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Decay rates in bistable Landau potentials driven by weakly colored Gaussian noise
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We investigate a bistable Fokker-Planck equation describing the overdamped motion of particles
in a Landau potential driven by weakly colored Gaussian noise. Our focus is on the noise-intensity
dependence of the decay rates in the limit of small correlation times of the noise. In linear order of
the external-noise correlation time 7 the decay rates can be expressed in terms of the eigenvalues of
a white-noise Fokker-Planck equation. Numerical results for the first nonvanishing eigenvalue, i.e.,
the inverse mean first-passage time, are presented for arbitrary noise intensity. In the limit of very
low noise intensity an analytical expression is derived and in the strong-noise limit an asymptotic

form is given for this eigenvalue.

Recently a great deal of interest has been devoted to
the understanding of (nonlinear) dynamical systems per-
turbed by noise. Recent experiments and numerical cal-
culations on dye lasers,! the laser gyroscope,? and bistable
stochastic systems>* confirmed the need for modeling
noisy disturbances by colored noise, i.e., stochastically
fluctuating forces with (at least one) finite correlation
time 7.

The archetypal bistable situation is the overdamped
motion in the Landau potential

flx)=—ax2/2+bx*/4 (1)

driven by exponentially correlated Gaussian noise;*~1°

i.e.,

X =ax —bx3+e€(1),
(2)
(e(1))=0, (e(t)e(s))=(D/T)exp(— |t —s | /T) .

Here 7 denotes the correlation time and D is the noise in-
tensity. In the weak-noise regime (small D) a typical
quantity of interest in such a system is the mean first-
passage time (MFPT); ie., the time measure of a
(thermally) activated escape of a particle from one meta-
stable potential well to a neighboring one.!!

The early work on the dynamical system (2) concen-
trated on the small-r behavior,>® whereas recent progress
has been made in the moderate- to large-7 regime in vari-
ous bistable and monostable stochastic systems.!'=*812
However, there has been renewed interest on the small-7
(Markovian) limit of Eq. (2).”7%!3 Though the limit of
weak-noise color has been investigated extensively over
the years, there still exist a variety of conflicting predic-
tions which have been sorted out in Refs. 7 and 10. In
particular, the conflict between various theoretical pre-
dictions in the moderate- to large-7 regime has been tied
down to some extent in Ref. 4 for a bistable periodic po-
tential, but there still exists some need for exact numeri-
cal or analytical results for the MFPT in the small-7 re-
gime.”!® Since the equivalence of the inverse MFPT and
the first nonzero eigenvalue A, of the corresponding bista-
ble Fokker-Planck equation (FPE) is well established in
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the weak-noise limit,'»!* our focus is on the small-r be-

havior of A,(7), see also Refs. 4(a) and 10.

Following the 7 expansion of Ref. 5 the correct prefac-
tor for the MFPT and the lowest eigenvalue have been
deduced in Ref. 6. (This corresponds to evaluating the
correct small-7 dependence of the Arrhenius law.) Refer-
ring to the dynamics of Eq. (2), this result may be sum-
marized in leading order in T as follows:

A(a,b,D,7)=(1—PBat)A,(a,b,D,7=0)+0(7) . (3)

Employing the method of steepest descent 3, has been
calculated to be 3,=1.5 (Ref. 6) in the asymptotic limit
of vanishing noise intensity. Because analog and digital
simulations cannot deal with the limit of arbitrary small
noise intensity a finite D has to be taken into account and
the question arises quite naturally what the value of 3, in
Eq. (3) is for (very) small but finite D. In this communi-
cation particular emphasis is given to the low-noise-
intensity regime of Eq. (3) and an analytic expression for
[, valid for small D is derived. Moreover, numerical re-
sults for arbitrary D and an asymptotic expansion for
large D are presented for the coefficient 3, in Eq. (3).

In the small-7 limit (7 expansion) (Ref. 5) the effective
Fokker-Planck-like dynamics of Eq. (2) is given by the

short-relaxation-time ~ Fokker-Planck  approximation®
(SRTFPA)
) i) 3’
S P= | f(x)+=—=D[1—7f"(x)] |P 4
o axf(x)+ W [1—7f"(x)] s (4)

with the probability distribution P =P(x,t). In the one-
variable case a FPE with x-dependent diffusion can al-
ways be transformed to a FPE with a constant diffusion
coefficient, see for instance Ref. 15, p. 97. In linear order
in 7 such a transformation of Eq. (4) is achieved by intro-
ducing the new variable

y=x+%f’(x)+0(72). (5)
The SRTFPA (4) is thus transformed to
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d 9’
—F'(y)+D—
dy a Ay?

3 -~
—p=
at

where the new potential F(y) is given by

F(y):f(y)—%f"(yH-O(Tz) (7a)

and P=P(y,t). For the Landau potential (1) the poten-
tial (7a) has again the form of the Landau potential with a
rescaled parameter a —»a +3bDr;i.e.,

F(y)=—(a +3bD71)y?/2+by*/4+aD7/2 . (7b)

[The constant term in Eq. (7b) may be omitted because
only derivatives of F(y) enter the FPE (6).] Therefore, in
leading order in 7 all eigenvalues of Eq. (4) are expressed
through the eigenvalues of Eq. (6) which is a white-noise
FPE:

AMa,b,D,7)=Ala +3bD7,b,D,0)+O(72) . (8)

A simple transformation of the variables x, €, and ¢ shows
that for the white-noise case the following relations hold:

Ma,b,D,0)=aA(bD /a®)=V'b/D Ma/V'bD ), (9)

where A(D)=A(bD/a?) and Xa)=A(a/VbD) are
defined by

MD)=A(1,1,D,0), AMa)=Aa,1,1,0). (10)
Therefore we have

Aa +3bD7,b,D,0)=(a +3bD7)A[bD /(a +3bD1)*]

=V'b/D X[(a +3bD7)/VBD ] . (11)

From Eqgs. (8) and (11) we readily derive our main result.
That is the 3 coefficient valid for any arbitrary eigenvalue
A in Eq. (3):

— — d - = —
(D)=6D>—— In[A(D)]—3D
B 5 n[ ]

e VB (12)

——3VD L ma|
da
Thus we have expressed the 3 coefficient in Eq. (3) for
any eigenvalue A by the logarithmic derivative of the cor-
responding white-noise eigenvalue in the Landau poten-
tial (1) with the normalization a =b=1or b =D =1, re-
spectively.
In the case of small noise intensity D the Kramers rate
for the first eigenvalue A,(D) may be used in Eq. (12) and
we obtain in leading order in D

Bi=1.5-3D . (13)

However, since refined versions of Kramers original re-
sult have been calculated we might also employ an im-
proved Kramers rate, see, e.g., Ref. 15, Eq. (5.112),

which by insertion into Eq. (12) leads to
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B,=1.5—3D(14+3D)+0(D">) . (15)

In the regime of moderate to large noise intensity it
seems to be more appropriate to use the second normali-
zation in Eq. (10). For very large-noise intensity (small
@) a Taylor expansion of In[A(Z)] around @ =0 thus leads
to the asymptotic expression

B,(D)=1.412(D)"/*4+0.396+0(D ~'?) . (16)

On the other hand, In[A,(D)] (or In[A,(@)]) and its
derivative may be obtained for arbitrary values of the
noise intensity by computing the smallest nonvanishing
eigenvalue A (D) [or A,(a@)] of the white-noise FPE (6) by
means of the matrix-continued-fraction (MCF) method."?
Because of the simplicity of the problem only 2%2 ma-
trices are involved in this case. [We note that in Ref. 16
one of us (H.R.) has already calculated X,(@) by employ-
ing the numerical algorithm just mentioned.] We thus
obtain the f3; coefficient by numerically differentiating
In[A,(D)] (or In[,(@)]). Using a 15-digit arithmetic B
can be calculated down to D =0.015.

The result for B, as a function of the noise intensity D
is displayed in Fig. 1. The inset of Fig. 1 demonstrates
that B, always remains positive. It first decreases with in-
creasing D, passes through a minimum value " =1.245
at D=0.119, and then increases to infinity. Moreover,
there exists a certain D value (D ~0.456) for which f,
again takes on the steepest descent (D—0) value,
By=1.5. This nonmonotonic behavior of B, in the range
0<D <0.456 may lead to confusion in analog or digital
simulation experiments. Second, we recognize that the
linear approximation (13) for B, is in good agreement
with the numerically exact result for D <0.02, which is

1.8 2 3 AN

FIG. 1. Coefficient B, of Eq. (3) vs normalized noise intensity
D =bDa ? and, in the inset, vs (D)2 Solid line: MCF result.
Dashed line: Kramers rate result (13). Dotted line: improved
Kramers rate result (15). Dotted-dashed line: asymptotic ex-
pansion (16) for large D.
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valid within the SRTFPA (4). However, the improved
Kramers rate result (15) for 8, is a better approximation
in the range D <0.05. Thus the values D =0.02 or 0.05
clearly constitute the weak-noise limit of our model if the
original or the improved Kramers rate is used, respective-
ly. In the strong-noise limit the asymptotic expression
(16) also approximates the numerics quite well. Finally,
we want to compare our results for 3, with the two values
reported in Ref. 10, where the full two-dimensional Mar-
kovian problem corresponding to the one-dimensional
non-Markovian dynamics (2) has been solved numerical-
ly. For D =0.05 both results agree, 8;=1.33, while for
D=0.03 the B, value of Ref. 10, B,=1.44, slightly
exceeds our result, 8,=1.40.

In conclusion we have derived a formula for the eigen-
values of the SRTFPA (small-7 regime) for the Landau
potential valid for arbitrary noise intensity D, see Eq.
(12). Analytical approximations (improved Kramers rate)
are in good agreement with the numerical results for
weak-noise intensity. In view of results present elsewhere
we might conclude that the SRTFPA of Refs. 5 and 6
yields quantitative agreement for the escape rate'® and
the stationary distribution function®® provided the re-
laxation time of the noise is small enough. (It should be
mentioned that the relevant 7 range of the SRTFPA
shrinks with decreasing noise intensity D.!°) Moreover, it
was pointed out that for small noise color the numerical
effort can be substantially diminished. In the small-7 lim-
it it seems not to be necessary to treat the full two-
dimensional Markovian problem corresponding to the
one-dimensional non-Markovian dynamics (2), instead
one only has to solve the white-noise FPE (6). For
intermediate- to large-r values, however, the MCF

method provides the only approach for numerically solv-
ing the full two-dimensional problem 3410

Some final remarks seem to be appropriate. First of
all, we stress that our approach and the application of
Eq. (12) is clearly restricted to the small-r limit, since it
relies on the SRTFPA (4). (A similar calculation may
also be performed for the periodic bistable potential
which has been investigated in Ref. 3.) Thus Eq. (12)
does not apply in the moderate- to large-r regime, where
the decoupling ansatz*® was proved to give qualitatively
correct results for the escape rate and the eigenvalue
A,(7), respectively, in a bistable periodic potential*® and
in the Landau potential (1).!° In particular the aim in
Ref. 4(a) was to confirm the exponential 7/D behavior of
the MFPT for moderate- to large-7 in the weak-noise lim-
it (small D). On the other hand, it is well known that the
decoupling ansatz does not reproduce the correct small-7
behavior of A,(7), see, e.g., Ref. 7. This may also be seen
by expanding the approximate law A(7)~exp{—«7},
which has been employed in Ref. 3(a). Finally, we note
that the analytical prescriptions of the SRTFPA and the
decoupling ansatz for the decay rates should not be
mixed with the corresponding predictions for the station-
ary distribution function Pg(x). It has been shown very
recently that the decoupling ansatz reproduces Pg(x),
e.g., in the ring laser gyroscope*® and in a periodic bist-
able potential®® very nicely over a (much) larger-r range
than the SRTFPA provided the noise intensity D is small
enough.
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