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The performance of the optimal stability of PERCEPTRON learning algorithm of Krauth and
Mezard is studied for the learning of random unbiased patterns in neural networks. In the ther-
modynamic limit N, P— oo, a=P/N finite, a replica approach is used to find the exact distribu-
tion for the number of time steps, which is required to stabilize a pattern. Remarkably for each
neuron a finite fraction of the patterns do not contribute explicitly but are stabilized by other pat-

terns.

Neural networks' as models of an associative memory
have become increasingly popular in statistical physics.
Mayjor interest has been focused on the dynamics of pat-
tern retrieval as well as on the dynamics of learning.
Characteristic features of the pattern retrieval in large
networks have been well understood by studying simple
models of spin-glass type.>> In this case a series of solv-
able models for the recognition of random unbiased pat-
terns has been discovered.>* ™% On the other hand, many
efforts have been devoted to the development of effective
learning mechanisms which stabilize a set of patterns
iteratively during the network’s learning phase.” ™ Up to
now the performance of these learning rules has been
studied mainly by numerical simulations. '®~!2 It is there-
fore important to find again solvable models, where at
least the learning of a set of random patterns can be treat-
ed exactly.

In this paper I calculate the exact distribution of time
steps the optimal stability PERCEPTRON'? algorithm of
Krauth and Mezard® needs to stabilize a pattern in the
learning process. The PERCEPTRON learning algorithms
are most general in the sense that they are guaranteed to
converge to a solution of the given storage problem (for
single-layer networks) under the condition that such a
solution exists.” ~%!3

I consider a neural network of N +1 totally intercon-
nected two-state neurons S;ef+1,—1}, i=1,... ,N+1.
The information of the P memorized patterns S*
=(SY,...,S¥+1), v=1,...,Pis encoded in the synaptic
connectivities J;;, i,j=1,...,N+1. Self-couplings J;
are excluded. Patterns are retrieved by applying the
zero-temperature Monte Carlo dynamics

S,~(t+1)-sgn ['ZJ,'_,‘S_;(I)]. (1)

j=i

The couplings are adjusted such that the memorized pat-
terns become locally stable fix points of the spin dynamics,
i.e., the set of inequalities

SYhi=c;>0 with b/ =X J;S} (2)

J=i

must be obeyed for every pattern v and neuron i.

From the view of a content-addressable memory, large
basins of attraction for each pattern are desirable. Thus
the fix points should be stable against many spin flips. As
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a sufficient condition it has been argued’ that the
strengths of the internal fields SA) should be large rela-
tive to the strengths of the synaptic couplings. One can
use normalized thresholds

A -c,-/ [,},;,J'}] 12

as a measure of stability. Their maximal value in the case
of random patterns has been recently calculated.” !4

A storing mechanism which gains optimal stability, i.e.,
a matrix of couplings with maximum A; for a set of arbi-
trary patterns has been introduced by Krauth and
Mezard”® as a variant of the PERCEPTRON learning rule.

The algorithm proceeds independently and in parallel
for each neuron i. An elementary time step consists of a
change 6J;; of the synaptic couplings

6Jij(t) =N lS,‘V(i")S]Y(i”), ji, (3)

where v(i,t) is the pattern which is stored the worst at
neuron i, i.e., the one with a minimal value of S’A; at time
t. Subsequently, the local fields for all patterns are updat-
ed and the procedure is repeated for the next time step
t+1. The algorithm stops for neuron i/ at a time =T,
when all patterns obey

th!=c>0 4)

for a given constant ¢. As in most iterative learning rules
for neural networks, Eq. (3) is of the form of Hebb’s
rule.? In contrast to the standard Hopfield model the
present algorithm produces, in general, nonsymmetric
couplings matrices.

As a basic result of Ref. 9, it has been shown that for
c— oo the ratio A-c/[Z,-g,-Jif(T)]” 2 converges to the
maximal normalized threshold by starting from an empty
network J;; =0. This optimality criterion allows the cal-
culation of the asymptotic behavior of learning times for
each neuron. The basic idea is as follows.

Defining ¢,(i) as the number of time steps pattern v has
led to a change of the synapses at neuron i, the total time
of the learning process for this neuron is 7(;) =X ,2,(i).

Being dynamical quantities by definition the ¢,’s are
nevertheless determined from the values J,-,-(T) of the cou-
plings after learning. Omitting the arguments i and T,
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one finds from (3)

Jij=N"'Xt.&; with &/=S!S). (5)
Introducing x, =t,/c, Eq. (4) can be written
fu=XB,x,=1 where B,, =N "' 2 EsE). 6)
v j=i

For ¢— oo the algorithm leads to a maximum of the sta-
bility A. Thus we can define a Hamiltonian

H=NA"?2=N/2Y J3/c?,
=i
which becomes a minimum in this limit.
Using (5) and (6), H is expressed in the quadratic
forms

1 v
H= lfzquyvxv- Z [E'ijv] 2
uv

Eﬁj#i v
=32£B Duf.. (@)
uv

The calculation of the x,’s therefore results in the minimi-
zation of (7) under the boundary condition (6). This
leads to a simple relation between fields f, and learning
steps x,. One has to distinguish between two classes of
patterns, class I with f, =1 at the boundary class II with
fu>1. The two classes of patterns are different at
different sites i. Note that x, and f, are continuous vari-

ply has for the second class

-g;—i— -ZV:(B Dufv=x,=0,
i.e., the explicit contribution of these patterns to the
synapses at neuron i is negligible for large c¢. They are au-
tomatically stored by learning the patterns of class I. 1
shall show that even for a set of random patterns a finite
fraction of the set belongs to class II.

In the following I calculate the probability w(x)dx,
that for an arbitrary but fixed u, x, has values between x
and x +dx. This can be done by introducing the charac-
teristic function g(k)=(exp(ikx,)), where the angular
brackets denote the average with respect to random pat-
terns (£) = % 1 with equal probability). g(k) is expressed
as a formal thermodynamic average together with an
average over the quenched variables &:

g0 = lim (2! [TIldx.0(~ D]
chp(—ﬂH+ikx“)> . ®
z= [TIlx0(,~ Dlexp(~ H),
where ©(x) is the unit step function.
The limit B— oo of the inverse “temperature’ guaran-

tees that H takes its minimum. The average over &’s can
be performed by using a replica approach.'® Introducing

ables for c— oo. Assuming that B is invertible, one sim- replicas x,4, a =1, ...,n, one has
J
gk) -Blim <fn [dxw,e [Zvax,,a -1 ] ]cxp [ - gZ(xw,vax,,a ) +ikx, ] > . )
— o0 v,a p
n—0

Since the Hamiltonian H describes a fully connected sys-
tem, a mean-field treatment of g becomes exact in the lim-
it P— oo, N— oo, a=P/N fixed. Since effects of replica
symmetry breaking are not expected to occur, a fact
which has been proved explicitly for a similar model, 14 the
calculation follows a replica symmetric treatment. I shall
give details in a forthcoming paper. The result is

g =f pr+ [ Drexplik+a)anl,  (10)
where

Dt =(Q2x) ~exp(—t?%/2)dt ,

r=as® [ DiG+a),

and A is the solution of

-} 2-
af_ADt(t+A) 1.

The average total number of learning steps in the limit
¢— oo satisfies
. _. d -2
= —_— =y — = =A A 1
T ]Jl_l}1w Ne "la dkg(k 0) an
c— o

7 is depicted in Fig. 1 as a function of a. For increasing a,
t grows rapidly and diverges like (2—a) =2 for a— 2.

]
This reflects the well-known maximal storage capacity of
networks for random patterns.”'® The analytical result is
compared with simulations of the algorithm (2) with finite
threshold ¢ =10 in a network of 101 neurons.

As a second result the probability density w(x) is ob-
tained by a Fourier transform of g(k)

w(x) = 8(x)Po(a) +O(x) 2rc?) /2

xexpl — (x—m)?¥20%], 12)
where

—A
Po(@)= [ Dt, m=ar, o=a/.

For small @, m— 1 and o the width of the distribution
vanishes ~+a. In this limit all patterns have equal
weight in the sum (4). The network becomes equivalent
to Hopfield’s model.!> For a— 2, m and o diverge as
(2—a) "?and (2—a) ~3, respectively.

More interesting is the &-function contribution to the
density at x =0. Its weight P (Fig. 2) gives the probabil-
ity that a pattern is automatically stabilized (class II) at a
given neuron by learning the P(1 — Py) patterns of class L.
Since, in practice, one can work only with finite ¢, a
broadening of the § peak at x =0 is observed in simula-
tions. I found good agreement with the theory by sam-
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FIG. 1. Scaled average number of learning steps. The simu-
lations have been performed for a single neuron with N =100,
¢ =10 averaged over 50 realization patterns.

pling the fraction of patterns for which x, <0.1. The be-
havior of Py relates the storage capacity of the present al-
gorithm to the capacity of another famous learning rule,
the so-called pseudoinverse rule.*!” There all patterns
are explicitly stored with fields f,=1. The memory be-
comes overloaded for a— 1. In our case the number of
explicitly stored patterns (again with f, =1) constitutes
an effective storage capacity aeg ™=a (1 — Po(a)) which, in
fact, is smaller than 1 and reaches this critical value for
a— 2.

Preliminary numerical simulations indicate that the
division of patterns into the two classes is approximately

FIG. 2. Averaged relative number of patterns which do not
contribute to the synapses. For the simulations (parameters as
in Fig. 1) all patterns have been sampled which perform, at
most, one learning step.

valid in the case of the “standard” (i.e., cyclical stability
check instead of worst stability check) PERCEPTRON
learning rule at large thresholds. Here every pattern leads
to updates but the patterns of class II are learned very
fast. Remarkably, the result (11) is a good approximation
for the total number of synaptical updates even in this
case.
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