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The method that we have recently proposed to correct the local-density approximation of the
density-functional theory for spurious self-interaction effects is used to calculate the

interconfigurational energies and the ionization potentials of the transition-metal atoms. The re-

sults so obtained are compared with the corresponding quantities calculated by using the loca1-

density approximation and the Perdew and Zunger self-interaction correction. In both cases we find

very large improvements which are essentially due to a better description of the 3d electrons. The
results of this paper show that the large local-density errors for these quantities are mainly due to
the self-interaction terms. They also indicate that the latter are probably a major source of errors in

the local-density calculations of the electronic properties of the transition-metal dimers and solids.

I. INTRODUCTION

The calculation of the transition-metal atoms inter-
configurational energies (ICE's) by using approximate
versions of the density-functional theory has been the ob-
ject of a number of papers.

Some years ago it was shown' that the local-density
approximation (LDA) reproduces remarkably well the
trend of the ICE's (3d )" '(4s) '-( 3d )" (4s) and
(3d)"-(3d)" (4s), but that the numerical values of these
energies are wrong for about 1 eV and 1.5 eV, respective-
ly. It was also shown that these errors are not sensibly
modified by using different local expressions of the corre-
lation energy.

The earlier calculations were performed without taking
into account the multiplet structure contributions. This
was done by Gunnarsson and Jones by means of the
method suggested by Ziegler, Rauk, and Baerends and
by von Barth. It was found that the multiplet contribu-
tions are important in order to account for the small de-
viations from the trend of the experimental data, but that
they are quite ineffective on the values of the discrepan-
cies from these data. So, in order to study these
discrepancies, it is about equivalent to include the multi-
plet structure effects into the theoretical calculations and
to compare with the experimental data or to perform the
usual central-field calculations and to compare with
spherically averaged experimental results (obtained by
taking a weighted average of the terms which have the
same spin multiplicity as the lowest term corresponding
to each configuration).

Nonlocal effects were considered by Gunnarsson and
Jones who calculated the ICE's by using their nonlocal
exchange-correlation functional. Although these calcula-
tions were performed by introducing a shell partitioning
in order to obtain the best performance of this method,
only marginal improvements of the LDA results were
found.

Hartree-Fock (HF) data for the ICE's were considered
by Harris and Jones. ' These authors used relativistic HF
data by Kagawa and they pointed out large discrepan-

cies between the trends of the theoretical and of the ex-
perimental results. This conclusion was contradicted by
Gunnarsson and Jones, who reexamined the HF ICE's
using HF data by Clementi and Roetti' and who found a
better agreement between the trends of the experimental
and of the theoretical results. The latter, however,
presented some residual irregularities.

More recently Baroni" has performed HF calculations
of ICE's. The trend of the Baroni results agrees very well
with the experimental one and the discrepancies are of
the same order of those obtained from LDA calculations
including correlation. In the same paper Baroni has also
considered the correlation contribution —as a first-order
perturbation and using the LDA —to the ICE's. He
found that this contribution brings the HF ICE's in a
quite good agreement with the experimental ones. In
particular, the sign of this correction is always such as to
reduce the discrepancies between the theoretical and the
experimental data.

ICE's calculations were also performed ' by using the
self-interaction-corrected LDA in the form proposed by
Perdew and Zunger. ' It was found that the errors of this
approximation are of the same order of those of the
LDA. This is quite different from what one obtains by
treating the self-interaction terms by first-order perturba-
tion theory. In this latter way, in fact, one finds errors
greater than the LDA errors. ' This is due to the impor-
tant relaxation effects involved in these transitions, '

effects which seem to be better taken into account by us-

ing the self-interaction correction than the too soft LDA.
It should also be noted that in a later paper Harrison'
has shown that a modified version of the Perdew and
Zunger theory produces ICE's in better agreement with
experiment.

Recently we have proposed' a new method of intro-
ducing a self-interaction correction into the LDA, which
differs from the Perdew and Zunger one for the treatment
of the intrashell exchange terms. In that paper (hereafter
referred to as I) we have successfully tested our approxi-
mation by calculating a number of electronic properties
of light atoms. The purpose of the present work is to in-
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vestigate if that method reduces the large LDA errors
also in the case of the ICE's of the transition metal
atoms. This will be carried out in Sec. III, while in Sec.
II we shall compare briefly the main features of our
correction with those of the other more strictly related
methods, and Sec. IV will be devoted to the conclusions
of this work.

II. THE SELF-INTERACTION-CORRECTED LDA

A simple way to try to improve the LDA consists in in-
troducing a self-interaction correction. Briefly, in this
approach one treats exactly the self-exchange terms and
one uses an approximate expression for the interelectron
exchange and correlation. The one-electron equation
which is obtained in this way is not a Kohn-Sham equa-
tion because the potential is orbital dependent. Never-
theless, it can be considered as an approximation of
another exact one-electron equation —also proposed by
Kohn and Sham' —which is obtained by separating the
exchange from the correlation energy and by using for
the first one its HF expression. It should be noted that
the usual self-interaction-corrected LDA potentials, at
large distance from a finite neutral system, decrease pro-
portionally to I/r This. is a major difference from the
LDA and its main consequence is that the energy eigen-
values are a better approximation of the electronic ioniza-
tion potentials.

In a very comprehensive article on the self-interaction
correction —we refer to this work for an extensive discus-
sion of the theoretical aspect of this type of theory as well
as for a review of the works on this subject up to 1981—
Perdew and Zunger' have presented a large number of
results obtained by using the following general prescrip-
tion in order to deduce, from an arbitrary approximate
expression E„,of the exchange-correlation energy, a cor-
responding self-interaction free expression E'„',:

~pt pl l r & [p

where a is the quantum number set characterizing (with
0) the one-particle states, p is the total charge density of
the electrons of spin 0., and p is the charge density of
one electron in the state ao.

Perdew and Zunger justified this prescription essential-
ly by the fact that the exchange-correlation energy of a
system containing only one electron should be zero, and
they verified that in a number of cases the results given
by this method improved the LDA ones.

Two years later, Harrison' pointed out that the spher-
ical average which is commonly used in the atomic calcu-
lations, can be performed in two nonequivalent ways. In
the first one, which is the traditional procedure for the
Hartree-like theories and which was used by Perdew and
Zunger, one replaces the orbital charge densities in Eq.
(1) with their spherical averages and one derives the po-
tential from the resulting expression. In the second one,
nonspherical orbital charge densities are used in Eq. (1).
Then one derives the potential, which results to be spher-
ically symmetric, but to depend from the quantum num-
ber m&. Finally, the central-field approximation is ob-

tained by taking the average of the potentials for the elec-
trons which have identical quantum numbers, but
different values of m&. Following this second procedure
one finds results which depend on the choice of the repre-
sentation for the angular part of the orbitals. In particu-
lar, Harrison found that using spherical-harmonic or
Cartesian representations in exchange-only calculations,
one obtains lower energies in the first case, while the
second choice produces results in better agreement with
HF. For this latter reason Harrison decided to use
Cartesian orbitals in his calculations, and in this way he
found that the Perdew and Zunger results can be consid-
erably improved. '

At about the same time, we pointed out' that the
interelectron exchange energy F.""(for unit volume) of a
homogeneous gas containing N electrons of spin cr had
been calculated by Rae and that it can be written in the
following form:

' 1/3

Z"."= ——— p'."y(N. ) =y(N. )E". ,

where E is the total exchange energy of the homogene-
ous gas and y(N ) is a function of the number of elec-
trons N defined by the two equations:

N =~' ——'6&+ ~'~& (3)

(2)

y(N )=1 ', P+ ,'P' —-,', P' -. —— (4)

In that paper we also used these equations in a simple
way in order to approximate the interelectron exchange
potential of the self-interaction-corrected one-electron
equation and in this way we obtained some improvements
with respect to LDA.

It is interesting to compare Eqs. (2)—(4) with the analo-
gous quantities calculated by the Perdew and Zunger
theory. Using the latter one obtains the following value
ofy:

y(N )=1 (N )—

6+ Pnlo

which shows that this theory does not reproduce Rae's
correct result for this limiting case.

In paper I we have discussed in considerable more de-
tail the problem of applying the Rae equations to the in-
homogeneous case. We found that a reasonable way to
do this consists in partitioning the total electron density
of the inhomogeneous system in a number of pieces
which have small overlaps. Equations (2)—(4) can then be
used for the interelectron exchange of each single piece
and the exchange interaction between the different pieces
(which obviously does not contain self-interaction contri-
butions) can be taken into account by the usual local ex-
pression of the exchange energy. In the case of an atomic
system, for example, the natural units for partitioning the
total charge density are the electronic shells. Assuming
this type of partition, one obtains the following expres-
sion of the interelectron exchange potential V„'&' for one
electron belonging to the shell of quantum number nl:

' 1/3 1/3
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and for the interelectron exchange energy E"":

In these expressions N„i is the number of electrons of
spin cr present in the shell nl. In paper I we replaced N„i
in the coefficient N„'i [I y(—N„i ) j of the potential with
the degeneracy (21+1) of the same shell. This makes
only a little difference on the total energies (only the elec-
trons belonging to open shells are treated differently) and
ensures a more effective compensation of the errors when
one is concerned with total energy differences of two
different systems.

We emphasize that the scheme just described is strictly
a local scheme, except for the self-exchange terms which
are treated exactly. In I we have indicated this method
with D-SIC. We will adopt this notation in this paper as
well and, following the common use, we will indicate
with SIC the Perdew and Zunger correction.

III. THE TRANSITION-METAL ATOMS
INTERCONFIGURATIONAL ENERGIES

AND IONIZATION POTENTIALS

It is clear that a self-interaction correction can solve
only in part the problems of the LDA and that for a
number of properties one can expect only a partial im-
provement or, in some cases, no improvement at all. A
typical quantity which cannot be better estimated by in-
troducing the self-interaction correction is the spin-flip
energy of the 4s electron in the (3d)" '(4s )'
configuration of the transition-metal atoms. In fact, the
self-interaction contributions to the total energies of the
two configurations (3d)" '(4s)& and (3d)" '(4s)& are
about the same, and they cancel out when one takes the
difference. On the other hand, the spin-flip energy is en-
tirely due to the interaction of the 4s electron with the
electrons belonging to the more inner shells. This is a
typical nonlocal interaction that cannot be correctly de-
scribed by the LDA. So, it is quite natural to find large
discrepancies between the LDA spin-flip energies and the
experimental ones. Unfortunately the self-interaction-
corrected methods, as SIC and D-SIC, describe this in-
teraction exactly in the same way as LDA and one ex-
pects to find —and this is indeed confirmed by the actual
calculations —about the same results from the three ap-
proximations.

In the case of the s-d promotion energies, the self-
interaction contribution is not the same for the two
configurations and does not cancel out in taking the
difference. So, it is possible that introducing a self-
interaction correction one finds improved values of these
quantities. However, it is physically clear that purely
nonlocal interactions, as those discussed for the spin-flip
energies, should give an important contribution to the
ICE*s as well and that for this reason one can only expect
a partial improvement of the LDA values.

In the following we shall give the results of self-
consistent spin-polarized calculations. As in paper I we
have taken into account the correlation contributions by
using the Perdew and Zunger parametrization' of the

1.0

(3(j ) (g g )~ (3g ) ~(g )~

0.5

x -Q5~
Ld

I

O
(D -1.0

-1.5

-2.0
Ca Cr

FIG. 1. Differences between the various theoretical values
for the (3d)" '(4s)'-(3d)" (4s) interconfigurational energies
and the corresponding experimental data. D-SIC;
———,LDA; —.—.—., SIC.

Ceperley and Alder ' Monte Carlo data for the correla-
tion energy of the homogeneous gas and the small
nonorthogonality effects by a Schmidt orthogonalization
of the orbitals after each iteration.

In all the figures of this paper we report the differences
between theoretical and experimental quantities. The
latter, which have been deduced from Moore's spectro-
scopic data tables, have been spherically averaged in or-
der to obtain values which can be directly compared with
the results of our central-field theoretical calculations.

In Figs. 1 and 2 we show the errors of the different ap-
proximations for the ICE's (3d)" '(4s )'-(3d)" (4s)
and (3d)"-(3d)" (4s), respectively. As it was noted in
previous works, ' the LDA and SIC descriptions of
these quantities are about equivalent and SIC is a little
better in the second case. On the other hand, D-SIC in-
troduces systematic improvements. In the case of Fig. 1

the errors are reduced for about 50% in the first half of
the series and even more in the second half. It should
also be noted that D-SIC gives the correct ground-state
configuration in all cases, while SIC and LDA fail in the
cases of Ti and of Co.

The improvements are even more evident in Fig. 2. In
this case, in fact, the errors of D-SIC are smaller than 0.5
eV (except for Ca), while LDA underestimate these ICE's
for about 1.5 eV and the SIC errors are included between
0.8 and 1.9 eV. It is also interesting to note that the
LDA does not predict the correct order of the
configurations for Ni: indeed, in this case, the LDA ener-
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FIG. 3. Differences between the various theoretical values
for the (3d)" (4s)'-(3d)" (4s) ionization potentials and the
corresponding experimental data. ———,LDA and D-SIC;
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FIG. 2. Differences between the various theoretical values

for the (3d)"-(3d)" (4s) interconfigurational energies and the
corresponding experimental data. , D-SIC; ———,LDA;

SIC.

gy of the (3d)" configuration is lower than that of the
(3d)" (4s) one.

More information about the nature of the improve-
ments introduced by using D-SIC can be obtained by
analyzing the ionization potentials (IP s). These quanti-
ties are generally studied by considering the energy
differences between the various ionic configurations and
the (3d)" (4s) atomic configuration or, alternatively,
the differences between the energies of the ionic and the
atomic ground states, ignoring the (possible) differences
in the ground-state configurations given by self-consistent
calculations and by experiment. Proceeding in these
ways, however, a part of the discrepancies is due to the
errors in the s-d promotion energies, which have been
separately examined. %'e are instead interested in the en-
ergy required to take away a 4s or a 3d electron from an
atom without having to transfer at the same time any
electron between these two shells. It is then possible, for
example, to consider the (3d)" '(4s)'-(3d)" (4s) ICE
as the difference between the (3d)" (4s)'-(3d)" (4s)
and the (3d)" (4s)'-(3d)" '(4s)' IP's.

All the possible IP's which do not involve electron
transfers between the 4s and 3d shells are reported in
Figs. 3—7. In Fig. 3 the D-SIC data are not shown be-
cause they are practically indistinguishable from the
LDA ones.

Figures 3 and 4 show that the LDA and D-SIC values
of the IP's for the 4s electrons are quite similar, while
SIC gives a little better results. There is some analogy be-

tween these results and what is found for the average ra-
dius of the 3d and 4s orbitals. Indeed, in the case of the
(3d)" (4s) configuration, the LDA and D-SIC radius
agree generally better than 1%, while SIC gives values
which are sma11er for the 3d electrons and greater for the
4s. Of course this cannot be considered the reason for the
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FIG. 4. Differences between the various theoretical values
for the {3d)" '-{3d)" '{4s)' ionization potentials and the corre-
sponding experimental data. D-SIC; ———,LDA;
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similarity of the LDA and D-SIC IP's, which indeed
seems rather casual. It is only another indication of the
rough equivalence of the descriptions of the 4s electrons
given by these two approximations.

Coming back now to the analysis of Figs. 3 and 4, it
can be noted that the error on the IP's increases with the

number of 3d electrons of the same spin as the 4s electron
concerned in the ionization, while this error is roughly
constant in that part of the series where the number of 3d
electrons of opposite spin is increasing. So it is quite nat-
ural to attribute this effect to the exchange interaction be-
tween the 4s and the 3d electrons, interaction which
seems to be, in particular, the main source of errors in the
case of the (3d)" (4s) configuration.

Completely different is the analysis of the 3d electron
IP's (Figs. 5 —7). In all the three possible cases D-SIC sys-
tematically improves LDA as well as SIC. On the other
hand, the quality of the results obtained by these latter
two approximations are about equivalent. LDA is better
for the IP's of the 4s electron rich configuration (Fig. 5),
while SIC is to be preferred in the opposite case (Fig. 7).
Finally the two approximations are about equivalent in
the intermediate case (Fig. 6).

In conclusion, the better description of the 3d IP's
given by D-SIC seems to be the origin of the improve-
ments that we have found for the ICE's.

IV. CONCLUSIONS

This work shows that D-SIC is successful not only in
describing the electronic properties of the atoms of the
two first rows of the Periodic Table, but also in the case
of the third row transition metal atoms. In particular, we
have shown that D-SIC gives ICE's and IP's (for d elec-
trons) which agree considerably better with experiment
than those calculated by using LDA or SIC. This last
point confirms that the use of the self-interaction correc-
tion permits one to better take into account the relaxa-
tion contributions to these quantities and, besides, that
D-SIC gives an improved description of the interelectron
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exchange terms inside each shell. Nevertheless, the er-
rors of D-SIC are still important. They originate from in-

teractions which are essentially nonlocal and that D-SIC
treats in the same way as LDA. For these interactions,
and particularly for the intershells ones, which are prob-
ably the main cause of the residual errors, appropriate
approximations should be elaborated.

This work shows also that an orbital dependent scheme
can be very useful in order to obtain approximations
which accurately describe the chemical bond. It should
be pointed out, however, that the Kohn and Sham theory
states that this type of approach is not necessary: In
principle, one can obtain exact results by using a unique
effective potential for all the electrons. Of course, the
difficulty is to find a good approximation of this potential,
but, in the last few years, some important progress has
been made in this 6eld. These new nonlocal func-
tionals have not yet been tested by calculating critical
properties such as the ICE's and it will be interesting to
compare their results with those reported in this paper.
In any case, an orbital dependent scheme has a greater
Aexibility, which permits not only the use of the self-
interaction correction, but also, for example, a different
treatment of the inter- and intra-shells nonlocal contribu-
tions. This last point, in our opinion, could be quite im-

portant in order to formulate approximate functionals
which take into account the different physical features of
these interactions.

Finally, we would like to point out that some methods
for applying the self-interaction correction to solid
state, molecular, and cluster ' calculations have been
recently elaborated and that in all these cases the utility
of this type of correction has been proved. It would be
interesting to apply the correction used in this paper to
molecular and to band-structure calculations: The results
we have reported seem indicate that in this way one
could eliminate a part of the anomalies of the LDA re-
sults for the transition dimers and metals.
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