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Solution of the relativistic Thomas-Fermi-Dirac-Weizsacker model
for the case of neutral atoms and positive ions
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We present an accurate numerical solution of the relativistic Thomas-Fermi-Dirac-Weizsacker
variational equation for the case of neutral atoms and positive ions.

I. INTRODUCTION

In a previous paper' we presented a relativistic exten-
sion of the well-known Thomas-Fermi-Dirac-Weizsacker
(TFDW) model. Starting from the Hartree Fock (HF)
limit of quantum electrodynamics (QED) we derived,
after renormalization, an energy density functional in the
spirit of Hohenberg and Kohn on the basis of gradient
expansion techniques. The functional suggested includes
second-order gradient terms for the kinetic energy densi-
ty, whereas the exchange contribution is treated on the
level of the local density approximation.

In this contribution we discuss an accurate numerical
solution of the resulting relativistic TFDW variational
equation for the case of neutral atoms and positive ions
employing methods similar to those used to solve the
nonrelativistic TFDW variational equation. " The nu-
merical scheme is set up in Sec. II, the boundary condi-
tions at the origin and at infinity are obtained in Sec. III
via an explicit discussion of the corresponding nonlinear
differential equations in the high- and low-density regime.
After a brief comment on numerical aspects in Sec. IV,
we present results for ground-state energies and densities
in comparison with Dirac-Fock data in Sec. V.

In the nonrelativistic case, some emphasis has been
placed on the question of an appropriate choice of the
coefficient k of the gradient correction to the kinetic en-
ergy. One obtains favorable results for the ground-state
energy of atoms and ions with X= —,', whereas the semi-

classical expansion yields k= —,'. Furthermore, it has been
I

demonstrated' with the aid of a 1/Z expansion that the
ground-state energy of the TF(D)W model corresponds to
the exact ground-state energy in the limit Z ~~ to order
Z if A, =0.185909. . . is used. We show that a corre-
sponding statement cannot be expected in relativistic
density functional theory.

We use the relativistic convention A=c = 1

throughout; in addition, we set m = 1 in the discussion of
the variational equation for the sake of brevity. The nu-
merical values for the energies are, however, given in
atomic units in order to facilitate comparison with non-
relativistic results.

II. RELATIVISTIC TFDW VARIATIONAL
EQUATION

In Ref. 1 we derived a relativistic extension of the
TFDW energy density functional in terms of the local
Fermi momentum and energy [note that in Ref. 1 the
charge density p, (x)= —ep(x) is employed rather than
the probability density p( x ) ],

p(x)=[3m p(x)]'i3,

E(x)= [1+p'(x)]'i'

Introducing, in analogy to the nonrelativistic case, a pa-
rameter A, in the gradient term of the kinetic energy den-
sity in order to account for higher-order gradient terms,
the relativistic ground-state-energy density functional is

eRTFDw[p(x)]= p(x)E (x)+p (x)E(x)—arcsinh[p(x)] ——,'p (x)
Sm.

+3&[Vp(x)] 1+2 arcsinh[p(x)] ~ —,'V,„,(x)p (x)~ p(x) p(x)
E(x) E(x)

+ z Jd y + —( —2p (x)+3Ip(x)E(x)—arcsinh[p(x)]I )
4a 3 p (x)p (y) a

Ix —y[
(2)

The external potential V,„,(x) represents the potential of the nucleus in the present investigation, and a the fine-
structure constant. The functional (2) corresponds to the spin unpolarized version of nonrelativistic density functional
theory. It contains, however (as can be seen by a 1/m expansion), all spin contributions appropriate in this limit.

The energy density functional (2) should be used, as emphasized in Ref. 1, to calculate the ground-state binding ener-
gy of a many-electron system as the difference of the ground-state and the vacuum-state contributions. However, for
the discussion of properties of neutral atoms and ions with nuclear charge less than 120, vacuum corrections can be
neglected.
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In this case, the variation of the energy functional,

6 f «eRTFDw[p(x)]+ p p
p

5p 3772

under the condition of fixed electron number,

X,=,f d'x p'(x),
37r2

yields the nonlinear integrodifferential equation

(3)

(4)

0=24E(x) E(x)+ V,„,(x)+ fd y +p, —1
3~' Ix —y I

—9A,
'

~
' 1+ +4

3
arcsinh[p(x)][Vp x ]' p'(x) p(x)

p (x) E (x) E (x)

—18k, 1+2 arcsinh[p(x)] + Ip(x)E(x) —3arcsinh[p(x)]I .bp(x) p(x) 12a
p(x) E(x) 7T

Introducing the total electrostatic potential U(x),

3
)U(x):= V,„,(x)+ f d3y

3m
(6)

Eq. (5}can be separated into two coupled differential equations:

24E(x}[E(x)+U(x)+p, —1]—9A. 1+.
z +4

3
arcsinh[p(x)][Vp(x)]' p'(x) p(x)

p'(x) E'(x) E'(x)

—18& 1+2 arcsinh[p(x)] + tp(x)E(x) —3arcsinh[p(x)]I =0bp(x) p(x) 12a
p(x} E(x) 7T

and

b, U(x)= —4map, „,(x)— p (x) .
4a
3m

(8)

The nuclear charge density is positive, thus p,„,(x) has to be negative in accordance with the definition of p(x), e.g., for
a point nucleus

p,„,(x)= —Z5' '(x) .

Assuming radial symmetry of the charge distribution of neutral atoms and ions, the differential equations simplify
further,

p'(r) 4p (r)
p /' = —2 +r 1+2[p (r)/E(r)] arcsinh[p(r)]

[E(r)+U(r)+p —1]— 1+ +4 arcsinh[p(r)]
E(r) p'(r) p (r) p (r)

3k Hp (r) E (r) E (r)

+ Ip (r)E(r) 3arcsinh[p(r)] t—
U"(r) = —2 4~up, „,(r) —— p (r) .

U'(r) 4a
r 3' (10)
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As the Lagrangian multiplier p, the chemical potential, is
unknown we use as a third differential equation

exp[ ——', &2(IM /A, }r]
p„(r)=d

(2/3) —(2a/3+2pk. )(Z —N )
r

(14)

p'(r) =0 .

In analogy to Ref. 11 we furthermore introduce the
differential version of Eq. (4} (with radial symmetry},

(Z N—, )a
U„(r)=— aAd exp[ —2&2(p/A, )r]

67Tp 2 —(2a/+2pA, )(Z —N )
r e

(15)
N'(r) = r p (r),

3m

with the boundary conditions

N(0) =0,
N(~)=N, .

(12)

III. SOLUTIONS OF THE RTFDW EQUATION
IN THE I.OW- AND HIGH-DENSITY REGIME

AND BOUNDARY CONDITIONS

A. r —+00

The system of coupled equations (9)—(12) has to be solved
under appropriate boundary conditions which are con-
sistent with the differential equations. We extract these
by a detailed discussion of the asymptotic region r ~ ~
and the structure of the equations for r ~0.

V 2Ad (2al&2pil. )(z N)—
r

)& exp[ 2v—'2(p, /A, )r] . (16)

In order to use Eqs. (14)—(16) as boundary conditions we
eliminate the unknown factor d in favor of a relation be-
tween p„(r) and p'„(r},

1/2

p,', (r}=d ——'+ (Z N, ) ———' 2
3&2@x

X
exp[ —(2/3)&2(p/A, )r]

(5/3) —(2a/3+2pA, )(Z —N )
7" e

1 /2

(Z N, ) ——
—,
' 2

3&2pz

For large r one expects the density p(r) and conse-
quently the local Fermi momentum p(r) as well as the
potential U(r) to become small, which means in our sys-
tem of units p(r), p(r), U(r) &&1. As this limit is exactly
the nonrelativistic limit an expansion of E(r) and
arcsinh[p (r)] in Eq. (9) leads to the nonrelativistic
TFDW variational equation,

p,', (r)
p,",(r) = —2

p»(r)

U„(r)=—(Z N, )a—
p,', (r),

6m@

B. r~0

N„(r)=N, — r p„(r) .
&2A,

377 p
(19)

Using

1 p„(r)
+ 12p„(r) U(r)+@+

9A,

p,', (r)'
p„(r)

24p„(r)2 9~~
(13)

In this region we explicitly discuss only the more criti-
cal case of a point nucleus. In principle one could have
solutions with either

po(r) = ao,
r~O

or
p'(r) p'(r)

p (r) 3p(r)
'

p "(r) 1 p"(r) 2p'(r)'

p (r) 3 p(r) 3p(r)~

1/3
(3 2)2/3 3p' '(r)+U(r)+p a—

2 7T

p' '(r) .

The asymptotic solutions of the coupled system of equa-
tions (13), (10},and (12) are well known

one immediately obtains the usual nonrelativistic TFDW
equation,

+42
p"(r) p'(r) p'(r)

8 p(r) rp(r) p(r)~

po(r) = const .
r~0

Both possibilities are examined separately.

I- po(r) 00
r~o

pa(r) 6po(r}
po (r)= —2 +

r ln[2po(r)]
1+ po(r)

+pa(r)[ Uo(r)+p 1]—
po(r)

12po(r)

In this case we expand all expressions in the RTFDW
equation in powers of p

' and obtain the ultrarelativistic
RTFDW equation
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where we used A. =—,
' for brevity. The most simple ansatz

one could make for the solution of this differential equa-
tion is a power law,

Uo(r) =—Za+c ) 4u 3 ln(r)+c2+ -c — for y = 11 3' p'

(23)
c

po(r) =, y & 0 .
rr

The corresponding solution of the Poisson equation,

(21)
Uo(r) =—Za+ c, 4a+c2+ c [1—ln(r)] for y= —', .3'

(24)

B„[rUO(r)]= — rpo(r)2 4a
3'

for all y&1,—', is

Uo(r}=—

For the special cases y = 1,—,
' one has

Za+c& 4a+c,— . (22)
r ' 3n (3—3y)(2 —3y)

If one inserts the ansatz for po, Eq. (21), together with the
corresponding potential, Eqs. (22) —(24), into the ultra-
relativistic RTFDW equation one can investigate wheth-
er there exist combinations of the constants c and y
which solve the equation at least in the most dominant
order for r ~0.

As an example for this procedure we indicate the case

2 2 6
r r ln(r) 277 p T

Za+c& 4a 3 ln(r) 1+C2+ C +p —13' P 12T

8ac 4

Kf

6
ln(r)

1 — c — —(Za+c& )c —+O(r ')
2m 12 '

p
2

The most divergent terms are proportional to r . The
equation cannot, however, be satisfied in this dominant
order for any choice of c and c

&
. In consequence, the

electron density cannot be proportional to r in the re-
gion r ~0 as proposed in the literature. '

In the same fashion one can exclude the possibility of
solutions with

cpo(r)= yal y &orr

Uo(r) =—Za+c
&

+cz
T

4a

aors

3n (3y+2}(3y+3)

3~ 2g „2r+5+2aoa&r

(2y+5+2}(2y+5+3)

(28)

and

c(lnr )po(r}=, y &0
rr

as well as solutions of the type

(25}

is dominated by its point charge part. The electron-
electron interaction gives only a constant contribution for
r ~0.

As long as y &0 the density po(r) vanishes at r=0.
One thus can use the RTFDW equation in its limit of low
density, Eq. (13), which gives to dominant order

po(r) =c(lnr ), 5 & 0 . (26)

Therefore at least the most plausible types of functions
which diverge in the limit r ~0 cannot be solutions of the
relat&vistic TFDW equation.

y( —1)
A+2 I 2

T

Za+c
&

9A, r

This equation could only be satisfied with

y( —', y+ 1)=0,

y'
24r

po~ &~ = constr~0

The most general ansatz one can employ in this ease is
a generalized power series in r:

po(r)=aor +a&r +azr'+

leading to y =0 or y = ——', , in contradiction to our as-
sumption y & 0. No solution of the type (27) with y & 0 is
possible.

In the case y =0 one has to consider the full RTFDW
equation. With the abbreviation

y)0, y &5&@.&

The corresponding potential,

(27) (1+a 2 )1/2

one obtains by insertion of Eq. (27) into Eq. (9)
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a &5(5—1)r = —2a, 5r + . Ep—5 —2 5—2
12ao Eo

1+2(a p /E p ) arcsinh(a p ) 9A,

Za+cI
+c2+p —1

7

2g2 25 —2
QI

24a 0

2ao ap1+
2 +4 arcsinh(ap }

CX+ [apEp 3 arcsinh(ap ) (29)

Only the choice 6=1 allows compensation of the terms proportional to r with the point charge part. Thus one ex-
tracts the condition

2aoE0 (Za+c& }

1+2(a p/Ep ) arcsinh(ap ) 3A,

In the same way one finds c.=2 and

2
'

2
a& ao ao

1+ +4 arcsinh(ap )
24Q 0 go gp

2ao
(Ep+ c2+I 1}—

1+2(ap/Ep ) arcsinh(ap) 9A,

(30)

+ [apEp —3 arcsinh(ap)

pp(r)= g a„r" .
n=0

(31)

As nowhere in the differential equation occur fractional
powers of r, pp(r) has to be a standard power series

lim [rU(r)]= —Za,
r~o

2p(0)[1+p'(0)]' ' Za
p (0)1+2, arcsinh[p (0)]

3A,

[I+p2(0)]1/2

(3&)

(36)

Therefore we are led to the same structure of the solution
near the origin as in the nonrelativistic TFDW model.
Taking the nonrelativistic limit,

The analogous boundary conditions for an extended nu-

cleus are

ao «1, cl ——0,
one finds

Zcx
Qi = —2Qp (32)

N(0) =0,
lim [rU(r)] =0,
r~o

p'(0) =0

(37)

(38)

(39)

which is exactly the relation the nonrelativistic TFDW
equation demands. "

We note that one can also exclude a solution of the

type

as, due to Eq. (29), the coefficient a, in the series (31) has
to vanish if the potential is not proportional to r ' but a
constant at the origin.

pp(r)=c(lnr)'(apr +a, r + . ),
y)0, y&6& . (33)

We are now able to formulate three boundary condi-
tions at the origin. First of all, c] has to vanish as there
should be no additional charge at the origin except the
nucleus. From Eqs. (28) and (30) we then derive (adding
the norm condition)

IV. REMARKS ON THE NUMERICAL SOLUTION

W(r):=rU(r) . (40)

In order to incorporate the condition (35) more directly
we introduce the potential

N(0) =0, (34)
The most sensitive region for the solution of equations
(9)—(12) is then the region of the origin. We therefore
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used the transformation

(41)

to spread this region. As upper boundary yz for the nu-
merical integration we chose a value such that stability of

the solution was ensured if one enlarged yz further. For
neutral uranium stability was reached at about 30 in our
system of units. In the computations we used y„=74.16
for neutral systems corresponding to 40.15 a.u.

The transformed equations

p'(y) =0,
N'(y) = y'p'(y),3'
W"(y) = —16nay p,„,(y2) — y4p'(y),

W'(y) 4 2 16a

"()=—3p y+
y 1+2[p(y)/E(y)] arcsinh[p(y)]

X E(y)+ 2 +p —1 —
2 1+ +4 arcsinh[p(y)]

E (y ) W(y) p'(y)' p'(y) p (y)
y 32y'p'(y) E'(y) E'(y)

(42)

(43)

(44)

+ p (y )E(y ) 3arcsin—h[p (y) ]6m.k (45)

N(0) =0,
W(0) = —Za,
p'(0) =0,

(46)

(47)

(48)

and for an extended nucleus,

were solved with the following boundary conditions. At
the origin one has in the case of a point nucleus,

and atyz,

N..(yR ) =N, — —yg p„(yg ),&2A, 4

317 p

W„(y„)= —(Z N, )~ —— y„p„(y„),aA,

6m@

4 4a+ (Z N,)—
3yg 3 &sky~

' 1/2

(52)

(53)

N(0) =0, (49) pas(ya ) (54)

W(0) =0,

p'(0) =0,
(50)

(51)

For the solution of the system of coupled nonlinear
differential equations in one dimension we used the pro-
gram package COLSYS.

TABLE I. Comparision of the binding energy of atomic systems with data of HF computations.

z
10
20
30
40
50
60
70
80
90
100
110
120

EHF

128.547
676.758

1777.85
3538.97
6022.92
9283.70

13 391.5
18 409.0
24 359.6
31 282.7
39 225.0
48 202.9

1
A. =—

9
ETFDW

139.858
720.871

1881.99
3717.24
6301.06
9696.28

13 957.8
19 134.6
25 271.4
32 409.2
40 586.2
49 837.9

1

5
ETFDW

128.755
674.851

1776.55
3527.58
6002.23
9263.21

13 365.3
18 357.5
24 284.4
31 187.0
39 103.4
48 069.1

EDF

128.674
679.502

1793.78
3594.81
6171.21
9615.86

14051.9
19 623.5
26 471.9
34 806.3
44 950.0
57 386.9

1

9ERTFDW

139.533
718.590

1881.09
3738.16
6395.43
9963.58

14 566.5
20 350.8
27 498.6
36 247.4
46 921.9
59 988.5

1

5ERTFDW

128.482
671.805

1768.13
3518.41
6012.97
9340.26

13 591.7
18 865.9
25 272.3
32 936.7
42 006.6
52 660.2
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FIG. 7. Radial density of radon; RTFD% model vs TFD%
model.

FIG. 8. Density of radon; RTFDW model vs TFD% model.

The numerical precision of the solutions p, , N(r), p (r),
and U(r) was better than 10 for large nuclear charge Z
(Z&80) and 3X10 " for very small Z. The resulting
energy values have an accuracy of 10 for large Z and at
least 10 for Z =1,2. The large di5'erence is due to the
facf that we have to subtract the rest mass of the bound
electrons which represents a much larger part of the total
energy for light atoms than for heavier ones.

U. RESULTS

In this section we present results for neutral atoms and
positive ions with nuclear charge Z (120. We first dis-
cuss the accuracy of the RTFDW model. As the
RTFDW model can be viewed as an approximation to
the Hartree-Fock limit we compare the binding energy of
atomic systems (Eo= Eb ) wit—h data' of relativistic HF

TABLE II. Various contributions to the binding energy with the corresponding chemical potentials for some noble gases with
closed shells.

2
2
10
10
10
18
18
18
18
36
36
36
36
36
54
54
54
54
54
54
86
86
86
86
86
86
86

N,

2
1

10
2
1

18
10
2
1

36
18
10
2
1

54
36
18
10
2
1

86
54
36
18
10
2

0
Ekin

2.607 14
2.236 61
122.264
83.1721
59.3165
501.714
477.541
274.538
190.301
2693.97
2537.14
2198.71
1123.11
754.537
7427.55
7300.13
6465.00
5433.27
2673.55
1759.81
26 051.8
25 55S.9
24 217. 1

20 697.4
17 262. 2
8461.80
5406.19

2

0.627 23
0.640 68
16.7570
16.9316
16.3897
56.9409
57.4298
56.5561
54.0731
269.569
271.395
272. 107
258.868
242.869
775.354
777.196
779.951
776.923
721.746
664.198
3564.37
3568.81
3571.51
3558.11
3517.38
3142.02
2769.64

Epot

—5.678 63
—5.204 63
—268. 133
—196.101
—149.184
—1091.22
—1048.47
—656. 173
—486.941
—5783.50
—5491.46
—4838.89
—2723.52
—1978.47
—15 744. 8
—15 509.8
—13 903. 1

—11 899. 1

—6503.95
—4675.06
—53734. 1

—52 797.8
—50 223. 7
—43 450.9
—36 885.0
—20 270. 3
—14 381.0

0
Eexc

—0.763 09
—0.548 66
—10.4299
—4.688 83
—2. 859 99
—27.3725
—22. 8153
—8.46 267
—5.04 895
—85.2848
—68.2702
—49.3897
—16.1742
—9.35 060
—164.976
—149.771
—106.537
—73.7675
—22.4466
—12.5803
—345.952
—306.539
—251.951
—163.962
—107.503
—27.7157
—14.3363

E

—3.207 35
—2.87600
—139.542
—100.686
—76.3382
—559.934
—536.317
—333.541
—247. 616
—2905.24
—2751. 19
—2417.46
—1357.71
—990.416
—7706.83
—7582.25
—6764.72
—5762.73
—3131~ 09
—2263.63
—24 4/3. 9
—23 979.7
—22 687.0
—19 359.4
—16 212.9
—8694. 17
—6219.50

0.061 361 5

0.793 579
0.064 995 2
18.0022
33.3994
0.065 863 4
8.062 79
66.4597
113.844
0.066 677 1

161.305
65.3044
290.902
477.480
0.067 068 3
18.5310
86.8493
178.121
690.090
1123.97
0.067 453 0
41.7005
111.056
293.982
530.750
1956.23
3227.20
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(Dirac-Fock) computations. Exactly as in the nonrela-
tivistic theory the RTFDW model overestimates the
binding energy of atomic systems if A, = —,

' (obtained via
the gradient expansion) is taken (see Table I). Figure 1

shows the percentage deviation of the ground-state ener-
gies of neutral atoms of the RTFDW model (with A. = —,

'
)

from Dirac-Fock results. Both computations used an ex-
tended nucleus with a Fermi (RTFDW) or a homogene-
ous (DF) profile. For comparison we also show the corre-
sponding deviation of the nonrelativistic TFD% model
with k= —,

' from nonrelativistic HF data. The accuracy of
the RTFDW model is of the same order of magnitude as
that of its nonrelativistic counterpart.

The nonrelativistric gradient correction to the kinetic
energy density,

~ [Vp(x)]'
8p(x)

was initially derived by von Weizsacker with a value
A. = 1 whereas the systematic gradient expansion by
Kirznits leads to A, =—,'. For the nonrelativistic TFD%
model one has the possibility to improve the agreement
with HF data by adjusting A, . It has been shown that a
value of A, = —,

' gives best results. The quality of this
choice is depicted in Fig. 2. In nonrelativistic density
functional theory one furthermore can prove' that for
nuclear charge Z~ ao the TFW energy functional with A,

close to —,
' leads to the correct binding energies up to the

order Z . %e tested the effect of variable k in the

relevant region for the relativistic theory. The results are
shown in Fig. 3. Obviously A. =—,

' does not give a drasti-
cally higher accuracy. It still improves the agreement
with DF results for the nonrelativistic region of small Z
but it misrepresents the relativistic corrections by about a
factor of 2. This is explicitly demonstrated in Fig. 4,
where the relativistic contributions are shown as a func-
tjon of Z for the different models. Thus one cannot ex-
pect an equivalent theorem on the large-Z behavior of the
binding energy in the relativistic domain.

In Figs. 5 and 6 we present, as an example, the radial
densities 4srr p(r) (for a point nucleus) of argon and ra-
don for several degrees of ionization. As is well known,
the TFD% model averages over the shell structure of the
systems. The relativistic effect on the density of radon is
indicated in Figs. 7 and 8. As expected, the density is
more concentrated in the vicinity of the nucleus in the
relativistic case. Finally in Table II we list the various
contributions to the binding energy together with the
corresponding chemical potentials for some noble gases
with closed shells.
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