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Numerical evaluation of molecular one- and two-electron multicenter integrals
with exponential-type orbitals via the Fourier-transform method
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The method of Bonham, Peacher, and Cox for computing molecular multicenter integrals for 1s

Slater-type orbitals is generalized to include all states. This was possible by using B functions as
basis functions which have the simplest structure under Fourier transformation, compared with

other commonly used exponential-type orbitals (ETO's). Those ETO's which differ from B func-

tions, like Slater-type orbitals (STO s), can be expressed by finite linear combinations of B functions.
Therefore multicenter integrals occurring in molecular calculations with any of the commonly used
ETO basis sets can be represented by integrals with B functions. In the present paper the three-
center nuclear attraction integrals and the two-electron multicenter integrals with B functions are
evaluated in a unified way via the Fourier-transform method and Feynman s identity. The resulting
expressions require a two- or three-dimensional numerical integration, respectively. The numerical
and computational properties of the resulting formulas are discussed and various test values are
given. Comparison is made with some values of integrals with STO s which exist in the literature.

I. INTRODUCTION

Currently, molecular ab initio calculations are carried
out mostly by employing Gaussian-type orbitals (GTO's)
as basis sets. The popularity of GTO's is largely due to
the fact that with GTO's the numerous molecular in-
tegrals can be evaluated rather easily. However, it is well
recognized that exponential-type orbitals (ETO's) are
better suited than GTO's to represent electron wave func-
tions near the nucleus and in long distances. This implies
that a lesser number of ETO's than GTO's is needed for
comparable accuracy. !n spite of the weH-known
difficulties associated with the evaluation of multicenter
ETO molecular integrals, these features of ETO's may be-
come beneficial in the long run, particularly if one goes
beyond the Hartree-Fock level either by employing the
configuration-interaction method or by employing
methods of many-body perturbation theory. Thus the
problem of calculating molecular multicenter integrals
for ETO's remains of considerable interest. Some recent
reviews were given at the 1981 conference on ETO multi-
center molecular integrals. ' A survey of the older litera-
ture on evaluation techniques for multicenter integrals
can be found in several review papers.

One of the most successful methods for the evaluation
of multicenter integ rais appears to be the Fourier-
transform method, where multicenter integrals are
transformed into inverse Fourier integrals. In this ap-
proach it is not the analytical simplicity of a basis func-
tion that matters but the simplicity of its Fourier trans-
form. It was shown that 8 functions have the simplest
Fourier transforms of a11 commonly occurring ETO's.
Consequently, it is not surprising that the Fourier in-
tegral representations of overlap, two-center nuclear at-
traction and Coulomb integrals of 8 functions, and cer-
tainly the simpler molecular integrals, could be evaluated
analytically in a simple unified way. Furthermore,

efficient algorithms for a rapid and accurate calculation
of the resulting closed-form expressions could be
developed. ' Hence the aforementioned types of
molecular integrals with 8 functions can be evaluated in
a computationally satisfying way, whereas the evaluation
of other one-electron and two-electron integrals with 8
functions, also needed in molecular calculations, was not
yet possible. The numerical evaluation of these missing
integrals, which is necessary for full-scale molecular cal-
culations, is investigated in the present paper.

In this paper we use the Fourier-transform method and
Feynman's identity to evaluate the more complicated
multicenter integrals of 8 functions, the three-center nu-
clear attraction integral, and the four-center exchange in-
tegral. The resulting expressions are systematic generali-
zations of the results which were given by Bonham,
Peacher, and Cox' for s-type orbitals only. The formulas
resulting from the analytic manipulations require a two-
or three-dimensional numerical integration, respectively.
The numerical and computational properties of the re-
sulting representations are discussed extensively and vari-
ous test values are given.

It should be emphasized that all commonly used ETO's
can be expressed by finite linear combinations of 8 func-
tions. Therefore, integrals with such ETO's different
from 8 functions, for instance, Slater-type orbitals, can
be expressed by a finite number of integrals over 8 func-
tions. Thus, as the more-complicated one- and two-
electron multicenter integrals with 8 functions can be
evaluated analyticaHy and numerically, as shown in the
present paper, the respective integrals with ETO's
different from 8 functions can also be evaluated
equivalently.

Slater-type orbitals (STO's), the most widely used
ETO's, have a very simple structure in the coordinate
representation, but less attractive properties under
Fourier transformation, whereas 8 functions, being rath-
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er complicated in the coordinate representation, have a
simple Fourier transform. The integrals with 8 functions
are evaluated by exploiting the advantageous properties
of 8 functions under Fourier transformation. Therefore,
it turns out that by going this bypass over the Fourier
transformation of 8 functions, it is possible to arrive at
results which are also valuable for the use of other ETO's
than 8 functions with a more cumbersome behavior un-
der Fourier transformation, and which could not be de-
rived by working in coordinate space despite of the fact
that such ETO's, like STO's, have a much simpler struc-
ture in the coordinate representation than 8 functions.
But this is a by-product of our investigations on the eval-
uation of multicenter ETO molecular integrals. The
main reason for developing economical procedures for
multicenter integrals with 8 functions is to use 8 func-
tions as basis functions in molecular calculations.

Here, Pi' [(cos8) is an associated Legendre polynomial,

Pi (x)=(1—x ) 1+m 21I I

dm=(1—x ) Pi(x) .
dx

(2.8)

For the integral of the product of three spherical har-
monics over the surface of the unit sphere in lR, the so-
called Gaunt coefficient, we write

(2.9)

The Gaunt coefficients linearize the product of two
spherical harmonics,

(I3m3
~

Izm2
~
l, m& & =f [Yi '(0)]'Yi '«)Yi '(»d&.

II.DEFINITIONS AND BASIC PROPERTIES

The ETO's used in this paper are the 8 functions of
Filter and Steinborn which are defined as follows:

[Yi '(0)]'Yi '(0)
max

= g"' (I,m,
~
l, rn, lm, —m, )Y, ' '(0) .

B„i(a, r)= [2"+'(n +I)!] '5'i (ar)k„,&2(ar ), (2.1)

where n E.Z and —l &n & 00. The radial part of the 8
function is described by a reduced Bessel function' '
(RBF) which is defined by

k„(z)=(2/n. )' z "K„(z), (2.2)

where K„(z) is the modified Bessel function of the second
jnd 16

The RBF's satisfy the following three-term recurrence
relation'

k„+i(z)=2vk„(z)+z k„ t(z) . (2.3)

k„+&&2(z)=2"(—,')„e '&F&( —n; 2n;2z) . — (2.4)

Here, (a)„stands for the Pochhammer symbol' which
may be defined in terms of the Gamma function I (z) ac-
cording to

Since the RBF's are the dominant solution of this
difference equation, the recurrence formula, Eq. (2.3),
may safely be used in the upward direction. In the case
of half-integral orders, v=n +—,', n PI%0, the RBF's can
be represented by an exponential multiplied by a ter-
minating confluent hypergeometric function 1F1, '

B„i(a, r)=( a) '(4n)'~ Pi (V—)B„+i0(a, r) . (2.12)

(2.10)

The symbol g' ' indicates that the summation is to be
performed in steps of two. The summation limits l;„
and l,„ follow directly from the selection rules for the
Gaunt coefficients. '

It is important to note that the regular solid harmonic,
Eq. (2.6), is a homogeneous polynomial of degree I in the
Cartesian components x, y, and z of r;

' 1/2
21 +1 (I +m)! (I —m)!

4m.

( —X —lJp )
m +k( X &~ )kZ I —m —2 k

x g „.(2.11)
k &0 2 + "(m +k)!k!(I —m —2k)!

If we replace these components of r by the correspond-
ing Cartesian components of the gradient V
=(a/ax, a/ay, B/Bz) we obtain the differential operator
5'i (V). With the help of this "spherical tensor gradient"
['P& (V) is an irreducible spherical tensor of rank I] it is
extremely easy to generate nonscalar 8 functions by
differentiating scalar 8 functions according to

(a)„=I (a +n)/I (a) =a (a + 1) . . (a +n —1),
with (a)0=1 .

The regular solid harmonic is given by

(2.5)

In this paper we shall use the symmetric version of the
Fourier transformation, i.e., a given function f (r) and its
Fourier transform f(p) are connected by the relation-
ships

5'i (r)=r'Yi (&,P), (2.6) f(p)=(2n. ) f e '&'f (r)d r (2.13)

and the spherical harmonic Yi (0,$) is defined with the
use of the phase convention of Condon and Shortley,
i.e.,

and

f (r)=(2m) fe" f(p)d p . (2.14)

Ym(g y) &m+ [m [

(2l+1)(l
4m.(I+

(
m

(
)!

yP [m [( sg) imp

1/2

(2.7)

The Fourier transformation is not only defined for func-
tions that are absolutely integrable but also for functions
which belong to the space of tempered distributions.
This fact makes it possible to define the Fourier trans-
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form of the Coulomb potential,
1/2

(2 }
—3/2 f 1

e iP.rd3r (2/w)
l' p

The Fourier transform of a 8 function is given by

(2.15)
X„&(a,r}=N(n, a)(ar)" 'e "FP (8,$}, n HN

N(n, a) =a "+'[(2a) "+'/(2n)!]'

(2.17)

(2.18)

known Slater-type functions (STO's), given in normalized
form by

2n +1—1

B„i(a, p)=(2/~)' '. . . , Pi ( i—p) .
( 2+ 2)n+I+1 (2.16)

The Fourier transforms of all other commonly occurring
exponentially decreasing functions, such as the well-

I

can be expressed as linear combinations of Fourier trans-
forrns of B functions. '

For the three-center nuclear attraction integral and the
two-electron multicenter integral of 8 functions we write

D„' 'i~'( ap, R~, R 2)= f [B„'i (a, r)]' B„'i (p, r —R2)d r, (2.19)

2 2m2'n414m4 m& m3 1
V„ i „ i (p, ,p2, p3, p4, R, , R2, R3, R4}= [B,

, i, (p& r —Ri)] [B,i, (p3, r —R3)]

XB„,i (p2, r —R2)B„ i (p4, r' R4)d —r d r' . (2.20)

We shall also consider the Fourier transform of a two-
center product of 8 functions

S „'i' '(a, P;R;p)= f e "PP„',' '(a, P;R;r)d r,

of the one- and two-electron multicenter integrals of 8
functions, Eqs. (2.19)—(2.22). With the help of Eqs. (2.13)
and (2.14) it is easy to see that the two-center integrals in
coordinate space

where

(2.21)

and

S(fg;R)= ff'(r)g(r R)d r— (3 1)

P„'i' '(a, P;R;r)=[B„& (a, r)]"B„', (P, r —R) (2.22) C(f g, h;R)= f f f*(r)g(r —r' —R)h(r')d rd r'

XB„'& (p, r —R)d r . (2.23)

Obviously, the two-center overlap integral, Eq. (2.23), fol-
lows as a special case of the Fourier transform of a two-
center charge distribution, Eq. (2.22), with the zero trans-
formation vector p, i.e., we have

is a two-center charge distribution described by the prod-
uct of two 8 functions. It is important to note that the
lower indices and the first parameter in the argument list
of the symbol P for the two-center charge distribution on
the left-hand side of Eq. (2.22) correspond to the quan-
tum numbers, and the exponential parameter of that
complex-conjugated 8 function in the product of two 8
functions on the right-hand side of Eq. (2.22) which is
centered at 0. For short we often write 8„& for 8„1 if
there is no ambiguity possible.

For overlap integrals of 8 functions we write

S„'i' '(a, P;R)= fP„'i' '(a, 13;R;r)d r

(3.2)

can be transformed into the following one-center in-

tegrals in momentum space:

S(f,g; R)= f e '" f '(p)g(p)d'p—

and

C(f,g, h;R)=(2m) ~ f e 'Pf "(p)g(p)h(p)d p .

(3.4)

The main advantage of the representations of the two-
center integrals (3.1) and (3.2) as inverse Fourier integrals
according to Eqs. (3.3) and (3.4) is that a separation of the
integration variables can be achieved if f, g, and h are ir-
reducible spherical tensors. This can easily be seen by in-
serting the well-known Rayleigh expansion of the plane
wave in terms of spherical Bessel functions and spherical
harmonics,

e '""=4m g— g (+i)j',(xy)[Y, (x/x)]'
1=0m = —I

(2.24) X & (yi/y ), (3.5)

III. FOURIER TRANSFORMATION
AND MULTICENTER INTEGRALS

In this section we shall discuss the advantageous prop-
erties of the Fourier-transform method for the evaluation

into the integrals in Eqs. (3.3) and (3.4), respectively. Ob-
viously, the possibility of evaluating the momenturn-
space integrals in Eqs. (3.3) and (3.4) in closed form de-
pends crucially upon the functional form of the Fourier
transform of the functions involved. It seems that 8
functions, which have the simplest Fourier transforms of
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all commonly occurring ETO's, are the most convenient
class of ETO's for the evaluation of multicenter integrals
via the Fourier-transform method.

Now, we consider the three-center nuclear attraction
integrals

(3.6)

of so far unspecified one-electron basis functions 4, and

42. If 4, and 42 are 8 functions, P will be denoted ac-
cording to Eq. (2.22).

If we combine Eqs. (3.7}, (3.3), and (2.15) we obtain

IP R&

D(4(, 42', R(,R2)=(2/w)' f 2 Pq, 4 R (p)d p .

D(4„(pz, R„R2)=f [4,(r)]* 42(r —Rz)d r
r —R,

r —R ~~~zR2 r r,1 3 (3.7)

PC&,N, R (r}=[@)(r)l"~'2(r R2» (3.8)

where we have introduced the two-center charge distribu-
tion

(3.9)

Whether the Fourier integral representation (3.9) is ad-
vantageous for the evaluation of the three-center nuclear
attraction integral (3.6) depends essentially upon the pos-
sibility of evaluating the Fourier transform of a two-

center product P~ 4, R (p) efficiently.

The two-electron multicenter integral can be written as

V(4), @2,@3,44', R), R2, R3,R4)= f f [4)(r—R, )]'42(r —Rz), [43(r' —R3)]'44(r' —R„)d rd r' . (3.10)

Under the transformations r~x+ R, and r'~ r'+ R4 we get

V( ] 2 4 3 4 4 R),Rz, R3,R4)= f f P@ @ R (r), [P+ z, R (r')]'d rd r' (3.11)

using the notation for two-center charge distributions, Eq. (3.8), and R; =R;—R . Combining Eqs. (3.11), (3.4), and

(2.15) we obtain

V(C ) 4 2 43 44 ', R(, R2, R3, R4)=4m e P+ @ R (p) z [P+ + R (p)]'d p
—tR&4 p 1 3 (3.12)

=(2') Pc,
~ 42 R(p), (3.13)

is the application of the Fourier integral transformation,

As in the case of the three-center nuclear attraction in-
tegral, the Fourier transform of a two-center product of
basis functions forms the basic building block in the
Fourier integral representation of the two-electron multi-
center integral. Currently, the most promising approach
for the evaluation of two-center integrals representing the
Fourier transform of a product of two basis functions
with centers separated by a distance R,

S(4),@2',R;p)= f e "P[4)(r)]*42(r—R)d3r

X+&(p'+p)d'p' . (3.14)

For p=0 we obtain Eq. (3.3), the Fourier integral repre-
sentation of overlap integrals, from Eq. (3.14). In this ap-
proach it is not the analytical simplicity of a basis func-
tion that matters but the analytical simplicity of its
Fourier transform. If the basis functions 4 are chosen to
be B functions, we get with the help of Eqs. (2.16), (2.21),
(2.22},and (3.14)

Eq. (3.3}. Identifying f (r) in Eq. (3.1) with e"'p4)(r) and

g (r) with 42(r) we obtain from Eq. (3.3) that

S(4 4 'R'p) = f e '(p+p )'R[C ( ')]'

[Gy 1 (jp)]ecyz(j(p+p))e(p+p)R

(a'+p ') ' ' [P'+ (p+ p')'] ' (3.15)

Using the so-called Feynman identity '

1 ( 1 2dt,ab o bt+ 1 —ta2 (3.16)

Trivedi and Steinborn derived the following relatively compact expression for the Fourier transform of a two-center
charge distribution described by the product of 8 functions,
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—n&l&m& 3
(nl+n2+ 1+ 2+ ) 2n)+I) —1 2n2+I& —1

S „'I' '(a, p;R;p)=(4m. ) (211+1)!!(2!2+1)!! a ' ' p

I
1, =Om,

xgg
12 ——0 m2

(I)m)
I
1)m) I I) —1)m) —m))

[&I ', '(P}]'
(21', +1)!![2(I, —I', )+1]!!

(I2m2 I I2m2
I

I2 I2m2™2~
2 2( )

(2I,'+ 1)!![2(1,—I,' )+ 1]!!

I' + I'
1 2 I I I

X y' ' (I2m2 I
I',m',

I
Im,' —m', )i ' ' ' '( —1) '

mtn

—i (1—t)p.r1

e
0

n2+12+I) I') — n)+I)+12 l2—
1 t—

2(n) +n&+I) +l2 ) —(I ) +I& )+1[ra
hl

X g ( 1) ~ 8 + +2gl I+1 I(r(a p'p t) R) dt
J=0

(3.17)

and

b, l =(I)+ I2 —I)/2,

hlo ——(I, +12—I)/2 .

(3.19)

(3.20)

The summation limits of I;„,m &, and m 2 follow directly
from the selection rules for the Gaunt coeScient. Anoth-
er consequence of these selection rules is that b, l as well
as bio are always positive integers or zero. Formula
(3.17}is valid for all quantum numbers and orbital scaling
parameters of the participating orbitals. It is also in-

dependent of the orientation of the coordinate axes and
allows an angular momentum decomposition, a fact
which is important for an application in the evaluation of
the Fourier integral representations of the three-center
nuclear attraction integral, Eq. (3.9), and the two-electron
multicenter integral, Eq. (3.12). The usefulness of the
Fourier integral transformation, Eq. (3.14}, in connection
with Feynman s identity, Eq. (3.16), for evaluating in-

tegrals representing the Fourier transform of a two-
center product of ETO's was first noticed by Bonham,
Peacher, and Cox. ' Later, on the basis of the formula of
Bonham et (21. (for s-type orbitals only), Guidotti et (2l.

where

r(a, p;p, t)=[p t(1 —t)+a (1 I)+—p t]', (3.18)

derived expressions which are applicable to states of
higher angular momentum. They gave one special for-
mula for each combination of two specific STO's. Be-
cause of the fact that Slater-type orbitals are given by a
linear combination of B functions, Trivedi and
Steinborn's result is a systematic generalization of the
formulas discussed so far. Several other expressions have
been given in the literature for the Fourier transform of a
two-center product of ETO's, usually STO's, which were
derived using nonspherical coordinates such as elliptical
or prolate spheroidal coordinates. But these repre-
sentations in general depend on the orientation of the
coordinate axes and do not allow a useful expansion into
spherical harmonics. Consequently, these expressions are
not suited for an application in the evaluation of the one-
and two-electron multicenter integrals, Eqs. (3.6) and
(3.10), with the help of their Fourier integral representa-
tions, Eqs. (3.9) and (3.12). Recently, the derivation of
Eq. (3.17) was simplified considerably by a systematic ex-
ploitation of the properties of the spherical tensor gra-
dient 'PI (V) in connection with 8 functions, and an
ef5cient procedure to compute the resulting one-
dimensional integral representation was presented.

Specializing the basis functions 4) and 42 in Eq. (3.6)
to 8 functions we get, from Eqs. (3.6)—(3.9), (2.19), (2.21),
(2.22), and (3.13), that

(3.21)

tp Ri
=(2/m)' f 2

. P„'I' '(a, P;R2,'p)d'p (3.22)

ip.R&

g „',' '(a, P;R2, p)d'p .
p2 ) ) )

(3.23)
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Now, we insert the one-dimensional integral representation for the Fourier transform of a two-center product of B func-
tions, Eq. (3.17), into Eq. (3.23), and interchange the order of the p and t integration. The angular integration can
readily be done if we use the Rayleigh expansion, Eq. (3.5}, for the resulting plane wave and couple the spherical har-
monics according to Eq. (2.10). Finally, we eventually arrive at the following result for the three-center nuclear attrac-
tion integral with B functions,

2 (n, +I, +n2+12+1)! 2n]+i] —] 2n&+I& —]
=8(4m) (21]+1)!!(212+1}!!a ' ' p(n]+I])! n2+12!

( I ] m ] I '] m ',
~
I, —I ', m, —m 2 )

X
(2!', + 1)!![2(1]—I ] )+1]!!

1 1

(12m2 ~12m2
~

12 12m—2
—mz)

X
(212+1)!![2(12—12 )+ 1]!!

'2 —
2

1' +1'
I

X y' 'i ' ' ' '( —1) ' ' '(I'm'
~

I'm'
~

I ' ' )
1 1

11+12—ll 12

X y(2) ( —i)'(12 12m—2 —m2
~
I] —I']m] —m]

~

I'm2 —m2 —m]+m] )

I

f n2+12+11 11 n
1 +11 12 2 2 2 1

™
'(1 t) '—

0

(1—t)R2 —R,
~
(1—t)R2 —R]

~

fX
p

' ' ' 'J'],(p
~

(1—t)R2 —R]
~

)

0 2(n
1 +11+ 2+12 (11+12 +I I

[r(a» p t}l
hl

X g ( —1) . B„'+,+t, +], t i+,]](r( ap;p, t) R2) dp dt,
j=0

(3.24)

where r(a, P;p, t) and bl are defined according to Eq. (3.18) and Eq. (3.19), respectively.

Now, we want to treat two-electron multicenter integrals with B functions. Using the notations in Eqs. (2.20)—(2.22),
we obtain from Eqs. (3.10)—(3.13)

212 m 2'n4 14m 4
~n l]m, n ] m (P]&P2&P3&P4&R]' 2& 3' 4)

=f fp"",2 (p],p2', R2]', r) [p„'t (p4, p3', R,4, r')]'d r'd r (3.25)

—iR .p14

=4~f
2 Pn,'],'m, '(p»P2~R2]~P)[pn, ],m, (P4 P3'R34'»)] d p (3.26)

—i R14.p
1 e —n 212 m —n 313m 3 ~ ~S „]m (p„p2;R2„p)[S n4] m (p4, p3; 34', p)]*d p (3.27)

As in the case of the three-center nuclear attraction integral, we evaluate the Fourier integral, Eq. (3.27), by substituting
the one-dimensional integral representation for the Fourier transform of a two-center product of B functions.

If we collect the plane waves and apply successively the Rayleigh expansion, Eq. (3.5), for the resulting plane wave,
and the coupling rule for the spherical harmonics, Eq. (2.10), we obtain, after integrating the angular part of p,
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212m2'n414m4l'.
, 1, . ..1, , (p] p2 p3 p4 R] R2 R3 R4}

= 8(4n. ) (21, + 1 }!I(212+ I )!!(213+1)!!(214+ 1)!!

(l4m4
I
I4m4

I
I4 —I4m4 —m4)

(2I4+1)!![2(14 l4)+ 1]!!I I
14 ——0 m4

(n, +I, +n2+I2+1)!(n3+I3+n4+I4+1}' 2n)+I) —1 2n2+I2 —1 2 n3+13 —1 2n4+14 —1

(n, +I, )!(n2+I2)! (n3+I3)!(n4+I4)!

(I]m]
I I]m] I I] —I]m] —m] &

" (I2m2
I

I2m2 I I2 —I2m2 —m'
&

(2I', +1}!![2(I, —I])+1]!!
1

~ (212+ 1)!![2(12—12)+1)]!!

(I3m3
I

I3m 3 I !3 13m3 m 3 )
X

(213+1)!![2(I3—I3)+1]!!

11 —11+12 —12
.1) + I2+ I

) + 2&
1 )ll + 2 y(2)Xi

'12 —'12

(I2 —12m2 —m2 I I] —I]m] —m] I I]2m2 m2 m]+ 1)

13 —13+14 —14()3+43+4(1)34'(2)
134 134

(I3 I3m3 m3 I I4 I4m4 m4 I I34m3 m3 m4+m4)

1,2+ 134

(I]2m2 m2 (m] m])
I I34m3 m3 (m4 m4)

I
I m2 m2 (m] m]} [m3 m3 (m4 m4)])

X YI
m2 —m2 —(m1 —m1) —[m3 —m 3

—(m —m )]

I I I
n2+12 —12, 12,m 2

&n' ( Y]2(p]&P2&P& }» Y]2(P]&P2&P& }&R2]}

I I I
n 3+13—13, 13,m 3' (Y43(p3'p4'p'I} Y43(P3 P4 P I}R34)]'dp «ds

X ( I) —s (1—s) t (1 t)—I 1 n2+ 12+11—11 n1+11+12—12 1 n 3+13+14 —14 n4+ 14+13 13

0 0

(1—s)R2, —(1—t)R34+ R,4

I
(1—s)R„—(1—t)R34+R!41

11 —11+12—12+13 —13+14—14
(X) p Jl(p I

(1—s)R2, —(1 t)R34++]—4 I
)p, 2(n)+I( n+21+)—2(l)+12)+], 2(n]+13+n +144)—(13+14)+1

LY]2 P»P2, P&s ]
' ' ' ' ' '

['Y43 P3,P4;P, t)

(3.28)

where

Y]2(p] p2 p s) —[p s(1—s)+(1—s)p]+sp2]
and

Y43(P3&p4'&P& t ) = [p t ( 1 —I)+ ( 1 t )p4+ —tp3]'

The overlap integrals with equal scaling parameters in Eq. (3.28) have the following simple representation:4p

I + I' 51
Sn(~™(a,a;R)=( —1)

3
g' '(I'm'

I
Im

I

I"m' —m ) g ( —1)J . g„„, , ~, ,-(a,R),
A 1* 0 j=p

n + n '+ I + I' —1"—g + ], I"

(3.29)

(3.30)

(3.31)

with now b, l =(I +I' —I")/2.
In the special cases R2, ——0, or R34 0, or R2, ——R34 0

we obtain the simpler three-center hybrid or two-center
Coulomb integrals. The Fourier transform of a one-
center product of B functions can be evaluated in closed
analytic form. ' Hence, the three-dimensional integral
representation in Eq. (3.28) reduces to a two- or one-
dimensional integral representation in these cases. In the
case of two-center Coulomb integrals the remaining radi-
al p integration can also be done analytically, as is well
known. The resulting expression can be represented as a
linear combination of 8 functions.

Bonham, Peacher, and Cox' were first to use the
Fourier-transform method in connection with Feynman's
identity to evaluate the two-electron multicenter integral
with 1s Slater-type orbitals. The formula of Bonham
et al. was the starting point for several analytical and nu-
merical investigations to tackle the general t~o-electron
multicenter integral with ETO's (usually STO's).
Quite independently Shavitt and Karplus ' obtained an
expression which is equivalent to the formula of Bonham
et al. using the Gaussian-transform method. This
method is based on the following integral transformation
of a 1s STO, suggested by Kikuchi:
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e
—ar (a/2)~ —(/2 I &

—3/2e —a (4s) s—r

0
(3.32)

If this is introduced into the multicenter integral, after
several transformations of variables and manipulations,
one obtains integrals between Gaussians which can be
performed analytically and integrals over dummy vari-
ables which have to be evaluated numerically. Recently,
Tai used an expression of Shakeshaft, ' a one-
dimensional integral representation for a two-center ex-
change integral associated with the proton-hydrogen col-
lision problem, for the evaluation of molecular multi-
center integrals with STO's. He also could reproduce the
expression of Bonham et a/. if all four orbitals are of 1s
type. Many authors mentioned above were able to gen-
eralize the expression of Bonham et al. to states with

I

higher quantum numbers by the application of
diff'erential operators (with respect to scaling parameters
and/or internuclear distances) to the basic Is formula.
This method to generate formulas for multicenter in-
tegrals involving orbitals with higher quantum numbers
by applying differential operators to the starting formula
which holds for s-type orbitals only was first suggested by
Boys. However, no general formula for the four-center
integral with STO's was found so far. The results ob-
tained are special formulas for special combinations of
STO's only. This is certainly a drawback if one tries to
program these formulas. For 8 functions the situation is
much simpler. Using Eq. (2.12} we have the following
simple relationship between multicenter integrals with
nonscalar 8 functions and multicenter integrals with sca-
lar 8 functions:

2 12 2 ' n4 14 m4 2 1+ 2+ 3+ 4 l 2 3 4V„( m „(~ (p),p2, p3, p4,'R(, Rq, R3, R4)=(4m. ) ( —1) P] P2 P3 P4

X[5'( (VR, )]'P,~'(Va~)[P(3 (VR, )]'P( '(VR4)

X 8„+1 pp&, r —R&B +1 pp3 r R3
0 0 1

X&,+l, , o(p3, r —R2)0

XB„+( o(p4, r' —R4)d'rd r' . (3.33)

Therefore the general expression for the four-center in-
tegral with nonscalar 8 functions, Eq. (3.28}, can be ob-
tained by applying four spherical tensor gradients to the
simpler expression for the four-center integral with scalar
8 functions which contains no sums. The Fourier trans-
form of STO's can be expressed as linear combinations of
Fourier transforms of 8 functions. ' Thus an analogous
evaluation of the four-center exchange integral with
STO's via the Fourier-transform method, as described
above, would yield an expression with the same structure
as Eq. (3.28) but containing four additional sums. Hence
8 functions are more convenient for the evaluation of
multicenter integrals via the Fourier-transform method
than STO's.

It should be noted here that the Fourier-transform
method was also used in connection with addition
theorems to evaluate molecular multicenter integrals

I

I

with ETO's (usually STO's). However, the resulting
representations contain many slowly converging infinite
series which lead to nontrivial numerical problems. In
some cases, the necessary differentiations, which would
lead to very complicated expressions, were not yet carried
out.

IV. THREE-CENTER NUCLEAR ATTRACTION
INTEGRAL

In this section we want to analyze the numerical prop-
erties of the two-dimensional integral representation for
the three-center nuclear attraction integral with 8 func-
tions, Eq. (3.24). First we shall consider expression (3.24)
for the simpler nuclear attraction integrals with scalar 8
functions. If I

&

——I2 ——m
&

——m2 ——0 holds and if we replace
the integration variable t by 1 —s, we obtain

D„'Oo (a,p;R, , R2) = s '(1 —s) '
&71 t n212 ' [r(a,P;p ~]

X k„+„+&/2(r(a, i3,p, s)R2 )dp ds, (4.1)

with

r(a, p p, s) = [p s (1—s)+a s + (1—s)p ]'/2 . (4.2)

It is of interest to note that the angular dependence of the
geometry of the three centers is contained in the argu-
ment of the zeroth-order spherical Bessel function in Eq.

(4.1). In order to obtain a reliable and economical pro-
cedure for the numerical integration of the two-
dirnensional integral (4.1) we have to examine the in-
tegrand. Although the geometrical parameters R, and
R2 and the scaling parameters a and P are connected in
quite a complicated fashion, the integrand consists of two
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TABLE I. Three-center nuclear attraction integrals with scalar B functions, Eq. (4.1). Numbers in square brackets denote powers
of 10 by which the preceding figure is to be multiplied.

n&

1.
1

1

1

5

5

5
5

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

np

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

(R l 0[ el)
(2.0,90.0,0.0)
(2.0,90.0,0.0)
(2.0,90.0,0.0)
(2.0,90.0,0.0)
(1.5,90.0,90.0)
(1.5,90.0,90.0)
{10.0,90.0,90.0)
(10.0,90.0,90.0)

(R2, 0~, 42)

(1.5,90.0,0.0)
(1.5,90.0,0.0)
(10.0,90.0,0.0)
(10.0,90.0,0.0)
(2.0,90.0,90.0)
(2.0,90.0,90.0)
(2.0,90.0,90.0)
(2.0,90.0,90.0)

8
10

8
10

5

10
5

10

20
30
20
30
15
25
15
25

10
8

10
10
15
10
15

Integral (4.1)

0.292 220 015 9[—01]
0.292 220 008 7[—01]
0.419 894 684 7[—04]
0.419 894 695 6[ —04]
0.824 710845 8[ —02]
0.824 711 555 5[ —02]
0.158 690 1063[—02]
0.158 690 1394[—02]

1269
1745
700
963
749

1281
735

1255

increased. This is a direct consequence of the fact that
R2 is a parameter of the exponential in the k function

[see Eq. (4.1)] of the p-dependent integrand. However, a
variation of the radial part of R, leads to no remarkable
variation of NG, as can be seen by a comparison of the re-
sults in rows 5 and 6 with 7 and 8 of Table I.

In all applications in which integrals are to be approxi-
mated via Gauss quadrature, one has the problem of con-
trolling the produced error. Since theoretical error esti-
mates of Gauss quadrature formulas are not applicable in
realistic problems, the error analysis has to be done nu-
merically. An internal error check by comparing an M-
point Gauss rule with an N-point Gauss rule (N & M) is
uneconomical since Gauss abscissas are in general
different for different orders, which implies that such con-
vergence checks require additional function evaluations.
Therefore we investigated whether the application of an
automatic, adaptive integration method to integral (4.1)
which takes into account the special nature of the in-
tegrand is an advantageous alternative to Gauss formu-
las. A quadrature routine is automatic if it provides an
approximation of specified tolerance. It is called adaptive
if for calculating a sequence of integral approximations
the location of the integration points of the nth iterate
depends on information gathered from iterates
1, . . . , n —1. This is usually achieved by a successive
partitioning of the integration interval in such a way that
many points are located in the neighborhood of a difficult
region of the integrand, causing a high density of quadra-
ture points there. Our integration was performed by us-
ing successively the IMSL (Ref. 62) routine DCADRE due
to de Boor for the s integration and D01AMF, a QUAD-

PACK (Ref. 64) routine from the NAG library, for the p
integration in Eq. (4.1). In Table II we compare the re-
sults of the automatic integration method with the results
obtained by the Gauss quadrature method mentioned
above for various quantum numbers n

&
and n 2, and scal-

ing parameters a and P. NL, NM, NU, and NG have the
same meaning as in Table I, N„denotes the number of
function evaluations of the inner p integrand in integral
(4.1) in the case of automatic integration, and "AC-
CREL" denotes the required relative accuracy. A com-
parison of the integral approximations with the corre-
sponding numbers of function evaluations of the p in-
tegrand shows that the application of suitable composite
Gauss product formulas is far superior to a successive
performance of automatic integrators, particularly in the
case of larger differences of a and P. The numerical
problems associated with nested one-dimensional au-
tomatic quadrature routines have been discussed by
Fritsch et al. and Lyness. Lyness estimated that an
automatic integration routine in general requires three
times as many function evaluations as would be needed
by a routine which computes the results with a fixed
number of function evaluations on the basis of a properly
chosen quadrature rule. Furthermore, an automatic in-
tegration routine has a jagged performance profile,
whereas a routine implementing a quadrature rule per-
forms much more smoothly. For integrating a jagged in-
tegrand function one has to pay an additional surcharge.
Consequently, automatic integration is useful only if a
few integ rais are to be evaluated with a certain
guaranteed accuracy and if efficiency is a factor of minor
importance. However, if efficiency rather than reliability

TABLE II. Three-center nuclear attraction integrals with scalar B functions, Eq. (4.1). We always have

R, =(R„0„4,) =(0.5,90,0') and R,=(R„0„4,) =(2.0,90',0'). Lengths are in a.u. Numbers in square brackets denote powers of
10 by which the preceding number is to be multiplied.

n, n2 p Nl NM NU "ACCREL"
Adaptive

quadrature N„
Gaussian

quadrature

1.0
1.0
1.0
1.0
1.0
1.0

1.0
1.0
1.0
5.0
5.0
5.0

4
8

12

6
8

15
25
35

8
12
18

4
8

12
10
15
25

1.0[ —03]
1.0[ —04]
1.0[ —05]
1.0[—03]
1.0[—04]
1.0[—05]

0.281 224 778 1[—01]
0.281 222 091 2[ —01]
0.281 222 027 6[—01]
0.401 000 288 8[ —03]
0.400 999 773 6[ —03]
0.400 999431 3[—03]

2145
6435
8025

11010
12 660
17 685

0.281 218 428 4[ —01]
0.281 222 151 6[ —01]
0.281 222 1117[ —01]
0.401 000 210 1[—03]
0.400 999 369 7[—03]
0.400 999 1195[—03 ]

708
1322
1907
859

1301
2018
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X] o(a, r)=4a ~ B]o(a, r) . (4.5)

Hence we can compare six integral approximations given
I

becomes the decisive issue, nested automatic integrators
are no longer computationally attractive. In all applica-
tions in which a somewhat broader class of integrals are
to be evaluated via Gauss quadrature, the error analysis
has to be done experimentally. First one has to deter-
mine how many integration points are needed to obtain a
prescribed accuracy even in the most unfavorable case.
Then all integrals in this class will be evaluated with this
fixed integration grid.

Apart from a numerical factor, a 1s STO is equal to the
B function B, 0. We have explicitly, with Eqs. (2.1) and
(2.17),

in Table II with values in the literature. If we multiply
our values by 16(ap) we obtain an excellent agreement
between our results for the 8 function 8, 0 and the corre-
sponding values 0.449 956 and 0.717 329 from Hirschfeld-
er and Weygandt, and Trivedi and Steinborn, r'espec-
tively.

Now, we want to analyze numerical and computational
aspects of the two-dimensional integral representation
(3.24) for the three-center nuclear attraction integral with
nonscalar B functions. First we rewrite formula (3.24) in
a way which is advantageous for computational purposes.
We introduce the new integration variable s = 1 —t, rear-
range the order of the m

&
and lz summations and shift

the s and p integral signs in front of the finite sums over
the angular momentum and magnetic quantum numbers.
This yields the following expression which is quite con-
venient for computational purposes:

(21, +1)!!(21~+1)!!a ' ' P
=8(4m )

"2+'2+'1-'1 '1 —'1'[Y(a,p;p, s)] '

0 0 (21', +1)!![2(l, —I', )+1]!!

12 ——0

I I I

(21~+1)!![2(I~ —l~ )+1]!!
m in(11, m 1+11—11 )

m1 ——max( —11, m1 —11+11)

m in(I2, m 2+12 —12 )

m 2
——max( —12, m2 —12+12)

I', +12

(1]m] I 1]m] I I] —1]m] —m', )

( 12m 2 I
12m 2 I 12 —12m 2

—m 2 )

X g (12m2
I
1]m]

I
lmz —m', )[R,y(a, pp, s)] Y] '(R2/IR2I )

al (Al —j+ 1 ) .

X g . ( —2) (n, +n2+I, +Iz —j+2) k„+„,+],+], ] —J+]/2(y(a, p —p, s)Rz)

Ii+12 Il 12

y(2]
I' = I

'
m]n

(I, —I', + 12 —12+I') /2 I
( —1) (I~ —12m 2

—m 2 I
I, —I,m] —m, I

I'm2 —m 2
—m, +m, )

I I
m2 m2 1+m1

Xj] (p
I
sR2 R]

I
) Y]

sR2 —R,
sR dp ds (4.6)

The behavior of the s and p integrand in integral (4.6) is
essentially the same as in the case of scalar 8 functions.
The p integrand decreases exponentially and the s in-
tegrand may have peaks in the vicinity of 0 or 1, the end-
points of the integration interval. The sharpness of these
peaks depends upon the magnitude of the quantum nurn-
bers n „n2, I, , and 12 and the scaling parameters a and p,

I

as well as on the ratio a/p. This may be seen easily from
the factor in front of the first sum of the integrand in Eq.
(4.6).

We have written a computer program based on Eq.
(4.6). We used the same Gauss quadrature technique as
in the case of scalar 8 functions. Since the integration
procedure requires repeated evaluation of the integrand
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(2n+1) .j„+,(x)= j„(x)—j„,(x) .
X

(4.7)

For x &N (=maximal order to be computed) the re-
currence formula (4.7) can safely be used in the upward
direction. For x & N this recurrence relation becomes nu-
merically unstable. In this case we used the Miller algo-
rithm. ' At some value M & N we assume tentatively as
starting values FM+, ——0 and FM ——1.0 and use Eq. (4.7)
in the backward direction to obtain the sequence
F~,F~ „.. . , Fo. If M was chosen large enough, each
term of this sequence up to Fz is proportional, to a cer-
tain relative accuracy, to the corresponding term in the
sequence j~(x),jz,(x), . . . , jo(x) of true values. The
factor of proportionality may be obtained by comparing
Fo with the true value jo(x) =sinx/x. The RBF's occur-
ring in Eq. (4.6) were computed with the help of the
three-term recurrence relation, Eq. (2.3), which is stable
in the upward direction.

In Table III we have listed some test values for the
three-center nuclear attraction integral (4.6) with
different quantum numbers n „I &, m &, n 2, l2, and m z and
scaling parameters a and p. The values of the spherical
coordinates of R, and R2, the scaling parameters a and p,
the orders NL, N~, and NU of the composite Gauss-
Legendre quadrature used, and the order of the Gauss-
Laguerre quadrature used are chosen to be equal for the
integrals in Tables II and III. A comparison of NG in
Tables II and III shows that in the case of' nonscalar B
functions considerably fewer evaluations of the p in-
tegrand are needed in order to obtain the same or an even
better accuracy. This can immediately be understood by
the factor

function of the various abscissas, we precomputed all s-
and p-independent coefficients of the integrand, such as
the Gaunt coefficients, spherical harmonics, etc. , and
stored them in appropriate arrays in order to save CPU
time. The computation of Gaunt coefficients and spheri-
cal harmonics was performed recursively with the help of
subroutines GAUNT and REcYLM of Weniger and Stein-
born. For the evaluation of the spherical Bessel func-
tions we used the well-known homogeneous three-term
recurrence relation

I/[y(a, p;p, s)], q =2(n, +I, +n~+l2)+1

in front of the first sum of the integrand in Eq. (4.6). The
larger the values of the quantum numbers n, , l, , n.z, and
lz become, the steeper the integrand decreases and the
sooner the Gauss-Laguerre quadrature sum is truncated
by the convergence truncation condition. A second point
is that the absolute values of the nuclear attraction in-
tegrals tend to become smaller if the quantum numbers
become larger.

Before leaving the topic of three-center nuclear attrac-
tion integrals with nonscalar B functions it is legitimate
to turn to the question of their correctness and accuracy.
We computed the following integral for STO's by using
our numerical procedure for B functions and compared
the result with values published in the literature:

fXz &(1.0, r) X, o(1.0, r —Rz)d r,
r —R)

(4.8)

with R=(2.0, 120',0') and R2 ——(2.0, 60', 0'). Using Eq.
(4.5) and

X21(a,r)=16(a /3)'~ B& &(a,r), (4.9)

Applying the same quadrature method as in Table III,
with NI ——15, N~—-30, and NU ——15 for the composite
Gauss-Legendre rules and 80 for the order of the Gauss-
Laguerre rule, we obtain 0.0015690674 for integral
(4.10).

The published results for integral (4.8) were obtained
with quite different mathematical and numerical
methods. Trivedi and Steinborn used addition
theorems of A functions and obtained 0.057976 (with
an uncertainty of 1 in the last figure), whereas Talman
gave 0.057977 3 using Fourier transformation in connec-

which is readily obtained with Eqs. (2.1), (2.4), (2.17), and
(2.18), we see that apart from the numerical factor
64/&3 integral (4.8) is equal to the following three-center
nuclear attraction integral with B functions

fB, &(1.0, r) B, 0(1.0, r —Rz)d r . (4.10)r —R)

TABLE III. Three-center nuclear attraction integrals with nonscalar B functions, Eq. (4.6). Same geometry as in Table II. Num-
bers in square brackets denote powers of 10 by which the preceding number is to be multiplied.

nl ml

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

mp

1.0
1.0
1.0
1.0
1.0
1.0
5.0
5.0
5.0
5.0
5.0
5.0

NL

4
8

12
4
8

12
4
6
8
4
6
8

NM

15
25
35
15
25
35

8
12
18
8

12
18

4
8

12
4
8

12
10
15
25
10
15
25

Integral (4.6)

0.397 767 383 3[—07]
0.397 767 383 5[ —07]
0.397 767 383 5[ —07]

—0.696 294 308 7[—07]
—0.696 224 070 8[ —07]
—0.696 224 086 5[—07]

0.262 083 333 4[ —08]
0.261 740 359 7[ —08]
0.261 739 808 5[ —08]
0.621 912 961 4[ —05]
0.621 916059 0[ —05]
0.621 916063 6[—05]

NG

423
792

1167
565

1047
1539
765

1163
1803
754

1144
1774
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tion with addition theorems for Slater-type orbitals. If
we multiply our value by the normalization factor 64/&3
we obtain 0.0579777, which agrees well with the pub-
lished results.

V. TWO-ELECTRON MULTICENTER INTEGRALS

In this section we shall discuss the properties of the
three-dimensional integral representation for the two-

electron multicenter integral with B functions, Eq. (3.28),
and a numerical-integration technique for its evaluation.
As in the case of the three-center nuclear attraction in-
tegrals, we first consider expression (3.28) for the simpler
integrals with scalar 8 functions. Setting I1 ——12

——l3
=l4=0 and replacing the integration variable t by 1 —I;,

we obtain

n, OO, n400
I n 00 n 00 (Pl P2 P3 P4'Rl R2 R3 R4)

2n& —1 2n2 —1 2n3 —1 2n4-1
P1 P2 P3 P4

)( 1 s 1$ 2

0

1 —t 't'
0

X f JO(p I
(1—s)R2l —(1 t)R—43 R3l I

)
0

n/+n2+l/2(rl2(Pl'P2 p' ) 2l ) n +n +l/2(r34(P3 P4 P t) 43)

2n, +2n, +1 2n3+2n4+ 1[r 12(Pl P2 P»s)] ' '
[r34(P3 P4'P t)]

dp dt ds,

(5.1)

where

r l2(pl ~p2~p~s) = [p s( 1 —s)+ ( 1 —s)pl +sp2] (5.2)

pression (5.1) by the distance function

DR, , R, , R, , a, (»t) =
I
(1—s)R2l —(1—t)R43 R311 (5.4)

and

r 34(P3,P4,'P, t) = [P t (1 t)+(1 t)P—3+ tP4]'— (5.3)

We note that the angular dependence of the geometry of
the four centers as well as the coupling between the
one-electron two-center charge distributions

n 200 n 300P.lM(pl P2 R2l, rl) and p. M(P4P3, R34, r2) in the two-

electron multicenter integral (3.25) is represented in ex-

in the argument of the zeroth-order spherical Bessel func-
tion. Integrating over s and t (sC[0, 1] and tC[0, 1])
means that the distance function DR R R R (s, t) runs

over all distances between a point R on the line segment
joining R, to R2 and a point Q on the line segment join-
ing R3 to R4 (Fig. 3). Now, we have to study the in-
tegrand of the three-dimensional integral in Eq. (5.1).
The inner p integrand

w, , (p)=J0(p (1—s)R2l —(1—t)R43 —R3,
I

)

kn, +n, +»2(rl2(p»p»» ) 2l "n +n, +l~2(»4(P3P4» t 43
X

2n, +2n, +1 2n3+2n4+1
[r12(PI P2~P ] ' '

[r34(P3 P4 P»]
(5.5)

u, (t)=(l t) 't ' f w—, , (p)dp, (5.6)

u(s)=(1 —s) 's ' f u, (t)dt,
0

(5.7)

consists of three parts in general; the oscillatory Bessel
function jo and the two exponentially declining reduced
Bessel functions k. The behavior of the p integrand is
dominated by the exponentially decreasing k functions
(Fig. 4). The s and t integrands given by

may have peaks in the vicinity of 0 or 1, the endpoints of
the integration intervals (Figs. 5 and 6). As a result of
this special behavior of the s, t, and p integrand in in-
tegral (5.1) we choose an integration technique sitnilar to
the one we used in the case of the two-dimensional in-
tegral representation for the three-center nuclear attrac-
tion integral, Eq. (4.1). We applied Gauss product rules
composed of Gauss-Laguerre formulas for the inner
semi-infinite p integral and composite Gauss-Legendre
formulas for the outer s and t integral. For the Gauss-
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TABLE IV. Two-electron multicenter integrals with scalar B functions, Eq. (5.1). We always have n, =n2 ——n, =n4 ——1 and

p] ——p2 ——p3 —p4 —1 0 R —(X Y Z ) i =1,2, 3,4. Lengths are in a.u. Numbers in square brackets denote powers of 10 by which the
preceding number is to be multiplied.

(X],YI,Z])

(0.0,0.0,0.0)
(0.0,0.0',0.0)
(0.0,'0.0',0.0)
(0.0,0.0,0.0)

( —5.0,0.0,0.0)
( —5.0,0.0,0.0)

(X~, Y2, Z2)

(0.0,0.0,0.0)
(0.0,0.0,0.0)
(1.0,0.0,0.0)
(1.0,0.0,0.0)
(5.0,0.0,0.0)
(5.0,0.0,0.0)

(X3, Y„Z3)

(1 ~ 5,0.0,0.0)
(1 ' 5,0.0,0.0)
(1.5,0.0,0.0)
(1.5,0.0,0.0)
(0.0,5.0,0.0)
(0.0,5.0,0.0)

(X4, Y4,Z4)

(1.5,0.0,0.0)
(1.5,0.0,0.0)
(1.5,0.0,0.0)
(1.5,0.0,0.0)

(0.0,—5.0,0.0)
(0.0,—5.0,0.0)

NL

12
20
12
20
12
20

NU Integral (5.1)

0.191 538 073 1[—02]
0.191 538 072 4[ —02]
0.182 915 804 2[ —02]
0.182 915 805 6[ —02]
0.419 964 122 5[ —08]
0.419 964 121 7[ —08]

13 900
37 476
11 778
31 684

6000
16096

Gauss-Laguerre quadrature which we used is 60. A com-
parison of the numerical results in Table IV shows that
NG, the number of evaluations of the inner p integrand,
becomes smaller if the distances R2, and/or R43 become
larger. This is a direct consequence of the fact that R2&
and R43 are parameters of the exponentials in the k func-
tions occurring in Eq. (5.1). In Table V we study the ap-
proximation behavior of the Gauss quadrature method
used in the case of fixed nuclear centers R&, R2, R3, and

R4, various scaling parameters p&, p2, p3, and p4, and
quantum numbers n „n„n,, and n4. NL,„N~„and NU,
and NL„NM„and NU, denote the orders of the compos-
ite Gauss-Legendre quadrature used for the s and t in-
tegration, respectively. As may be expected, the conver-
gence of the integration procedure becomes slower if the
s and/or t integrand possesses a peak in the vicinity of
the lower or upper endpoint of the integration interval
[0.1]. In these cases (depending on the values of the scal-
ing parameters and quantum numbers), the main contri-
butions to the value of the integral (5.1) come from the
first or last subinterval. One has to investigate whether
the integration procedure has converged by varying in a
suitable way either the width of the subintervals chosen
or the number of integration points used there.

[S„"Im™(a,P, R)]'=S„"l~™(a,P, —R) (5.8)

and replacing the occurring overlap integrals with equal
scaling parameters in Eq. (3.28) by their simple analytic
representations, Eq. (3.31), we obtain the following ex-
pression which is quite convenient for computational
purposes and which is the basis of our algorithm:

Using the relationship (4.5) between a Is STO and the
special B Function B

& 0 we can compare the first three in-
tegral approximations in Table IV with values in the
literature. If we multiply our values by 256(p&p~3pz)
we obtain an excellent agreement between our results for
the basis functions B&0 and the corresponding value
0.296835 in Table II of Gravac et al.

Now, we shall analyze the numerical properties of the
three-dimensional integral representation (3.28) for the
two-electron multicenter integral with nonscalar B func-
tions. Again, we rewrite formula (3.28) in a way which is
advantageous for computational purposes. We replace
the integration variable t by 1 —t, rearrange the order of
the m

&
and l2, and m 3 and l4 summations and shift the s,

t, and p integral sign in front of the finite sums over the
angular momentum and magnetic quantum numbers.
Using the property

TABLE V. Two-electron multicenter integrals with scalar B functions, Eq. (5.1). We always have R& ——(1.0,0,0), R2 ——(0,0, 1.0),
R3 ——(0,0,0), and R4 ——(0,0, —1.0). Lengths are in a.u. Numbers in square brackets denote powers of 10 by which the preceding
number is to be multiplied.

n, n4 pi p2 p3 p4 NLs N~s NUs Nl. t NMt NUt Integral (4.1) NG

1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2

1.2
1.2
1.2
5.0
5.0
5.0
2.0
2.0
2.0
3.0
3.0
3.0
8.0
8.0

1.2 1.2
1.2 1.2
1.2 1.2
1.2 5.0
1.2 5.0
1.2 5.0
1.2 6.0
1.2 6.0
1.2 6.0
1.2 3.0
1.2 3.0
1.2 3.0
1.2 1.2
1.2 1.2

3
4
5
9

12
18
8

11
15
9

13
15
12
16

6
8

12
5

7
9

10
13
16

8

10
10
7
9

3
4
5

9
12
18
9

13
17
9

13
15
3
5

6
8

12
5

7
9
5

7
10

8

10
10
7

11

0.409 903 041 6[ —03]
0.409 903 072 2[ —03]
0.409 903 079 5[ —03]
0.145 4743360[—06]
0.145 423 531 1[—06]
0.145 396 781 4[ —06]
0.739 463 586 3[—06]
0.740 397 237 2[ —06]
0.740 384 772 6[ —06]
0.376 949 720 4[ —06]
0.376 976 973 7[—06]
0.376 976 973 9[—06]
0.906 168 908 3[—06]
0.906 318031 8[—06]

3205
5716

10 698
7162

13 155
25 582

8501
16 532
27 932

7823
13 987
17 360

6576
13 457
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n212m2, n414m4
n l m, n l m (Pl P2 P3 P4 R)~R2~R3~R4}

= 8(4lt } (211+1)!!(212+ 1)!!(213+1)!!(214+ 1)!!
2n) +I& —1 2n&+(& —1 2n&+ I&

—1 2n4+(4 —1 I&+I
P3

' '
P4

'
X n1+ 1+n2+ 2+n3+ 3+n4+ 4+(n, +I, )!(n2+12)!(n3+13)!(n4+14)!2

n2 +12 n1+11 1 n4+14 n3+13 —(2n(+2n&+(1+(2+1)
X s ' '(1 —s) ' ' t ' '(1 t) —' ' [y»(p„p„p, s)

0 0 0

]
—(2nl+2n4+(3+(4+1)

X [r34 P3~P4&p~ t

I 11 11 11 1
( —1) '[Ps/y»(P»P2, p, s)]

(21', +1)!![2(l, —I', )+1]!!

12 —12[p(1 —s)/r12(pl p2 p s}]
(21,'+ 1)!![2(l,—I', )+ 1]!!

m in(11' m 1+11 11

m1 ——max( —11, m1 —11+11)
(l, m,

I
I', m 1 I

I) —I', m, —m', )
m in(12, m 2+ 12 —12 )

m 2
—max( —12, m 2

—12+12 )

(I,m, I,'m,' 12 —I',m, —m2)

11+12

X g (12m 2 I
I lm 1 I

112m 2 m
1 )[R2(y12(p),p2p, s)] "Y(„' '(R21/R21 )

.1,2
——™2

"» (~I)2
—J )2+1}

12 J12x g ( —2) (n, +n2+ I, +12—j,2+2) k +„+1 +1 —l„—q„+)/2(R2) y)2(p„p2;p, s) }
J12 =0

I I I

( —1) '[pt/y34(p, ,p4, p, t)] ' ' '4 [p(l t)/y34(p, —,p4, p, t)] '
(213+1)!![2(13—13 )+1]!! ( o [214+1)!![2(14—14)+1]!!

m in(13, m3+13 13)

m 3
——max( —13, m 3 13+13)

( l3m3 I
13m 3 I

13 —1 3m 3
—m 3 )

m in(14, m 4 +14 —14 )

m4 ——max( —14, m4 —14+14)

( 14m 4 14m 4 I
14 —14m 4

—m 4 )

13+14

(14m4
I

13m3
I !34m4 —m3)[R43y34(p3, p4, p, t)] "Y( ' '(R43/R43)

. 134
—134"

"~ (13134—J34+1)134 ~34X g ( —2) (n3+n4+13+14 —j,4+2), k„+„+,+, , J +)~2(R43y34(p3, P4,p, t)}

11 —11+12 —12

y(2)

112 —112

(12 —12m2 —m 2 I
I) —11m1 —m) I

I )2m 2
—m 2

—(m) —m)) )

13 —13 + 14 —14

y(2)

134 134

(13 13m3 —m3 I 14 —14m4 —m4 I
I'34m3 —m3 —(m4 —m4))

I I
12 + 34

(I',2m2 —m2 —(m, —m', ) I134m3 —m3 —(m4 —m4)
I

I'm2 —m2 —(m, —m', }
1

mill

—[m 3
—m 3

—(m4 —m 4)] )

I I I I

&(Y
m —m —(m —m ) —[m3 —m 3

—(m —m )] ( 1 —s )R21 —( 1 —t )R43 R31

I
(1—s)R„—(1—t)R43 —R311

(11 1
1 +12 12 +13 13 +14 14 1 )/2x( —1) ' ' ' '

g((p I
(1—s)R2, —(1—t)R43 R3,

I
} dp dt ds,
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where

hl, z =(II + 1 z
—l, z )/2, (5.10)

6134—(13+14 134)/2, (5.11)

and y&z(p&, pz,'p, s) and y34(p3, p4,p, t) are defined accord-
ing to Eqs. (5.2) and (5.3), respectively. For the numeri-
cal integration of the three-dimensional integral in Eq.
(5.9) it is important to note that the behavior of the s, t,
and p integrand is essentially the same as in the case of
scalar B functions. The p integrand decreases exponen-
tially and the s and t integrand may have peaks in the vi-
cinity of 0 or 1, the endpoints of their integration inter-
vals [0,1]. The sharpness of these peaks depends essen-
tially upon (i) the magnitude of the orbital parameters n, ,
1;, m;, and p;, i = 1,2,3,4, (ii) the asymmetry of the two-
center charge distributions (occurring if the ratios p, /pz
and/or p3/p4 differ greatly from unity), and (iii) the
disparity of the two distributions with respect to their ex-
ponential parameters [as measured by the ratio
(p, +pz)/(p3+p4)]. This may be deduced easily from the
two factors in front of the first sum of the integrand in
Eq. (5.9).

We have written a program based on Eq. (5.9) using
the same Gauss quadrature technique for the numerical
integration as in the case of scalar B functions. In order
to save CPU time we precomputed all coefficients of the
integrand which are independent of s, t, and p, such as
Gaunt coefficients, spherical harmonics, etc. , and stored
them in appropriate arrays. The algorithms we applied
for the evaluation of the Gaunt coefficients, spherical har-
monics, spherical Bessel functions, and k functions are al-
ready described in Sec. IV. In Tables VI and VII we
summarize some typical test values for two-electron rnul-
ticenter integrals over nonscalar B functions with various
quantum numbers n, , I;, and m, , i =1,2, 3,4, and ex-
ponential parameters p, , i =1,2, 3,4. Varying the orders
NL„NM„and N» and N«, N~„and NU, of the compos-
ite Gauss-Legendre quadrature formulas used on the
subintervals [0,0.1], [0.1,0.9], and [0.9,1.0] for the s and t
integration, we demonstrate the convergence of the in-
tegration procedure in the case of four-center exchange
(Table VI) and two-center Coulomb integrals (Table VII).
The order of the Gauss-Laguerre quadrature used, with
truncation condition 10 " for the quadrature sum, is 50.
A comparison of the numerical results in Tables VI and
VII shows that NG, the number of evaluations of the
inner p integrand, becomes larger if the distances Rz, and

R43 become smaller. As in the case of scalar B functions,
this can be explained by the fact that R2, and R43 are pa-
rameters of the exponentials in the k functions occurring
in Eq. (5.9) and therefore determine how rapidly the p in-

tegrand decreases. A second point, easily seen from the
results in Tables VI and VII, is that integrals in which the
exponential parameters p; of the four B functions are of
similar magnitude converge much better than integrals
with highly asymmetric charge distributions, i.e., when
there are large differences between the exponential pa-
rameters. This may be explained by the occurrence of

sharp peaks in the vicinity of 0 or 1, the endpoints of the
integration intervals [0,1] for the s and t integration.

In order to support the reliability of our numerical pro-
cedure for calculating molecular multicenter integrals
with exponential-type orbitals, especially for the case that
nonscalar orbitals are used, we give some integral values
with Slater-type orbitals (STO's) and compare these with
some previously published results. This may be helpful
because STO*s are widely used ETO's.

Normalized STO's, Eqs. (2.17) and (2.18), can be ex-
pressed as linear combinations of B functions in the fol-
lowing way:

X (a, r) =a "+'[(2a) "+'/(2n)!]'

x
"-'

( —I)"-'-~( -1)~2'+~(i+ )t

(2p n+—1)!(2n —21 —2p)!!
& =&min

X&P(a, r), (5.12)

where

r

(n —1)/2 if n —I is even

(n —1+1)/2 if n —1 is odd . (5.13)

(ls)H (1.0, r)=m. '~ e ", i =1,2, 3,4, (5.14)

(ls)c(5.7,r)=(5.7 /n)'~ e. (5.15)

(2p)c(1.625, r)=[(1.625) /m]'~ re ' "YP(8,$),
(5.16)

with

cos0 if m =0
Y3 (8,$)= sin8cosg if m =1

sin8 sing if m = —1 .
(5.17)

In Table VIII we compare some integral values with
STO's for the methane molecule which are obtained by
using our integral evaluation procedure for B functions,
with results previously published in the literature. The
applied quadrature method is the same as the method ap-
plied in Tables VI and VII except that we use the trunca-
tion condition 10 for the Gauss-Laguerre quadrature
sum. In Table VIII, it is seen that our method indeed
generates accurate values for the multicenter integrals
with STO's. Furthermore, a comparison of columns 8,
10, and 11 in Table VIII shows that our method yields re-
sults of the same level of accuracy as the method of Shav-
itt and Karplus, even with fewer quadrature points.

Many authors' ' ' ' have used the configurations of
the C and H atoms in CH4 with C-H distances of 2 a.u. to
calculate test values for molecular multicenter integrals.
The H and C orbitals are given by
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TABLE VIII. Multicenter integrals with nonscalar STO's for the methane molecule. We have Rc ——(0,0,0), RH, &) =(0 0 —2),
RH(2)

———,
' (4&2,0,2) RH(3) —3 ( —2&2,2&6,2), and RH, 4,

———,
'

( —2&2, —2&6,2).

Integral' NLs Nls NUs NLt NMt N Ut Result NG

Comparison
valueb

Comparison
value'

[(1s)c(1s)H(,),'(2A )c( ls)H(2~]

[(2p, )c(1s)„„,;(2p, )c(1s)„,2, ]
[(2pz )c(1s)c'( ts)H(&)()s)H(2)]

[(2p, )c(2p, )c;(1s)„,~ ~(1s)„I„]
[(2pz)c(2pz )c~(2pz )c(1s)H(1)]

[(1s)c(1s)H(,), (2p )c(1s)„I,i]
[(2p, )c(1s)„r„,(2p„)c(1s)HI2,]
[2p )c(1s)c ( ls)HI, )()s)„(2)]
[(2p„)c(2p, )c;(1s)HI, I(1s)HI2)]

5

5

10

5

5

5

5

10

5

10

15

10

15

15

10

15

10

15

10

5

5

5

5

10

5

5

5

15

15

15

15

15

15

15

15

15

0.005 885 28

0.008 548 58
—0.001 675 88

0.140 912 33
—0.255 022 61

0.019 809 02
—0.077 91478

0.002 370 04
—0.001 435 98

11 265

10 124

11 158

9361

11 252

10981

9880

11 158

10 371

0.005 884 57

0.008 548 64
—0.001 675 84

0.140912 36
—0.255 020 24

0.019 807 04
—0.077 91435

0.002 369 99
—0.001 435 99

0.005 885 22

0.008 548 49
—0.001 675 81

0.140 912

0.019 809 03
—0.077 914 52

0.002 370 04
—0.001 435 79

'The first two symbols refer to the orbitals of the first electron, the last two symbols refer to the orbitals of the second electron.
"See Ref. 48, Table I, column 5; 24)& 24&& 28= 16 128 quadrature points.
'Pitzer (see Ref. 48, Table I, footnote d), using the Barnett and Coulson (Ref. 76) method.

VI. SUMMARY

In this paper we present analytical and numerical
methods for the evaluation of three-center nuclear attrac-
tion integrals and two-electron multicenter integrals with
8 functions. 8 functions, which are a special class of ex-
ponentially decreasing functions, have a relatively corn-
plicated analytical structure in coordinate space. Howev-
er, the Fourier transform of a 8 function is of exceptional
simplicity. The Fourier transforms of all other common-
ly used exponential-type orbitals, like Slater-type orbitals,
can be expressed as linear combinations of Fourier trans-
forms of 8 functions. ' ' Consequently, 8 functions
are the most convenient class of exponential-type orbitals
for the evaluation of multicenter integrals via the
Fourier-transform method. In Sec. III we apply the
Fourier-transform theory in a unified way to three-center
nuclear attraction integrals and two-electron multicenter
integrals of 8 functions. It turns out that the Fourier-
transform of a two-center product of 8 functions forms
the basic building block in the Fourier integral represen-
tations of these multicenter integrals. Using our compact
expression for the Fourier transform of a two-center
charge distribution described by a product of 8 func-
tions (involving a one-dimensional numerical integra-
tion) the evaluation of the Fourier integral representa-
tions of the multicenter integrals mentioned above is
readily accomplished. The resulting expressions are sys-
tematic generalizations of the results which Bonham,
Peacher, and Cox' derived for s-type orbitals only.

In Sec. IV we analyze the numerical performance of
the two-dimensional integral representation for the
three-center nuclear attraction integral of 8 functions,
Eq. (4.5). It turns out that Gauss product rules composed
of Gauss-Laguerre formulas and special composite
Gauss-Legendre formulas are best suited for the numeri-

cal quadrature of the remaining double integral. As is
demonstrated by the convergence of the applied integra-
tion technique, we had no difficulty obtaining integral
values with an accuracy of 6—8 decimal places for a
sufficiently wide range of values of the orbital parameters
n, l, m, and p and the geometrical parameters R;.

In Sec. V we analyze the numerical performance of the
three-dimensional integral representation for the two-
electron multicenter integral of B functions, Eq. (5.9).
Since the integrand of representation (5.9) shows a similar
behavior as the integrand of representation (4.5) for the
three-center nuclear attraction integral, we again apply
Gauss product rules composed of Gauss-Laguerre formu-
las and two special composite Gauss-Legendre formulas
to the remaining triple integral in representation (5.9).
The numerical results show that this integration pro-
cedure converges satisfactorily for exponential parame-
ters of similar magnitude and a broad range of quantum
numbers and geometrical parameters. For integrals with
highly asymmetric charge distributions, i.e., when there
are large differences between the exponential parameters,
problems with the convergence of the Gauss-Legendre
quadrature sums soon arise. However, we think that
with a quadrature rule which would be better adapted to
these numerical problems, this difficulty can be over-
come.
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