields very accurate analytic results effectively put-
ting no constraint on the potential or the quantum num-

bers involved in the problem. The shifted large-N expan-
sion method has recently been applied to a large number
of potentia1s ' with remarkab1e success.

The objective of this paper is extend the shifted large-N
formalism to determine the energy levels of relativistic

particles trapped in a spherically symmetric potential.
To our knowledge, only a few groups' ' have so far ap-
plied unshifted 1/N expansion to study the relativistic
bound-state energies of spin-zero and spin- —,

' particles.
These authors found that the relativistic correction to the
nonrelativistic limit is nonleading in 1/N expansion for
the energy eigenvalues. Furthermore, the rate of conver-
gence of the expansion is very slow for the relativistic
part of the energy eigenvalue as compared to the same for
the nonrelativistic part.

Our purpose is to show that these deficiencies of the
unshifted 1/N method may be removed to a large extent
by employing the shifted large-N expansion technique to
the relativistic wave equations. Although it is not
a priori guaranteed that this method, which gives high
accuracy for the nonrelativistic binding energies, will also
yield a similar effect for the relativistic part of the prob-
lem, it has been shown explicitly that appropriate choice
of the shift parameter gives faster convergence to the
series representing the relativistic correction terms. In
this paper we have developed the shifted large-N method
to determine the energy eigenvalues of both Klein-
Gordon (KG) and Dirac equations for radially symmetric
potentials assuming the rest energy to be large compared
to the relativistic correction. Though the procedure ap-
plies to any radially symmetric potential, explicit calcula-
tions have been presented for the Coulomb problem as a
test case. The main aspect of our approach is that wheth-
er one starts with the KG or the Dirac equation, it is pos-
sible to convert it to a Schrodinger-like equation to which
one may apply the shifted large-N technique of Sukhatme
and co-workers in a straightforward manner. In Sec. II,
we discuss the KG problem for a general spherically sym-
metric potential. For the Coulomb case, we give the ex-
plicit results and restore the exact analytic expression for
the nonrelativistic Coulomb binding energy and a highly
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convergent expansion for the relativistic correction of or-
der 1/c . The relative improvement of the relativistic
part of the binding energy in comparison to that obtained
from the unshifted method' is also discussed. In Sec.
III, we discuss our method in the context of the Dirac
equation and give approximate analytic results for the
Dirac-Coulomb problem. In the concluding section, we
mention briefly the scope of further work in this direction
for relativistic screened Coulomb potentials which may
have relevance in atomic physics.

II. KG PROBLEM

A. Shifted large-N expansion for spin-zro particle

In this section, we formulate the shifted large-S expan-
sion for the relativistic motion of a spin-zero particle
bound in spherically symmetric potential V(r). For such
a particle of rest mass m and total energy E, the radial
part of the KG equation in N-dimensional hyperspherical
coordinates is'

fi' d' A'(k —1)(k —3)+
2m dr 2 8mr z I [E—V(r)] —m c ) u(r) =0,

2mc

where k =N+21 and u (r) is the reduced radial wave function. Introducing a shift parameter a through the relation

k=k —a,
Eq. (1) becomes

(2)

2 d2 g2k 2

2+2m dr 8mr k
1—3 —a

k
t [E—V(r)] mc —] u(r)=0 .

2mc
(3)

We shall determine a convenient choice for the shift parameter later. Let us now discuss the limit N~ ~ (i.e., k ~ ~ )

of Eq. (3). In order to get a sensible result in the leading order in 1/k expansion, Eq. (3) can be written as

1 d g 1 a
2+

2mk 2 dr2 Smr2 k
1—3 —0

k
[[E—V(r)] —m c I u(r)=0,

2mc Q
(4)

where Q is a constant which rescales the potential and the rest-mass energy and will be set equal to k at the end of the
calculation.

In the large-k limit, the particle becomes effectively localized and one may represent

u(r)-5(r —ro) .

This gives the leading-order energy

A' QEo —V(ro)+mc' 1+
4m'c'r,'

' 1/2

(6)

where rp satisfies the equation

3dV
rp

dr r=r
AQ

4mcr 0

RQ
4m

1 — — [[E,—V(r)] —m c ]+ (E E, )[V(r)—V(ro—)] u(r)
k

~

2mc mc

To determine higher-order corrections to the energy eigenvalues in a manner similar to that followed in the case of non-
relativistic potentials, one is required to convert Eq. (3) into a Schrodinger-like equation. We then write Eq. (3) as

d2 /2k 1 a1—
2m dr 8mr k

[[E—V(ro)] —[E,—V(ro)] Iu(r), (g)
2mc

where E, is some approximate solution for E. For our purpose, we shall replace E, by Eo given in Eq. (6) and neglect
the term (E Eo)[V(r) — (Vr )—]om/c, assuming it to be small. With this approximation, Eq. (8) becomes the
Schrodinger-like equation

g2 d2 g2k 2

1—
2m dr 8mr k

1 — + U(r) u(r) =Au(r),3 —0

k
(9)

in which

U(r)= — I[E—V(r)] —m'c I,
2mc
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[[E—V(ro)] —[Eo—V(ro)] ] .
2mc

Clearly, U(r) and 8 play the role corresponding to the potential and the bound-state energy, respectively, in the non-
relativistic problem, and so one may apply the previous 1/k expansion scheme directly. However, this calculation is
bound to be complicated and lengthy due to the complex structure of U(r) and 6 as given in (10) and (11). Following
the steps of Ref. 9, we change the variable

rpr=rp+, y .
(k)

Substituting (12) into Eq. (9) and expanding about y =0 in terms ofy one gets

d2 2

+-,m~ y +so+ — (e~y+esy )+=(ex' +e4y )+ (5&y+5sy +5sy )
1 2 3 5

2m (k )1j2 k k 3/2

(12)

where

4 „'1/2
3A' "oU ("o}

2+
4m mQ

+ (5zy +5~ +56y )+ . u(y)=Au(y), (13)
1

k

(14)

and e, 5 are the same as given in Ref. 9 except that V(r) and its derivatives have to be replaced by our U(r) and its
derivatives, respectively. From Eq. (13) it is clear that our original three-dimensional problem has been converted into
a nonrelativistic equation for the one-dimensional anharmonic-oscillator problem. Using standard perturbative results,
we obtain from Eq. (13)

a"'k ' Pk 1+ (b' —'+b"'+b' ')+ (c"'+c' '+c '+c' ')+
2 2 2 2rp rp rp rpk

in which

roU(ro)

8m Q

(2—a )fi
( )

%co+ +n,„

$2
b' '= (1—a )(3—a),

Sm

b'"=(1+2n„}z+e3(1+2n„+2n„) ,e4

b' '= — [e,+6(1 2+n„)
~ e& E(+11 3+nO„3+On„)c ~],(2) 1 —2

(15)

(16a)

(16b)

(16c)

(16d)

(16e)

c'"=(1+2n„)5&+3(1+2n„+2n„)5+45(3+8 +n6n, +4n, )56,

(2jc' = — [( 1+2n„)K z+ 12(1+2n„+2n„}e~e4+2(21+59n„+51n„+34n„)e 4+ 2e, 5,

(16f}

+6(1+2n, )e&5&+30(1+2n„+2n„)e&55+6(1+2n„}&5&E

+2(11+30n„+30n„)Z&5&+10(13+40n„+42n, +28n„)e&5&],

1c' '= [4 cE~+36(1+2n„)Z,Z~Z~+8(11+30n„+30n„)Zz ~+e24(l+2n„)Z, c4
(fia) )

+8(31+78n„+78n„)E,e&E~+ 12(57+ 189n„+225n„+150n„)Z &e~],

1c' = — [8E,c&+108(1+2n„)e,c~ 4+(811 +3 On+3 nO„)Z& &v+30(31+109n, +141n, +94n„)c &],

(16g)

(16h)

(16i)

and
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2mN
fi

5j=
2mN

fi

' j/2 (17) p2 $2
Ei =Ei 1+

Qfg c 2m
(1+2n, ),

Here n„stands for the radial quantum number. From
(15), it is evident that the leading contribution to 6' is of
the order k . The next contribution being of the order k
is given by E3=C3 1—

Qfi c 4m

2P' 3()i
E2 ——C2 1+ (1+2n„),

Q fPcz 4m

Ak k
2 2ro ro

(2 —a )A'
+(1+2n, )

AN 3A
f4=64, E4=

8m

N =NN~+NR (19)

Here NNR stands for the nonrelativistic part independent
of c and coi( contains terms of order 1/c and higher.

%e propose to determine the shift parameter a in such
a manner that the nonrelativistic part of (18) vanishes.
This gives

~NNR
a =2—2(2n„+1) (20)

It may be pointed out that our expression (18) is identical
to that obtained in Ref. 9. However, in our case, N con-
tains nonrelativistic as well as relativistic contributions as
U(r) in (10) contains terms of order 1/c . Expanding all
quantities in powers of 1/c, it is possible to split

p ))i
8, =5, 1+, 5, = — n„(1+n„),

Q)riZc 2 m

2P 3)ri
82 ——52 1+, 52= n (1+n ),

Qirizc 2 2m

3P
53——53 1+ 53 —— (1+2n, ),

Q))izc 2 m

4p Sfi
54=54 1+ 54 ——— (1+2n„),

Q))izc' 4m

p2 $2
55——55 1+ —, 55 ———

Qi)i c 2m

(25)

+ ~ ~ ~ (21)

B. Application to the Coulomb problem

Here we intend to show explicitly the expression for
the 1/k expansion for the binding energy of a relativistic
spin-zero particle bounded by an attractive Coulomb po-
tential

V(r) = p/r, p—=Ze

Using (22) and expanding all terms up to order 1/c, we
get from Eqs. (6)—(20),

Consequently, the term of order k in (15) picks up only a
contribution for the relativistic part of the bound-state
energy. From Eqs. (11), (15), and (18)—(20) we get finally

(1+2n„))rishi(
k

mc2r20

2(b (0)+b () )+b (2)
)+

mc ro

2( (')+c(z)+c(3)+c( ))
+

mc ro k

2p 5)ri
5,=5, 1+ 56 ——

Qgzc2 Sm

4(1 +2n, )
+

3
+'''

k

—0 1

c' (26)

The second term in (26) corresponds to the nonrelativistic
Coulomb binding energy and the terms in the large
parentheses contribute (to the order 1/c ) to the relativis-
tic binding energy.

Our analytic result (26) may be compared with the cor-
responding expression (for the ground state, i.e., n, =0)

The first and the second term on the right-hand side of
(24) correspond to coNit and ai„, respectively, as defined in
(19). Computing a ' ', A, b ", c", etc. by using the ex-
pressions (23)—(25), we finally obtain the total energy for
a spin-zero particle

eau) z 2mP 2

E =EKG ——mc-
Rk

2m p4 4(1+2n„) 4(1+2n, )

Ak c4 —42 1+ — +
k k

A' Q 4Prp= 1—
4mP Qgzc2

1/2

1—,(23)
4m p Q))izc 2

z 2mP 2 3
F. =me — 1+—+

fi 4pN= 1—
2m Q))izc 2

1/2
fi 2P21—

2m Q fizc 2
(24)

2mP' 8 34
g4k4 2 k k2 (27)

a =1—2n, , obtained by Chatterjee' using the unshifted 1/X expan-
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sion scheme. There are a number of distinctive features
between the expressions obtained through the shifted and
unshifted formalisms.

(1) For the physical space (i.e., N= 3), we obtain Binding energies in units of (mP'/A' c )

Unshifted Shifted Exact
[Eq. (27)] [Eq. (26)] [Eq. (30)]

k =N+2l —a =2(n„+I+1)=2n, (28)
States

TABLE I. Relativistic correction (of order 1/c ) to the bind-

ing energies of n„=0 states for a spin-zero particle in the
Coulomb potential.

ENR —— m—p /2A n (29)

where n is the total quantum number and thus the second
term of (26) yields an exact analytic result for nonrela-
tivistic Coulomb binding energy

1s

2p
3d
4f

—0.183 813
—0.012 672
—0.002 363
—0.000 704

—0.562 500
—0.018066
—0.002 772
—0.000 767

—0.625 000
—0.018 229
—0.002 779
—0.000 767

ECoul [0( I y 2)
KG 2A'n' ' I+-' 4

2

(30)

However, in the case of unshifted expansion (27), one ob-
tains a series for the same and it is known' that the first
three terms cumulatively yield about 90% of the exact
ground-state energy.

(2) To test the convergence of the relativistic parts of
(26) and (27), we calculate numerically the relativistic
correction to the binding energy for a few n„=0 states
and compare the values in Table I with those computed
from the exact analytic expression'

It is observed that in contrast to the unshifted values, our
results are in very good agreement with the exact numeri-
cal values.

(3) One interesting feature of our expression (26) is that
not only the relativistic part corresponds to a faster con-
vergent series as compared to the corresponding one in
the unshifted expansion (27), but also it leads to the exact
result (30) provided one assumes that the rest of the series
follows the same pattern. This may be shown more clear-
ly: the relativistic piece in (26) may be arranged as

2mp4 4(1+2n„) 1+2n„(1+2n„)
1+ 1+ + , + ~

A4k 4c' k k k

2mP4 4(1+2n„)
4 4 2

ill k c k —(1+2n„)

8m p' (N 3)+2n-
lrt4k 4c2 (N —3)+21+1

3

4

For the physical N=3 space, one retrieves (30) by using
k =2n as given in (28).

III. DIRAC-COULOMB PROBLEM

Our objective in this section is to convert the Dirac
equation for a class of spherically symmetric potential to
an equivalent KG-like equation permitting relativistic
calculations utilizing the procedure developed in Sec. II.
For illustration, we shall then treat the Coulomb problem
as a special case. We consider the Dirac equation for a
particle of rest mass m moving in a spherically symmetric
potential V(r) with total energy E =mc + 8', where %is
the binding energy of the relativistic particle. Using the
fact that 8 &&mc, the equation for the large component
of the Dirac wave function correct up to order 1/c is
given by'

d «(K —1) 1 2 p 4[[E—V(r)] —m c ) F(r)
p

2 p2 c2$2

1 dV d
dP df

F(r ), (31)

one obtains

in which

—(I+1) for j=+—,
'

K= +(1+ )=
2

To convert Eq. (31) to the form of the KG-like equation,
one needs to remove the first derivative term. Defining

( r ) =P( r)e v( r)I4mc

d2

dr
K(K —1)

r2

I

V"+ + I [E—V(r )] —m c I y(r) =0 .
4mc & c A

(33)

It may be pointed out that since F(r) is a bounded function, g(r) will be bounded provided V(r)& oo for 0 & r & oo. As
a result, Eq. (33) is valid for only a class of potentials satisfying this requirement.

For the X-dimensional case, ~ has to be replaced by

K= 1s(NJ —2), (34)
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where N =N+2j and s stands for the sign of ~. This form is consistent with the N=3 case. Expression (34) transforms
J

Eq. (33) as

fi d fi (k+a —1)(k+a —3)
2m dr2 8mr2

fi „s(k+a+s —2) V'
+ V"+

Sm c r t [E—V(r)] m—c I y(r)=0,
2mc

(35)

where

k=N+2(j —s/2) —a . (36)

Equation (35) is analogous to the KG-like Eq. (4) with one difference: that due to inclusion of spin, one gets the addi-
tional spin-orbit coupling term' (third term) which contributes only to the relativistic part of the binding energy.
Equation (35) should then be the starting point for the shifted large-N calculation for a Dirac particle in a spherically
symmetric potential.

For the illustration, we present here the results for the Coulomb problem. Following the steps elucidated in Sec. II
we calculate all relevant quantities such as cu, r&&, 5's, and c.'s correct up to order 1/c . The detailed expressions are
presented in the Appendix. The final analytic expression for the 1/k expansion of the energy eigenvalue appropriate to
the Dirac-Coulomb problem is

22mPE =EDirac mc —
2 2Ak

2mp4 4(1+2n, —s ) 4(1+2n„—s ) 4(1+2n„—s )

Rk c4 4 2 k
+

k
+

k 3
+. +o 1

C
(37)

z 2mPE=mc-
$2k 2

2m p4 4(2n„) 4(2n„)

Ak c4 4 2 2k k

It is easy to verify that the exact analytic expression for
the nonrelativistic binding energy (24) may be restored if
one sets s = + 1. For this choice, (37) reduces to

eigenvalues for various quantum states in Table II and
compare them with numerical results obtained from (40).
Except for the states with higher values of the radial
quantum number n„, our results are in excellent agree-
ment with the exact results. As expected, the agreement
is best when n„=0. Thus the shifted 1/N expansion
scheme works well for the Dirac-Coulomb problem.

+0 4
1

C

in which

4(2n„)
+ 3

+'''
k

(38)

IV. CONCLUDING REMARKS

We have extended in this paper the shifted large-N
method originally developed for the Schrodinger equa-
tion to obtain the energy levels of a relativistic spin-zero
or spin- —, particle moving in a spherically symmetric po-

TABLE II. Relativistic correction (or order 1/c ) to the
binding energies of a spin-2 particle in the Coulomb field.

k =N —3+2(n, +j+—,') . (39)

Proceeding in the same manner discussed in Sec. II B, it
is found that the terms in the first pair of large
parentheses in (38) sum up to the exact analytic result for
the relativistic part of the binding energy'

Ecoul [0(1/ 2) ]
mP' n 3

8A'n'c' j+-,' 4
(40)

However, one may also be interested to test how well the
relativistic part of the binding energy is predicted by the
first four terms as presented in (38). We list our energy

States
n(1),

1$1/P

2P 3/2

2P l /2

2$1 /2

3d 5/2

3d 3/2

313/2
3P l/2

$ l /2

Binding energies in units of (mP'/A c )

Shifted Exact
[Eq. (38)] [Eq. (40)]

1
' —0.125 000

2 —0.007 813
—1

1
—0.035 156

3 —0.001 543
—2

2
—0.004 515

—1

1
—0.010231

—0.125 000
—0.007 813

—0.039 063

—0.001 543

—0.004 630

—0.013 889
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tential. The main trick lies in the conversion of the KG
or the Dirac equation to an effective Schrodinger-like
equation. The formalism has been developed without
sacrificing the accuracy of nonrelativistic binding ener-
gies achieved previously by a suitable choice of the shift
parameter. The interesting aspect of our work is that this
choice has attributed faster convergence to the relativis-
tic part of the 1/X expansion of the energy levels as com-
pared to that obtained in the unshifted large-N expansion
scheme. ' For the Coulomb potential in particular our
method looks quite impressive for it yields the exact ener-

gy at least to the order I/c considered in this paper.
It is realized that there is scope for extension of the

present method to more realistic potentials such as the
screened Coulomb potentials which have wide applica-
tions to atomic phenomena. ' Recently, Pratt and co-
workers' ' have studied the relativistic screened
Coulomb radial wave functions, normalizations, bound-
state energies, and various bound-bound transitions from
atomic inner shells using an analytic perturbation theory.
However, this approach has a limitation in the sense that
the results do not converge for large values of the screen-
ing parameter. Such a problem does not arise in our
scheme as the large-dimension expansion is basically a
nonperturbative approach. Furthermore, highly im-
proved wave functions accurate over a wide range of r
and any choice of the quantum numbers n„and I are
available in this framework. All these aspects of
screened Coulomb potentials are presently under study
and will be reported later.
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APPENDIX

For interested readers, we list here the analytic expres-
sions of c. , 5, c, 5, etc. appropriate to the Dirac-
Coulomb problem:

P 3s
C)=E) 1+ 1—

Qttt~c 2 1+2n

2P 2s
c2 ——c2 1+ 1—

QQ c 1+2n

E3 ——E., 1—
Qfi c

Z4 E4

p2 3s(1+2n„+s )
5, =5, 1+ 1—

Qg'c' 2n, (1+n„)

2p~ s(1+2n„+s )
52=52 1+ 1—

Qtt12c~ n (1+n„)

2

5 =5 1+ P 3—
Qg c 1+2n„

54=5~ 1+ 2—
Qtrt2c ~ 1+2n

The values of other quantities such as ro, co, a, 5&, etc.
remain the same as given in Sec. II.
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