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Intrachain flexibility constraints on phase stabilities and odd-even effects
in multiple smectic- A and nematic liquid crystals
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The importance of the flexibility of n-alkyl tail chains in real liquid-crystal systems is reviewed.
Two new microscopic, molecular statistical-physics theories (a full statistical theory and a simpler
but accurate approximate theory) for the intrachain constraints on the n-alkyl tail-chain flexibility
are presented and are compared with each other and with an old, more approximate theory for tail-
chain flexibility used in earlier papers. The new approximate approach is computationally much
faster than the full statistical method and is the first treatment to generate and explain odd-even
effects in multiple smectic- 4 phases and the first treatment to generate and explain odd-even effects
in smectic- 4 and nematic phases without resorting to ad hoc or arbitrarily adjustable fits to experi-
mental data. Phase stabilities and odd-even effects for various thermodynamic and molecular order-
ing properties are calculated in the smectic- 4, smectic- 4,4, and nematic liquid-crystal phases and
the isotropic liquid phase using the new approximate method. Some predictions and accompanying
physical explanations are made for various systems that have not yet been chemically synthesized
and/or experimentally studied. The theoretical results in this paper are in good semiquantitative
and (in some cases) quantitative agreement with available experimental data and offer some
significant improvements—compared with experiment—over the theoretical results of earlier pa-
pers, especially with regard to the relative stabilities of the nematic and multiple smectic- A phases.
The calculations in this paper also show for the first time that intrachain constraints on the tail-
chain flexibility are by far the major factor responsible for odd-even effects in these liquid-crystal
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systems.

I. INTRODUCTION

The partial orientational (and also, in some cases, the
partial positional) ordering of molecules that is charac-
teristic of liquid crystals (LC’s) occurs frequently in natu-
ral and synthetic materials. The general purpose of the
theories in this paper is to identify (predict and explain)
the individual components of molecular structure and
packing that determine the relative stabilities of the par-
tial orientational and partial positional ordering of the
molecules in different LC phases.

LC’s are formed by molecules with highly anisotropic
shapes, with these shapes frequently changing as a func-
tion of temperature and density. From a basic viewpoint,
the theoretical study of the partial orientational and posi-
tional ordering of such changing, highly anisotropic
shapes in condensed phases is one of the most challenging
problems in the statistical physics of many bodies.

From the standpoint of practical applications, LC or-
dering is the essential characteristic feature that deter-
mines the proper functioning of soaps and micelles (im-
portant in separation and extraction processes, such as
enhanced oil recovery), LC polymers (important in their
final solid state as stronger, lighter-weight replacements
for metals in body armor, auto, and airplane parts, and
other structural applications), LC display devices (impor-
J

tant, for example, in digital watches and calculators, be-
cause of their small energy requirements), and biomem-
branes and other biological structures. LC structures are
also found between crystalline and amorphous layers in
“semicrystalline” polymers (the common state of a very
large number of solid polymers), in coals and other fossil
energy systems, etc.

In particular in this paper, we want to take a much
closer, much more exact look at the effect of the molecule
tail-chain flexibility on the stability of multiple smectic- 4
(Sm A) and nematic (N) LC phases than in previous pa-
pers.!~* More specifically, the purpose of this paper is to
present and show results for two new methods (a full sta-
tistical method and a new rapid, but rather accurate ap-
proximate method) of describing the intrachain con-
straints on the flexibility of n-alkyl (hydrocarbon) tail
chains in LC molecules and how these intrachain con-
straints affect odd-even alterations in the magnitudes of
thermodynamic and molecular ordering properties (or in
the increments between values of these properties) as the
number of —CH,— and —CH groups in a given n-alkyl
tail chain in a molecule varies from odd to even in these
LC phases. These odd-even effects (while they do occur
elsewhere) are especially noticeable at phase transitions.

An example of a reasonably typical LC molecule struc-

ture>® is

H;C—(CH,),—[—0—@—N =N—@—0—}—(CH,),, —CH,
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(@D indicates a para-substituted benzene ring; y,y’ ~0-20;
y and y’ may be equal or unequal.) The segment [---]is
the rigid core, on either side of which is a semiflexible n-
alkyl tail chain. The overlap of 7 orbitals in the aromat-
ic, double, and triple bonds in the core section of a LC
molecule leads to the rigidity of the core. In the SmA4
and N LC phases and the isotropic liquid (I) phase, there
is essentially’ free rotation of the molecule about the core
long axis, thereby giving an effective rodlike, cylinderical
shape to the core.®’®

The n-alkyl tail chains are partially flexible
(semiflexible) since it costs a finite, but easily achievable,
energy to make rotations about any carbon-carbon bond
between —CH,— (methylene) or —CH,; (methyl) units in
a given tail chain. There are three rotational energy
minima for a given carbon-carbon bond in these tail
chains: one trans rotational state and two gauche rota-
tional states. The net energy difference between the trans
state and either of the two gauche states is Eg, with the
gauche states having the higher energy. The statistical
distributions of trans and gauche rotational states as a
function of E, and the temperature are the origin of the
intrachain constraints on the tail-chain flexibility.

It is emphasized that there is an appreciable fraction of
gauche states in n-alkyl tail chains in LC and isotropic
liquid phases. When each chain is in an all-trans state
(which in a plane is represented by a zigzag line for each
chain), the chains have frozen into the crystalline solid
state. Thus, the explicit treatment of the tail-chain flexi-
bility in molecules with n-alkyl tails is essential to
differentiate real LC (especially real smectic) phases from
crystalline solid phases.

Our purpose of focusing in this paper on new, better
methods of describing these intrachain constraints on the
tail-chain flexibility is prompted by the following reasons.
First, calculations’~* with a simple, rather approximate
treatment of the tail-chain flexibility! ~* have shown that
the tail flexibility is important in understanding multiple
Sm A and reentrant-nematic LC phases.

In particular, Refs. 2 and 3 have shown that differences
in the steric (hard-repulsive) packing of rigid cores and
semiflexible tails—as a function of tail-chain flexibility as
a function of temperature—can stabilize Sm 4 [includ-
ing® smectic-4, (SmA4,) and smectic-4, (SmA4,)] and
low-temperature N (including reentrant-N) LC phases. It
is not necessary to invoke dipolar forces* (or even attrac-
tive forces* of any kind) to have these phases.

These theoretical results thus explained,! —* for the first
time, the following experimental observations: With two
or three exceptions,®'© virtually all molecules that form
SmA —in fact, that form any kind of smectic (i.e.,
layered)—LC phases have one or more pendant
semiflexible tail chains.>®!! Furthermore, as the tail
chains are shortened, the smectic phases disappear.>!!

In these experimental cases, the cores (and hence, any
dipoles in the cores) are not sufficient (without the nonpo-
lar tails) to stabilize the smectic phases. The semiflexible
tail chains provide enough entropy (disorder) to keep the
cores from crystallizing totally, thus allowing the ex-
istence of the partial positional order in smectic
phases.!—*

A second reason for focusing in this paper on new,
better methods of describing intrachain constraints on
the tail-chain flexibility in LC molecules is that there so
far does not appear to have been a theoretical treatment
for the odd-even effects in both Sm A4 and N LC systems
that generates and explains these effects without the less
than satisfactory situation of having to resort at the very
least to some “handwaving” and/or to some ad hoc or
arbitrarily adjustable parameters (including arbitrary fits
to experimental data). In fact, there so far does not ap-
pear to have been any theoretical treatment of odd-even
effects in multiple SmA phases (SmA4, and Sm4d,
phases).

Therefore, the new theory of this paper shows for the
first time how the intrachain constraints on the flexibility
of the tail chains can affect the odd-even alterations in
thermodynamic and molecular ordering properties in the
I phase and the N, Sm 4, and SmA4,; LC phases formed
by molecules composed of rigid rodlike cores and
semiflexible tail chains. We note that in the theory of this
paper (as in Ref. 4), the molecules can have the following
intermolecular interactions between the different sites
(chemical groups) in the different molecules: (1) site-site
(segmental) hard (infinitely large) repulsions, (2) soft
(finite) repulsions and London dispersion attractions us-
ing segmental Lennard-Jones (12-6) potentials, and (3)
segmental dipolar interactions (dipole-dipole forces and
dipole-induced dipole forces).

In the theory of this paper (as in Refs. 1-4), there are
no ad hoc or arbitrarily adjustable parameters. All input
variables are taken from experimental data for atoms or
small chemical groups such as benzene rings and
methylene groups; all other variables are calculated by
the theoretical equations and are found to be reasonable
when compared with experimental data for LC’s. In this
paper (as in Refs. 1-4), we do not use parameters to fit
our calculated results to experimental LC data since such
fitting would obfuscate (i.e., confuse) the identification of
the individual components of molecular structure (includ-
ing details of the intrachain constraints on the tail-chain
flexibility) and packing that determine the relative stabili-
ties of the partial orientational and partial positional or-
dering of the molecules in different LC phases and the
odd-even alterations in these phases.

II. THEORY

A. General partition function

The new theoretical treatments for the intrachain con-
straints on the tail-chain flexibility in this paper can be
best understood by first discussing in this subsection the
overall setting (i.e., the general partition function) in
which the intrachain constraints will eventually appear.
(The in-depth derivation and explanation of the new
theoretical treatments for these intrachain constraints
can then be most logically and efficiently presented in
Sec. II B.)

We begin with a localized! ~* mean-field (LMF) theory
for a system of unbranched multisite molecules, where
each molecule is composed of a rigid rodlike core and
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two pendant semiflexible tail chains, one on each end of
the core. By localized MF theory in this paper, we mean
that we have a specific average neighborhood (of other
molecular sites and empty space) in a given direction k
around a given molecular site in a given local region in
the system."? These local regions are determined by the
actual packing of the molecules in the system.

By multisite, we emphasize that each molecule in this
theory is divided into a series of connected sites. The
various sites correspond to various atoms or small groups
of atoms (such as a benzene ring or a —CH,— group).

We use here a simple-cubic lattice theory. Each mole-
cule has a total of m connected inpenetrable cubic seg-
ments (sites), each of unit dimension. The total volume of
the system includes these impenetrable molecular seg-
ments, as well as unoccupied (empty) space or volume.

We then use combinatorial lattice statistics (after the
manner of Refs. 1-4 and 12 and references therein) to de-
scribe mathematically how the molecules physically pack
together under different conditions of pressure, tempera-
ture, orientational and positional orderings of the mole-
cules, and particular chemical structures of the molecules
(including various site-site intermolecular interactions).
We stress that a unique feature of the theories of this pa-
per (and of Refs. 1-4 and 12) is that there are no ad hoc
or arbitrarily adjustable parameters in these theories. In
particular, the couplings between the orientational and
positional orderings of the molecules, the density and
temperature of the system, and the specific chemical
structure of the molecules arises naturally from the inter-
molecular and intramolecular packing of the molecules in
these theories.

The following five reasons give us confidence in the
practical application of the lattice theory of this paper to
LC molecules.

(1) The orientations of any molecule (in fact, the orien-
tation of any segment or bond between segments in any
molecule) can be decomposed into its x, y, and z com-
ponents and mapped directly onto a simple-cubic lattice.
This decomposition and mapping onto a simple-cubic lat-
tice allows us to treat—in a geometrically transparent
and mathematically tractable manner—details of mole-
cule chemical structure, including features that are essen-
tial in determining the LC ordering of real molecules. A
significant number of these features (such as the flexibility
of tail chains attached to rodlike cores in LC phases)
have not been amenable to treatment by continuum
theories.

(2) In the lattice theory of this paper (see below) as well
as in the lattice theories of Refs. 1-4 and 12, the Gibbs
free energy of the system is minimized with respect to the
individual x, y, and z components of the orientations of
the long axes of the rigid cores of the molecules.

(3) In the lattice theory of this paper as well as in the
lattice theories of Refs. 1-4 and 12, the thermodynamic
limit is taken (that is, the number of lattice sites M in the
system and the number of molecules N,, in the system
each go to infinity), and thus the thermodynamic and
molecular ordering variables in the system assume a con-
tinuum of allowed values.

(4) The generalized combinatorial statistics (see Ref. 1)

used to derive the analytic partition function [Eq. (1)
below] in this paper have been found to be quite accurate
when compared with Monte Carlo computer simula-
tions'3 in at least one limiting case presently amenable to
such simulations. (See discussion in Ref. 1.)

(5) The lattice theories of Refs. 1-4 (and references
therein)—which form the starting point for the new
theories of this paper—have a well-documented and ex-
tremely successful record in uniquely predicting new phe-
nomena and explaining both existing phenomena (trends,
as well as qualitative and quantitative variables) for mul-
tisite molecules in LC phases. These lattice theories have
been especially effective in relating these predictions and
explanations directly to the chemical structures of real
LC molecules. These theoretical results have been found
to be in very good agreement with existing and later ex-
perimental data. (See Refs. 1-4 and 12, as well as the re-
view articles of Refs. 14 and 15 and references therein.)

The configurational partition function Q (derived from
the combinatorial lattice statistics) in this paper is given
(after the manner of Refs. 1-4) by

Q=Qexp[—E, /(kzT)], (1)

where () is the part of the partition function due to steric
[hard (infinitely large)] repulsions between molecular seg-
ments (that is, one cannot lay two molecular segments on
the same lattice site), E; is the part of the partition func-
tion due to other intermolecular interactions [including
soft (finite-sized) repulsions, London dispersion attrac-
tions, dipole-dipole interactions, and dipole-induced di-
pole interactions between molecular segments], k5 is the
Boltzmann constant, and T is the absolute temperature.

In this paper (after the manner of Ref. 4) Q and E;
(and thus Q) are functions of 16 basic molecular and ther-
modynamic variables. That is, to summarize in con-
densed mathematical notation,*

Q=Q( T,p,Uo,r,flyfz’Eg!PZr’}")
and

E[=E1(T’va()yr!f])nyEg7P2,’}\ ’
aa’ecc’ennan’y'Dl’ac’at) ’

where these molecular and thermodynamic variables are
defined as follows. T is the absolute temperature. p is the
average density of the system (average fraction of lattice
sites occupied by molecular segments); 0 <p < 1. v, is the
volume of one lattice site (i.e., hard-repulsive volume of
one molecular segment). r is the number of rigid seg-
ments in a molecule. f; and f, are the number of
semiflexible segments in tail chains 1 and 2, respectively,
in a molecule. (The total number f of semiflexible seg-
ments in a molecule is given by f =f,+f,.) E, is the en-
ergy of a gauche rotational state (relative to the trans
state) of a carbon-carbon bond between methylene or
methyl groups in n-alkyl chains. P,, is the average orien-
tational order of the molecular cores [given by
P,,=((3cos’0—1)) /2, where 0 is the angle between the
core long axis and the preferred axis of orientation for
the cores (here, axis 2)]; 0< P,, <1. A is the average frac-
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tion' =* of one-dimensional (1D) positional alignment of
the centers of mass of the molecules whose cores are
oriented parallel to the preferred axis for core orienta-
tion; 0<A<1. [A in this theory is a real number
defined!~* in terms of the literal physical packing of the
centers of mass of the oriented molecules and thus, in
terms of the physical packing of the core and tail parts of
the oriented molecules. More specifically, A is actually
the average fraction of the length of a z-axis-oriented
molecule that is in register with (positionally aligns
with)—in excess of alignments from random positional
packing—the lengths of z-axis-oriented neighboring mol-
ecules in the x and y directions, such that cores tend to
pack with cores and tails tend to pack with tails for these
oriented molecules. (As will be shown later in this paper,
A is thus a reduced ratio between the average layer thick-
ness and the average effective molecule length at a given
T in a SmA phase.)] a, is the average separation dis-
tance between segment centers at the zero of energy in
the Lennard-Jones (12-6) pair potential for any two seg-
ments in different molecules. €, and €, are the absolute
values of the minimum of energy between two core seg-
ments and between two tail segments, respectively, in the
Lennard-Jones potential. up, and pp, are the longitudi-
nal and transverse, respectively, dipole moments for the
molecule (here, for the core). a, and a, are the average
polarizabilities for a core segment and a tail segment, re-
spectively.

In summary, P,, and A are the fundamental variables
for the orientational (i.e., LC) order and the 1D position-
al (i.e., SmA) order, respectively, in the system. T, f,,
f>, and Eg are the fundamental variables used to calcu-
late the intrachain constraints on the tail-chain flexibility.
Also, p, vy, 7, G4, €qcs €4, Hps Bpys @, and a, (together
with P,,, A, T, f, f,, and E,) are the fundamental vari-
ables required to calculate the hard repulsions between
molecular segments and the following other intermolecu-
lar site-site interactions [w,,’s, where y and z indicate ei-
ther core (c) or tail (¢) segments]: Lennard-Jones (12-6)
potentials for soft repulsions and London dispersion at-
tractions, dipole-dipole interactions, and dipole-induced
dipole interactions.

Except for the changes noted in the remainder of Sec.
II, Q and E; in the partition function of Eq. (1) in this pa-
per are the same as Q) and E; in Egs. (2)-(13) of Ref. 4
and, due to space constraints, are not repeated in this pa-
per. The symbols 7 and v in Ref. 4 have become the sym-
bols P,, and P,;, respectively, in this paper.

P,; is the average tail intramolecular orientational or-
der (i.e., a measure of the average stiffness of the tails)
where by analogy to P,,,

Pyi={(3cos*y—1))/2=1-3u, @)

and ¥ is the angle between a given tail bond and the core
of the molecule to which the tail bond is attached.

In this paper the total fraction 2u of tail bonds bent out
of the direction of the core long axis of a molecule is
given by

=2 2u7,f},]/[§fy], 3)

where f, is the number of semiflexible segments
(—CH,— or —CHj groups) in tail chain y of the mole-
cule, and 2u. is the total fraction (with u, parallel to
each of the two simple-cubic axes) of semiflexible segment
bonds (C—C bonds) bent out of the direction of the core
long axis in tail chain y. Here, ¥y =1 or 2. Also,

f=3rf. @)
Y

In Sec. II B, 2u,, is determined by two different methods
as a function of E;, T, and f,.

B. Intrachain constraints on the tail flexibility
in the partition function

This paper differs from earlier papers' ~* in that the in-

trachain constraints on the tail-chain flexibility are treat-
ed in this paper by two much more sophisticated theoret-
ical methods than the method used in the earlier papers.
That is, 2u,, and thus 2u in Egs. (2) and (3) in this paper
are calculated by better theoretical treatments than the
treatment used in earlier papers.!—*

Specifically, 2u,, in Eq. (3) is determined by two slight-
ly different methods [Method 1: full statistical; and
Method 2: new approximation (rapid, but rather accu-
rate)] in this paper. With both methods, each
semiflexible tail bond has three choices of direction,
which mimic the three choices [trans, gauche (+),
gauche (—)] of rotation (specifically, rotational energy
minima) about the tetrahedrally coordinated carbon-
carbon bonds between methylene (or methyl) groups in
n-alkyl tail chains in LC molecules.

A trans tail-bond choice has a Boltzmann statistical
weight of

Li=1/(1+2A), (5)

and each gauche choice has a Boltzmann statistical
weight of

§=A/(142A), (6)
where
A=exp[—E,/(kgT)] . 7N

In both methods of calculating 2u, in this paper, the
trans-gauche rotation choice of the first semiflexible tail
bond next to the core is referenced with respect to the
core long axis.

In both methods of calculating 2u1,, let state 1 be the
state of a tail bond aligned parallel to the long axis of the
core of the molecule. Let states 2 and 3 be the states in
which the tail bond is bent out of the direction of the core
long axis. (If state 1 is parallel to axis i of the system,
then states 2 and 3 are parallel to axes j and k, respective-
ly, of the system—where axes i, j, and k are orthogonal
to each other in the simple-cubic lattice.) These states 1,
2, and 3 are achieved by various sequences of
trans (t), gauche (+) (g ™), and gauche(—) (g~)
choices in the tail chain.

A sequence of bonds in a tail chain in which each bond
is in state 1 corresponds to an all-trans sequence in the
tail chain. For this sequence on a simple-cubic lattice,
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the long axis of the tail chain is parallel to (literally, an
extension of) the long axis of the core of the molecule.

Sequences of gTg ™ are energetically very unfavor-
able!®!” and therefore are not allowed'” in this paper. [In
a simple-cubic lattice, a sequence of g¥g * choices corre-
sponds to a sequence of states iji (where j=i and where i
and j refer to states 1, 2, or 3).]

1. Method 1 (full statistical)

The rotation of a semiflexible bond in a tail chain is
coupled to sequences of all preceding neighbors in that

chain,
/1, ®)

where 2u, is the fractional probability that the
semiflexible bond between molecular segment (n —1) and
semiflexible tail segment n is in state 2 or 3 [the
semiflexible segments (or bonds) in a tail chain are num-
bered from 1 to f,, starting at the semiflexible tail seg-
ment (or bond) closest to the core and counting out to the
end of the tail chain],

2u,(f ) =X (f )/ Xsl f ) s 9)

where X,,(f,) is the sum of the products of statistical
weights for all allowed sequences of ¢, g+, and g ~ for all
f, segments in the y tail chain for which the bond be-
tween tail segment (n — 1) and tail segment » is in state 2
or 3. X,,(f,) is the sum of the products of statistical
weights for all allowed sequences of ¢, g+, and g ~ for all
S, segments in the y tail chain for which the bond be-
tween tail segment (n —1) and tail segment # is in any
one of the three states 1, 2, or 3.

In this paper X,(f,) and X,,,(f,) [and thus 2u,(f,)]
were calculated by the simple method of enumerating (on
the computer) all the sequences of possible states 1, 2,
and 3 for each semiflexible bond in the tail chain ¥ and
then summing the products of the statistical weights of
the appropriate sets of all allowed sequences of ¢, g+, and
g~ thus generated. The same values for 2u,(f ) can also
be calculated using a simple-cubic analogue of the irre-
ducible tensor method of Ref. 17 that was applied (in that
reference) to orientational correlations within a
semiflexible polymer chain. Both the full statistical
method of this paper and the method of Ref. 17 seem to
require about the same level of computational effort for
the relatively short chains (i.e., 20 or fewer methylene
groups per chain) in monomeric LC’s, as in this paper
here.

Both these calculational methods will give the same
values for 2u, (f, ) as the simple-cubic analogue of earlier
approaches of enumerating!®!®1° all allowed sequences of
t, g%, and g~ along a chain and then determining the
direction of the vector of each tail bond down the chain
relative to the core long axis. However, this third class of
calculational methods is computationally much more in-
tensive!” than the method of this paper or the method of
Ref. 17.

We note that the full statistical method in this paper

2uy=

fv
3 2u,(f,)
n=1

here for calculating intrachain constraints on the tail-
chain flexibility [i.e., for calculating 2u, in Eq. 3)] is
completely accurate for the simple-cubic lattice, under
the conditions (as outlined above) that (1) a statistically
weighted average of all possible sequences of trans and
gauche rotational states in the tail chain is used, and (2)
sequences of the very energetically unfavorable g ¥g ¥ are
not allowed. As the term “intrachain constraints” indi-
cates, we are looking at properties of an isolated chain.
As discussed above, these intrachain constraints are
properties of Eg, T, and the chain length f,; and thus
there are obviously no effects from neighboring chains
(and thus, no assumptions of a mean field) in determining
2u,, for a given tail chain. While there are no assump-
tions of a mean field in the determination of 2u, by the
full statistical method of this paper, 2u, determined by
this full statistical method could be inserted into the par-
tition function of this paper for an entire system of mole-
cules, and this partition function does assume localized
mean fields. [As it turns out in this paper, we never do
actually insert the 2u, determined by the full statistical
method into the partition function. Rather (as discussed
later) we use the full-statistical-method 2u,, to check the
new-approximate-method 2u,, and then use the new-
approximate-method 2u,, in the partition function.]

2. Method 2 (new approximation)

For computational quickness with remarkable accura-
cy (see later), the rotation of a semiflexible bond in a tail
chain is coupled to sequences of nearest, next-nearest,
and next-next-nearest neighbors in the chain.

/fy . (10)

As in Eq. (8), n is the number of the position of the
semiflexible tail segment (or bond) in a tail chain, where
the tail segments (or bonds) are numbered from 1 to f,
starting at the tail segment (or bond) closest to the core
and counting out to the end of the tail chain.

To summarize for f, =1,

Iy
2 2u,

n=1

2u7,=

2u, =2u;=2(, . an

To summarize for f y =2, 2u, is determined from an ini-
tial dimer sequence (for even f,) or an initial trimer se-
quence (for odd f,) and then repeat dimer sequences
(same for both even and odd f,) to make up the tail-
chain length. The fractional probabilities 2u, in the ini-
tial dimer and initial trimer sequences are coupled to the
direction of the core long axis. The 2u, probabilities in
any dimer or trimer sequence are coupled to those proba-
bilities in the same sequence and, as an approximation,
are decoupled from those probabilities in other dimer or
trimer sequences in the tail. (Dimers and trimers are the
maximum lengths for which it is convenient to generate ¢,
g*, and g ~ sequences analytically.)

That is, mathematically for f,, >2 in this new approxi-
mate method,
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) 2
2u.,,= [ ‘2 Y]j +[(fy"2)/2] 2 Y2j /fY

j=1 =1

even f,>2; (12)

and

3 2
2u, = l ‘2 Yy |+, =3)72] |3 Yy, /fy

j=1 j=1

odd f,>2. (13)

In the Y;;’s above, the subscript i =1 refers to the ini-
J

Y, =(26,6,+283) /Dy ;
g 1}, {g7g"} .
D, =8+ (2+42)6,6,+285 ;
{r}),{1g™,g% 1), (78"} .
Y, =[(242)6,6,+2831/D, ;
{g*,g71}, (g e™) .
Y, =Y,y =[283+(442)6,6,+4E31/D, ;
{rt},(1g*,g"t},{g"g"} .
D, =361+(6+4)5,5,+ 683 ;
{r},{1g",g "1}, (g7 g™} .
Y3 =[2836,+(24242),6342831/D5 5
{g*u},{gtg Tt gt g e ), (g g e .
D=0+ (2424+2)836,+(2+2+242)6,53+283

{tre), (g *,igr,g e}, {1gtg g F1g T ,g T 1gt,g g T}, (g g gt} .

Yy, =[(242)838,+(2+24+24+2),6342631/D5 ;

(tgtt,g*n},{1gTgt,gg T,gF1g*,g g 1}, (g g g™} .

Y3 =[(24+242)3,+(2+2+2)6,831/D5 ;
(gt igtr,gtn}, (1gFg* g gt g gt} .

Thus, for even f,>2, 2u;=Y,, 2u;=Y),, and
2u,(n>3)=Y, =Y,. For odd f,>2, 2u,=Y,,
2u,=Y3,,2u3=Y;3;,and 2u,(n >4)=Y, =Y.

The numerators of the Y;;’s above are the analogues of
the full-statistical-method X,,;’s [in Eq. (9)] for the initial
dimer, initial trimer, and repeat dimer sequences, while
the denominators D;’s in the Y,;’s are the analogues of
the full-statistical-method X,,,’s [see Eq. (9)] for these tri-
mer and dimer sequences. Clearly, for f, <3, the full-
statistical-method and this new-approximate-method are
exactly the same.

A major conclusion, as seen in Figs. 1(a)-1(c) for some
fy >4, is that this new approximate method for calculat-

tial dimer sequence of the tail (beginning at the core),
i =2 refers to any repeat dimer sequence (dimer se-
quences after the initial dimer or initial trimer sequence),
and i =3 refers to the initial trimer sequence of the tail
(beginning at the core). In the Y;;’s above, the subscript j
refers vo the position 1, 2, or 3 in the tail trimer (or the
position 1 or 2 in the dimer), where one begins counting
the position j from the end of the trimer (or dimer) that is
closest to the core.

These Y;;’s are given below, where the (respective) con-
tributions (for each term) of the different sequences of
trans (t), gauche (+) (g*), and gauche (—) (g~) are
indicated:

(14a)
(14b)
(15a)
(15b)
(16a)
(16b)
(17a)
(17b)
(18a)

(18b)
(19a)
(190b)
(20a)
(20b)
(21a)
(21b)
(22a)
(22b)

ing 2u,, (as a function of f,) is found to be remarkably
accurate compared with the full statistical method. Plus,
the new approximate method is computationally much
faster than the full statistical method.

[We also note that a slight odd-even effect in 2u, as a
function of n and f, is generated*”® when 2u, is calcu-
lated by the full statistical method of Eq. (9) for the
simple-cubic lattice. With the computational approxima-
tion of using trimer and dimer sequences as discussed
above, the new approximate method here for the simple-
cubic lattice emphasizes this odd-even effect in 2u, (and
thus, in 2u ) even more, as one might expect these odd-

14
even effects to be emphasized more in the tetrahedral
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coordination of real n-alkyl chains attached to a rigid
rodlike core. Yet, this increased emphasis in the new ap-
proximate method is small enough that there is still very
good agreement in 2u, (see Fig. 1) between the full sta-
tistical method and the new approximate method on the
simple-cubic lattice, and thus we have confidence that the
new approximate method is still consistent with the other
parts of the partition function of Eq. (1) derived for the
simple-cubic lattice. So, the new approximate method
would appear to be a very reasonable compromise be-
tween (1) the full statistical method for the simple-cubic
lattice (recalling that this lattice is used for mathematical
tractability), and (2) n-alkyl chains in real LC molecules.]

08 1 ! 1 !
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—

I
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0.4 -
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08 1 1 1 |
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06 F—"—""""""""hewopprox. |
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06~ T T néwapprox. __ }
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f
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FIG. 1. Average fraction 2u, of semiflexible bonds in tail
chain y bent out of the direction of the long axis of the core of
the molecule vs the number of f, of segments in tail chain y for
the full statistical method of this paper, for the new approxi-
mate method of this paper, and for the old method of Refs. 1-4
for the following temperatures T: (a) T =150 K, (b) T =300 K,
and (c) T=450 K. The lines (solid, dotted, and dash-dotted)
connect the values of 2u,) calculated for integer values of f,
and have been drawn to aid the eye in observing any odd-even
effects.

C. Using the partition function in this paper

Various thermodynamic equations are obtained (after
the manner of Refs. 2 and 12) from the partition function
Q, including (1) a pressure-volume-temperature (P-V-T)
equation of state, and (2) and (3) equations that minimize
the Gibbs free energy G of the system with respect to P,,
and A, respectively, at constant P and 7. Within the
physical constraints O<p<1, 0<P, <1, and 0<A <],
these three specific equations are (in general) solved
simultaneously (via numerical computer iteration) to ob-
tain the numerical values of p, P,,, and A in the various
phases of the system at given P and T. In practice in two
cases,’®® the calculations with this theory are much
easier and faster if we choose 7 instead of another vari-
able as one of the unknowns in these calculations.

When T is an unknown when iterating with the above
three equations, the full statistical method of calculating
2u, in Eq. (8) is much too intensive computationally.
Furthermore, while it appears possible in principle to
iterate to a stable solution using the full statistical method
with T as an unknown in these equations, in practice
these interactions using the full statistical method have
not converged? in a reasonable period of time. Therefore
in this paper all phase diagrams were calculated using the
new approximate method of calculating 2u,,, rather than
the full statistical method.

By the physical definitions of the various phases,
P,,=0 in the I phase; and 0 <P,, <1 in the N and Sm 4
phases. A=0 in the I and N phases.

The 1D positional alignment of the centers of mass
(and thus, of the rigid cores) of the oriented molecules is
the basis of Sm A4 layers. This actual positional alignment
(i.e., segregrated packing) of cores with cores (and thus,
of tails with tails) for oriented molecules in this theory re-
sults in a core-rich region and tail-rich regions in each
layer. When A =0, these regions have the same segmen-
tal composition (i.e., composition of cores and tails) and
there is no layering. A Sm A phase of some kind exists
for any value of A for which 0 <A < 1.

The SmA, and Sm 4, phases are physically defined?!
by the following relations between the layer thickness L
and the molecules length d;. L =d; in the Sm 4, phase,
and d; <L <2d; in the Sm A, phase.

Physically,’ the only way to have a Sm A, phase (i.e.,
to have L =d;) is to have total 1D positional alignment
of the molecules (i.e., to have A=1); therefore, A=1 in
the SmA4,; phase. The only way to have a Sm 4, phase
(i.e., to have d; <L <2d;) is to have partial, but not to-
tal, 1D positional alignment of the molecules (i.e., to have
0 <A < 1); therefore, 0 <A < 1 in the Sm 4, phase.

The exact mathematical relation between A and L in
this theory is determined in the following manner. Since
A is the average fraction of positional alignment of mole-
cules, (1—A) is the average fraction of positional
disalignment and hence the average fraction of the length
of a given molecule that is out of register with its neigh-
bors in the Sm 4 plane.z_4 Therefore, the layer thickness
L in this paper is given by

L =d; +(1—-AN)d; =(2—-MN)d; , (23)
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d; =vd{r +f1(142Py)/3]} +(a—vi?) . 24)

In contrast to earlier papers,>~* d; and thus L in this
paper are given in the units of v}’ and also include the
empty space (a —v}’?) between the hard-repulsive ends
of two molecules along the z axis. In the SmA, phase
this empty space is simply the space between the hard-
repulsive ends of two molecules in adjacent layers. (The
phase diagrams, etc., in these earlier papers are un-
changed, since they were all actually calculated using the
basic variable A, rather than the derivative variables L
and d;.)

Now we discuss how the other variables used in this
paper are taken from experimental data for small chemi-
cal groups or are calculated in the theory. The site-site
intermolecular interactions are calculated after the
manner of Ref. 4.

Each w,, is an average intermolecular pair interaction
energy between a y-type segment and a z-type segment,
where y =c or t and z =c or ¢; ¢ and ¢ indicate core and
tail, respectively. || and L indicate segments that are at-
tached to cores that are parallel and perpendicular, re-
spectively, to each other. o, =0, =0,; and
Oy =0y =0,. Asin Ref. 4,

3

yz = 2 Wyyj s (25)
j=1

(0]

where j =1 refers to Lennard-Jones (12-6) interactions,
j =2 refers to dipole-induced dipole interactions, and
Jj =3 refers to dipole-dipole interactions. [In this paper
as in earlier papers,*!* we have summed pair interactions
over both empty and filled lattice sites (out to the first in-
termolecular neighbors), with interactions involving emp-
ty sites being assigned an energy of zero.]
As in Ref. 4,

0, =4€,[(a,/a)*—(a,/a)’] . (26)

W1 =1y~ Here, €,./k =300 K and €,/k =150 K.
These values are appropriate for benzene and methane
molecules,??® respectively, which are reasonable approx-
imations for the chemical species in the core and tail seg-
ments, respectively, of typical LC nondipolar molecules;

€ =(€ €y )2

Here (as in Ref. 4), a, =4X107% cm, an approximate
average value appropriate for a methane or benzene
molecule.’”® g is the average separation distance be-
tween the centers of two first-neighbor intermolecular
segments and is calculated here (as in Ref. 4) from p using

p=mvy/v, v=a’[2a +v{3(m =2)], (27)

where v is the average volume associated with one mole-
cule, and v(y=2.98 X 10~23 cm?, as estimated? from exper-
imental measurements of various quantities.

©,,; and o, 3 are calculated (after the manner of Ref. 4)
using Egs. (13.5-3) and (1.3-8), respectively, of Ref. 22(b)
using values of up,, up, @., and a, estimated from ex-
perimental bond and group dipole moments®®"2* and
polarizabilities.>>® Here, a, =2x 1072 cm?, a value ap-

propriate for a methylene group. For a core with rela-
tively large dipolar forces, of the order of those in a
cyanobiphenyl-oxy-type core, appropriate values* for u D|
and a, are pp,=5.2D and a,=a(r—2)=24x10"%
cm?; (r —2) is the number of rigid segments having core-
type interactions.* 2

After the manner of Ref. 4; also,

wchtlzwcL'Zl: _(.u‘i)"""”%)l)ac /[aé(r _2)2] ’ (28)

and

Oy =—pup+up)a, /[2a%(r —2)"] . (29)
Also,

Oy =—ppy/{2[a(r =2)P(1+XqM)} , (30)

where X=1 for w3 in Eq. (7) in Ref. 4, and X=0 for
@3 in Eq. (12) in Ref. 4; also,

Oz =—pp,/{2[a(r =)} . (31)

Also (as in Ref. 4), 0, , =0 3=0,3;=0.

If up, =0 (as in Ref. 4 and in this paper here), we are
dealing only with the effect of longitudinal dipoles. The
above equations used for the dipole-dipole interactions
explicitly take into account (1) whether the longitudinal
dipoles (in the cores) are perpendicular (which occurs
when the cores are perpendicular), or (2) whether the lon-
gitudinal dipoles are parallel or antiparallel (opposed)
when the cores are aligned (parallel), as well as the degree
of positional alignment of the cores (and thus of the di-
poles).

In this paper (as in Ref. 4), r =4, as estimated®®?
from experimental data for typical length-to-breadth ra-
tios of the rigid cores of real LC molecules. Also,
E,/k =250 K as estimated!® from experimental data for
the trans-gauche energy difference in typical n-alkyl
chains.

III. RESULTS AND DISCUSSION

A. Intrachain contributions to the flexibility

Figures 1(a)-1(c) show plots of 2u, [the average frac-
tion of semiflexible bonds in tail chain y bent out of the
direction of the long axis of the core of the molecule (or
equivalently, bent out of the direction of the long axis of
the all-trans state of the tail chain of the molecule)]
versus the tail-chain length f,. These results were calcu-
lated using (1) the full statistical method of this paper, (2)
the remarkably accurate new approximate method of this
paper, and (3) the old, rather more approximate method
of Refs. 1-4.

In the old method of Refs. 1-4,

2u, =2u,=2¢, (32)

for all values of f, and n. Thus in this old method, the
rotation of a semiflexible bond is coupled directly to the
direction of the long axis of the core of the molecule.
Consequently, since a gauche energy is assigned for each
bond rotated out of the direction of the core long axis,
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the old method includes in a rather approximate manner
some intermolecular constraints on the intramolecular
trans-gauche flexibility. That is, the old method reflects
in a rather approximate manner that it should be harder
(i.e., cost more net energy) to make a rotation out of the
core long axis since such a rotated bond would run into
more interference packing with the cores of neighboring
molecules.

While the full statistical method and the new approxi-
mate method illustrated in Fig. 1 in this paper deliberate-
ly deal specifically with only intrachain constraints on the
tail-chain flexibility, results calculated with the old
method are included for general purposes of complete-
ness and informal comparison. (In passing, it should be
noted that 2u,=2u,=2(, in all three methods for
y=n=1)

We note in Fig. 1 that as T increases, the results from
the old method move closer to the results from the full
statistical method and from the new approximate
method. As T increases, the fraction of gauche states in-
creases [see Egs. (6) and (7)], and the approximation in
the old method [see Eq. (32)] becomes more accurate.

B. Intrachain contributions to phase stabilities
and odd-even effects

Figures 2-9 illustrate odd-even alternations in the
magnitudes of various thermodynamic and molecular or-
dering properties (or in increments between values of
these properties) as the number of —CH,— or —CH,
units varies from odd to even in tail chain 2 (i.e., as f,
varies from odd to even) for a system of molecules having
Lennard-Jones intermolecular interactions but no dipolar
forces (i.e., all w,,,=w,,;=0) studied using the new ap-
proximate method for intrachain constraints. We deli-
berately choose a system with no dipolar forces in order
to emphasize that dipolar forces are not necessary for
odd-even effects. In Figs. 2-9, f, =4, and P=1 atm.

Figure 2 illustrates odd-even effects in the tempera-
tures at the transitions between the nematic (N),
smectic4; (SmAy), and the smectic-4; (SmA4,) LC
phases and the isotropic (I) liquid phase. In the particu-
lar calculations whose results are shown in the figures of
this paper, the SmA4,-SmA4,; and SmA,-N transitions
were found to be second order, and the N-I transitions
were found to be weakly first order.

Two major new conclusions in this paper are as follows.

(1) The N phase is somewhat more stable with respect
to the Sm A4 phases (particularly at higher temperatures)
in the Lennard-Jones nondipolar system when we use the
new approximate method for the tail-chain flexibility in
this paper (see Fig. 2) than when we used the old approxi-
mate method of earlier papers!* (see Fig. 2 of Ref. 4).
The improved stability of the N phase with respect to the
Sm A phases in this paper here is in significantly better
general agreement with experiment (see, for example,
Refs. 5, 6, and 11) than are the results of earlier pa-
pers.2—*

(2) We also note that while odd-even effects are not
produced by the old method of Refs. 1-4, odd-even
effects are observed experimentally (see, for example,
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FIG. 2. Phase transition temperatures T (indicated by dots)
vs the number f, of segments in tail chain 2 for the Lennard-
Jones nondipolar system. The phase names are abbreviated as
isotropic (I), nematic (N), smectic-4, (A4,), and smectic- A,
(A,4). The solid lines connect the dots and have been drawn to
aid the eye in observing odd-even effects.

Refs. 5, 6, and 11) and are produced by the new approxi-
mate method of this paper here. Thus, the new approxi-
mate theoretical treatment of intrachain constraints on
the tail-chain flexibility in this paper offers a significant
improvement (over the more approximate treatment of
earlier papers! %) in treating odd-even effects and phase
stabilities in N, SmA4,, and Sm 4, LC phases and the I
liquid phase.

Figures 3-6 and 8 and 9 illustrate odd-even effects in
the temperature 7, average core orientational order P,,
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FIG. 3. Phase transition temperatures T (indicated by dots)
vs the number f, of segments in tail chain 2 for the Lennard-
Jones nondipolar system at the N-I transition. The solid lines
are defined as in Fig. 2.
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FIG. 4. Average core orientational order P,, (indicated by
dots) for the system vs the number f, of segments in tail chain 2
for the Lennard-Jones nondipolar system in the N phase at the
N-I transition. The solid lines are defined as in Fig. 2.

for the system, average tail intermolecular orientational
order P,, for the system, average tail intramolecular
orientational order (i.e., tail stiffness) P,; for the system,
relative density change [10%(Ap/py )] and reduced entro-
py change [AS /(N,, kg)], respectively, at the N -I transi-
tion. The values for P,, and P,, shown in Figs. 4 and 5,
respectively, are the values in the N phase at the N-I
transition. It has been shown”~* that P, is given by

P2f=P2rP2i . (33)

Figure 7 illustrates odd-even effects in the average den-
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FIG. 5. Average tail intermolecular orientational order P,/
(indicated by dots) for the system vs the number f, of segments
in tail chain 2 for the Lennard-Jones nondipolar system in the N
phase at the N-I transition. The solid lines are defined as in
Fig. 2.
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FIG. 6. Average tail intrachain orientational order P,; (indi-
cated by dots) for the system vs the number f, of segments in
tail chain 2 for the Lennard-Jones nondipolar system at the N-I
transition. The solid lines are defined as in Fig. 2.

sity p (i.e., fraction of lattice sites occupied by molecular
segments) at the SmA,-N transition. [While odd-even
effects in P,,, P,;, P,;, and p have been calculated?®® for
all three transitions (N -I, Sm A;-N, and SmA4,-Sm 4, for
the nondipolar system of this paper, Figs. 3-9 illustrate
some of the more dramatic examples of these calculated
results.]

While the very simple Lennard-Jones nondipolar sys-
tem deliberately chosen (see earlier discussion) for study
in this paper has not yet been synthesized, a comparison
of the magnitudes of the transition 7T in Figs. 2 and 3
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FIG. 7. Average density p (indicated by dots) vs the number
[ of segments in tail chain 2 for the Lennard-Jones nondipolar
system at the SmA4,-N transition. (p is the fraction of lattice
sites occupied by molecular segments.) The solid lines are
defined as in Fig. 2.
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with the magnitudes of transition T for existing LC sys-
tems>®!! with various specific molecule-chemical struc-
tures indicates that the transition T in Figs. 2 and 3 can
be expected to be rather accurate from a semiquantitative
viewpoint (and probably also from a quantitative
viewpoint). The major contribution to the quantitative
and semiquantitative values of the transition T at P =1
atm in this paper comes from the relatively realistic treat-
ment of site-site intermolecular interactions (especially
Lennard-Jones potentials for soft repulsions and attrac-
tions) very much after the manner of Refs. 4 and 12. (See
also those two references for a comparison of calculated
and experimental values for various thermodynamic and
molecular ordering properties for different existing LC
systems.)

We note that the odd-even effect in P,, in Fig. 5 is
larger than the odd-even effect in P,, in Fig. 4, since the
alternation of the number of —CH,— units (or, carbon
atoms) in the semiflexible n-alkyl tail chain itself is the
origin of the odd-even effects. We do see some odd-even
effects in P,, because the cores and tails are attached to
each other in the molecules, and thus the tails affect the
cores.

We also note that the values of P,, in Fig. 4 are about
an order of magnitude larger than the values of P, in
Fig. 5, since it is easier to orient rigid cores than
semiflexible tail chains. We do see some ordering of the
semiflexible tail chains because the cores and tails are at-
tached to each other in the molecules, and thus the order-
ing of the cores affects the ordering of the tails.

The magnitudes of the relative density changes in Fig.
8 are in good agreement with experimental values (see,
for example, Refs. 26-28). Also, the magnitudes of the
reduced entropy changes in Fig. 9 are also in good agree-
ment with experimental values [see, for example, Refs. 5,
11(a), and 29-38].

In Figs. 2-6 and 8, curves drawn through the values
for the various thermodynamic and molecular ordering
properties for even f, (i.e., for tail chain 2 with even
numbers of carbon atoms) are higher (at larger magni-
tudes) than the curves for odd f,. The reverse trend is
seen in Figs. 7 and 9. Both cases (“‘evens high” and
*“‘odds high”) for various physical properties are seen ex-
perimentally (see, for example, Refs. 5, 6, 11, and 18) in
the same system and in different systems.

Another major conclusion of this paper is as follows.
The magnitudes of the odd-even effects due to the intra-
chain constraints on the tail-chain flexibility in this paper
appear, in general, to be almost as large as the magni-
tudes of the odd-even effects from experimental measure-
ments in LC systems (see, for example, Refs. 5, 6, 11, and
18). This result implies that the intrachain constraints
are by far the major factor responsible for odd-even
effects in these systems and thus account for most of the
magnitude of these odd-even effects.

In addition, the fact that the odd-even effects from in-
trachain constraints in this paper are a little smaller than
the odd-even effects from experimental measurements in-
dicates that intermolecular constraints on the tail-chain
flexibility also make some contribution to the odd-even
effects seen experimentally. However, the purpose of this
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FIG. 8. Relative density changes [10%(Ap/py)] (indicated by
dots) vs the number f, of segments in tail chain 2 for the
Lennard-Jones nondipolar system at the N-I transition. [Note
that (Ap/py) has been multiplied by 100 before being plotted;
pn is the density in the N phase at this transition.] The solid
lines are defined as in Fig. 2.

paper here is to isolate and focus on contributions from
intrachain constraints. In another paper*® to be pub-
lished, the more difficult problem of treating contribu-
tions from intermolecular constraints on the tail-chain
flexibility is addressed in an explicit manner using (as in
this paper here) no ad hoc or arbitrarily adjustable pa-
rameters.

While we have noted good quantitative and semiquan-
titative agreement between calculated results and experi-
mental results in general in this paper here, the major
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FIG. 9. Reduced entropy changes [AS /(N,, kz)] (indicated
by dots) vs the number f, of segments in tail chain 2 for the
Lennard-Jones nondipolar system at the N-I transition. The
solid lines are defined as in Fig. 2.
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purpose of this paper here has been to predict and explain
trends in thermodynamic and molecular ordering proper-
ties (including odd-even effects) as a function of pressure,
temperature, and details of molecule chemical structure
(including intrachain constraints on tail-chain flexibility).
An exhaustive comparison of results calculated using the
theory of this paper with experimental results for a large
number of existing LC systems is properly left for later
papers.

IV. CONCLUDING REMARKS

In conclusion, the importance of the flexibility of n-
alkyl tail chains in real liquid-crystal systems was re-
viewed. Two new microscopic, molecular statistical-
physics theories (a full statistical theory and a simpler,
but accurate approximate theory) for the intrachain con-
straints on the n-alkyl tail-chain flexibility were presented
and were compared with each other and with an old,
more approximate theory for tail-chain flexibility used in
earlier papers. The new approximate approach is compu-
tationally much faster than the full statistical method.

The new approximate method of this paper is the first
treatment to generate and explain odd-even effects in
multiple smectic- A phases and the first treatment to gen-
erate and explain odd-even effects in smectic-4 and
nematic phases without using ad hoc or arbitrarily adjust-
able parameters and without resorting to arbitrary fits to
experimental data.

Phase stabilities and odd-even effects for various ther-
modynamic and molecular ordering properties were cal-
culated in the smectic-4,, smectic-4,, and nematic
liquid-crystal phases and the isotropic liquid phase using
the new approximate method for intrachain contributions
to the tail-chain flexibility. As discussed earlier in Sec.
III the calculations in this paper are in good semiquanti-
tative and (in some cases) quantitative agreement with
available experimental data. Also, predictions and ac-
companying physical explanations are made for various
systems that have not yet been chemically synthesized
and/or experimentally studied.

The theoretical results with the new approximate
method in this paper offer some significant
improvements—compared with experiment—over the
theoretical results of earlier papers. For example, the rel-
ative stabilities of the smectic-4 phases with respect to
the nematic phase are in better agreement with experi-
ment when these stabilities are calculated using the new
approximate theory of this paper.

The calculations in this paper show for the first time
that intrachain constraints (as opposed to intermolecular
constraints) on the tail-chain flexibility are by far the ma-
jor factor responsible for odd-even effects in these liquid-
crystal systems and thus account for most of the magni-
tude (size) of these odd-even effects.

In another paper*® the new theories of intrachain con-
straints on the tail-chain flexibility in this paper here are
applied to the problem of re-entrant and multiply-
reentrant LC phases. [A reentrant phase is a phase that
appears in one temperature range, disappears in a lower
temperature range, and then reenters or reappears in an
even lower temperature range. A multiply-reentrant
phase reappears more than one time as the temperature is
lowered. These reentrant and multiply-reentrant LC
phases are well established experimentally (see, for exam-
ple, Refs. 21 and 41 and references therein).]

In other papers*’ the new theories of this paper here
are extended to treat liquid-crystal polymers (LCP’s).
Those papers treat both backbone LCP’s and side-chain
LCP’s, as well as binary mixtures of a backbone LCP and
a second component (which can be LC or non-LC, or po-
lymeric or nonpolymeric).

Note added in proof. These theories for LCP’s have
also been used by this author*®® to predict and design
(atom by atom, bond by bond) the first superstrong
LCP’s, several of which are now being chemically syn-
thesized* at Los Alamos.
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