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Non-Gaussian behavior of the displacement statistics of interacting colloidal particles
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A colloidal dispersion consisting of optically matched host particles and a small amount of
strongly scattering tracer particles has been studied with dynamic light scattering. Analysis of the
self-dynamic structure factor F, (q, t) obtained from these measurements demonstrates that the dis-

placement statistics of the interacting colloidal particles shows considerable non-Gaussian behavior.

I. INTRODUCTION
(2) (I(0)I(t) )

In recent years a considerable interest has arisen in the
Brownian motion of interacting colloidal particles. ' In
concentrated dispersions, the Brownian motion of a col-
loidal particle is influenced by direct interactions and hy-
drodynamic interactions with other particles. The
Brownian motion of a given particle depends, therefore,
on the spatial configuration of the surrounding particles.
This configuration will change significantly on a time
scale ~l, which is on the order of the time it takes for a
particle to diffuse over its own diameter. The effect of
this change of the spatial configuration is that for times
~=—~z the mean-square particle displacement is no longer
linear in time and the statistics of the particle displace-
ment is expected to show non-Gaussian behavior.

In this paper we report for the first time experimental
results for the non-Gaussian behavior of the particle dis-
placement statistics. By carrying out dynamic light
scattering (DLS) experiments on colloidal dispersions
consisting of optically matched host particles to which a
small amount of strongly scattering tracer particles were
added, we were able to measure the self-dynamic struc-
ture factor. Moreover, because the particles had a radius
of 80 nm, we could follow the motions of the particles on
the above-mentioned time scale vr.

In Sec. II we show how the self-dynamic structure fac-
tor of interacting colloidal particles can be obtained by
DLS, and how the particle displacement statistics can be
derived from it. Experimental details of the sample
preparation and the light scattering method are described
in Sec. III. In Sec. IV we present the results of the DLS
measurements and determine the non-Gaussian statistics
of the particle displacement. In Sec. V we discuss the
conclusions that can be drawn from the present work.

II. THEORY

A. The self-dynamic structure factor

In a homodyne dynamic light scattering experiment
one measures the normalized autocorrelation function of
the scattered intensity

(E (q, 0)E'(q, 0)E(q, t)E'(q, t) )

Here E(q, t) is the scattered electric field amplitude at
scattering vector q =(4mn i))o) sin(e/2), where Ao is the
wavelength of the light in Uacuo, n is the refractive index
of the suspension, and 8 is the scattering angle. Since the
scattered light will have Gaussian statistics one has the
(Siegert) relation

g' '(t) =1+C
/

g"'(t)
/

(2)

(4)

where f (q) is the scattering amplitude of particle j, and

rl (t) is its position at time t
In the Rayleigh-Gans-Debye approximation the

scattering amplitude of a homogeneous spherical particle
with refractive index n can be written as

f, (q) = VJ ( n~ no )B(q), —

where V is the volume of the particle, no is the refractive
index of the dispersion medium, and B (q) is the square
root of the forin factor P(q) =B (q). If the particles are
identical in terms of size and interactions but differ in
scattering power, i.e., refractive index, then Eq. (4) can be

where C(0 & C & 1) is a constant which is determined by
experimental factors such as the optical detection
configuration and g"'(t) is the norinalized autocorrela-
tion function of the scattered electric field amplitude

(E(q,0)E (q, t)) F (q t)
(I) SM( )

Here F (q, t) is the ineasured dynamic structure factor
and S (q) =F (q, 0) is the measured static structure fac-
tor.

For N rigid spherical particles, the measured dynamic
structure factor is given by

F (q, t)=[Nf (q)]
N

X g (f;(q)f (q) exp{ iq. [r, (0)—r, (t)]I ),
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written rigorously in terms of ensemble averages and
number averages. The number averages are given by

N
fm N

—1 yfm (6)

and Eq. (4) reduces to'

F (q, t)=(f /f )F(q, t)+(1 f /f—)F, (q, t),
where

N

F(q, t)=N ' g (exp[iq [r;(0)—r~(t)]] )
i j =1

is the full dynamic structure factor and

F, (q, t) = (expI iq [r(0)—r(t)]I )

(7)

(8)

(9)

is the self-dynamic structure factor. The first and second
term in Eq. (7) are also described as the "coherent" and
"incoherent" parts of F

Under a refractive index matching condition, i.e.,
N

no n=——N 'gn;,
i=1

we see that

(10)

For a suspension that consists of two types of particles
with refractive indices n

&
and n 2 at relative concentration

a and 1 —a, the refractive index-matching condition, Eq.
(10), becomes

n(1 n=n2——+a(n, n2), —

and Eq. (11)becomes

A, (n2 —no+a[n, —nz]) S (q)

a(1 —a)[n, n2]—

(12)

(13)

In practice, self-diffusion may be observed by perform-
ing a tracer experiment, i.e., adding a small amount
(a « 1) of strongly scattering tracer particles to a
matched host dispersion ( n z no ). Th——e summation in

Eq. (4) runs only over the N, tracer particles for which

f;(q)&0, and if this number is suSciently small

(N, «N) cross terms i&j may be neglected. However,
the concept of a genuine tracer experiment is somewhat
illusory because from Eq. (12) we see that the refractive
index of the medium should be equal to the number aver-
aged refractive index of the particles, which changes after
the addition of the tracer particles. The question of how

f= VB(q)(n no)—=0

and so the measured structure factor is identical to F, ~

Away from the match point, no differs from the number
averaged refractive index of the particles. In such a case
one measures both F, and F Because . F(q, 0)=S (q) is
the structure factor of the (ideal) monodisperse suspen-
sion, the ratio of the coherent to the incoherent (self) part
of F is given by

many tracer particles can be added before a significant
amount of coherent scattering is observed is equivalent to
the question of how far away from the match point one
can operate. The answers to both questions can be found
from Eq. (13), which for n2 ——no and a «1 reduces to
A, /A, =aS (q).

B. Statistics of the particle displacement

The self-dynamic structure factor is the spatial Fourier
transform of the probability density function P(b, r, t) for
a particle to have undergone a displacement b r in a time

F, (q, r)=e xp[ qp, —(t)+q p, (t) —],
where the p's are given by

p1(r) =-,'( &r'(r) ),
p, (r) =,~ [3(Ar'(r) ) —5(hr'(r) )'],

(14)

(15)

etc. If the particle displacements have Gaussian statis-
tics, i.e., the probability density function P(b, r, t) has a
Gaussian form, then all cumulants except p1(t) are zero.
This means that the value of p2(t) provides a first mea-
sure of the non-Gaussian behavior.

Following Rahman, ' the non-Gaussian behavior of
P(br, t) may be expressed in terms of the function a2(t)
defined as

2pz(t)
a2(t) —=

(p1(r))
(16)

For noninteracting particles, the displacement hr is a
Gaussian variable for times larger than the relaxation
time rz ——m/(6m. ria) of the Brownian fluctuations in the
particle velocities (m is the particle mass, a is its radius,
and g is the viscosity of the solvent. The Brownian
motion of independent spherical colloidal particles can be
characterized by the single-particle diffusion coefficient

kT
Do ——

7
6m.ga

where k is Boltzmann's constant and T is the absolute
temperature. The mean-square displacement of a particle
is linear in time for all times much larger than ~z

(b, r (t))=6Dot, t »r~ . (17)

For interacting particles, one has to take into account
that for times larger than ~, -a /Do the particle velocity
ceases to be a stationary random function of time. The
mean-square displacement is now only linear for "short"
times v~ && t &&~1 and "long" times t gg~l,

6D,'" "t, ~~ ((t ((~l
(18)

6D, "gt, t ~&wl

F, (q, t)= J P(hr, t)e'q ~'d(br) .

Because F, is a moment generating function of P, a cu-
mulant expansion of lnF, in powers of q gives
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where D,'"'" and D,"" are the short- and long-time self-

diffusion coeScients, respectively. In addition, the parti-
cle displacement is no longer expected to be a Gaussian
variable at time scales comparable to ~1.

III. EXPERIMENT

The host particles in the dispersions studied consisted
of silica cores sterically stabilized with poly(isobutylene)
(PIB)." The tracer particles were poly(methyl-
methacrylate) (PMMA) particles sterically stabilized by
poly(12-hydroxy stearic acid) (PHS). ' The particle radii
were determined by DLS in dilute suspensions. Both
types of particles have a radius a of 80+1 nm. The rela-
tive standard deviations in size are approximately
a =10% for the silica particles and o =15% for the
PMMA particles.

For particles of this size, qa is of order unity. Since the
self-dynamic structure factor decays essentially as
exp[ —q (Ar (t))I6j, we thus are able to measure
motions both at "short" times, i.e., times for which
(hr (t))' &a, as well as at "long" times, i.e., times for
which ( b,r (t) ) '~

& a.
To perform a tracer experiment, one has to select a sol-

vent with a refractive index close to that of the host parti-
cles. Both types of particles have to form stable disper-
sions in this solvent. Furthermore, mixtures of these
dispersions have to remain stable too. This last condition
is often the most dificult to achieve. We found that
cyclo-octane satisfies all these requirements. Mixtures of
the silica and the latex particles in this solvent show no
sign of phase separation or aggregation. At 41'C the
host particles are optically matched in cyclo-octane for
the 632-nm He-Ne laser line. The scattered intensities of
these silica particles showed a broad minimum around
this temperature. This indicates that the host dispersion
is already optically polydisperse in itself. However, the
residual (incoherent) scattered intensity in the match-
point is too low to obtain intensity autocorrelation func-
tions of sufticient accuracy for further quantitative
analysis. Therefore a small amount of tracer particles has
to be added. The difference between the refractive in-
dices of the latex and the silica particles, n& —n2=0. 05,
is large enough to ensure that even a small amount of
tracer particles provides strong incoherent scattering.

Medium concentrated stock dispersions in cyclo-
octane were made dust free by means of filtration through
Millipore filters. The host dispersion was brought up to
the required concentration by centrifugation and removal
of the supernatant. The ultimate weight fraction was
measured by drying weighed samples taken from the (cy-
lindrical) measurement cell. Finally the tracer dispersion
was obtained by adding a few drops of the medium-
concentrated PMMA dispersion (of known weight frac-
tion) to this host dispersion. Volume fractions P were
calculated from the weight fractions using the densities of
the silica particles, PMMA particles and solvent, 1.60,
1.19, and 0.834 g/cm, respectively.

The He-Ne laser beam was focused in the sample cell,
which was placed in a cylindrical refractive index match-
ing bath. The temperature of this surrounding bath was

controlled within 0.1'C. Autocorrelation functions were
measured with a Malvern Multibit K7025 128-channel
correlator at a number of angles between 30' and 150', all
with the same sample time of 20 ps. In order to measure
D,""I in concentrated dispersions, additional measure-
ments were made with much longer sample times at small
scattering angles.

IV. RESULTS AND DISCUSSION

A. Measurement of the self-dynamic structure factor

The maximum value of qa reached in the experiments
was less than 2.3. For a hard-sphere system this means
that S(q) & l. If we require the ratio of coherent to in-
coherent scattering to be less than 1%, then, from Eq.
(13), we see that the fraction a of tracer particles should
be less than 0.01. Owing to the optical polydispersity of
the host dispersion, this requirement is actually less
stringent because the calculation really applies to the case
of pure monodisperse host particles.

The influence of the (number of) tracer particles was
determined by comparing DLS measurements on a
dispersion of volume fraction /=0. 145 before and after
the addition of the tracer particles at relative concentra-
tion a =0.01. In order to estimate the influence of the re-
fractive index of the solvent, these autocorrelation func-
tions were measured at a number of temperatures and
their decay rates were compared, after correction for the
temperature dependency of Do.

At all angles and temperatures with the exception of
the match point, the decay of the measured intensity au-
tocorrelation function was slower after the addition of
the tracer particles, clear evidence of the presence of the
slowly decaying self-dynamic structure factor. For the
tracer dispersion, the temperature-corrected decay rate
was relatively insensitive to temperature in a range of
+5 'C around the match point (40'C). Far away from the
match point the coherent scattering begins to dominate,
especially for the host dispersion. The (initial) decay rate
of the full dynamic structure factor decreases with in-
creasing scattering angle, but this decay is always faster
than the decay rate of the self-dynamic structure factor.

Increasing the number of tracer particles from a =0.01
to a=0.02 only led to an increase of the scattered inten-
sity, and thereby to a better signal-to-noise ratio, but
showed little or no further effect on the measured dynam-
ic structure factors. We concluded that at 41 C the
influence of coherent scattering could be completely
neglected for the tracer system. In any case, the unwant-
ed contribution of coherent scattering would be maximal
at the highest angles (q values) where S(q) is largest, and
this would lead to the introduction of a rapidly decaying
mode at those high-q values. As will be discussed in Sec.
IV B an opposite effect is observed, which can be fully at-
tributed to the non-Gaussian terms in the self-dynamic
structure factor. To achieve a reasonable signal-to-noise
ratio without danger of multiple scattering, only the
lowest two concentrations were prepared with a relative
fraction of tracer particles a=0.02, whereas the other
concentrations were prepared with a =0.01.
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teraction between the particles.
In Fig. 5 we plot a2(t) as a function of t for different

volume fractions P. Like in the case of the molecular-
dynarnics simulation of liquid argon by Rahman, ' we
find that az(t) is positive. The measurement errors in a2,
as calculated from the fitting procedure, are 10—20%, a
range which is comparable with the reproducibility of the
measurements. These estimates do not include possible
systematic errors. For example, such an error might be
introduced by the rescaling of the autocorrelation func-
tions. Incorrect rescaling, such that F, (q, O)&l, might
lead to an absolute systematic error in p&. The inhuence
of this error on o,z would be largest at the shortest times,
where p& =0. Because of these considerations, we did not
plot in Fig. 5 the values of a2 obtained at the shortest
times.

FIG. 4. Normalized self-diffusion coefficients D, /Do as a
function of volume fraction P: short-time self-diffusion

D,'"'"/Do (0) and long-time self-diffusion D,"" /D&(o ).
V. CONCLUDING REMARKS

Ottewill and Williams. ' The experimentally observed
strong decrease of the long-time self-diffusion for the
hard sphere dispersions studied here differs considerably
from the theoretically predicted behavior of high charged
colloidal particles with a soft long range repulsion. ' Ap-
parently the long-time self-diffusion coefficients are very
sensitive functions of the steepness of the repulsive in-
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FIG. 5. Non-Gaussian behavior of F, expressed as a2 vs t,
showing the results for volume fractions /=0. 14~ ( —-—-),
/=0. 31 (. . . ), and /=0. 37 ( ———).

We have found experimental evidence for the oc-
currence of large non-Gaussian effects in the displace-
ment statistics of tracer particles in concentrated disper-
sions. In view of the delicate manipulations required to
derive these effects from the data, we paid close attention
to possible experimental artifacts. We are confident that
our results are not caused by polydispersity of the tracer
particles, or possible alignment errors in the optical sys-
tem, multiple scattering and/or a contribution of
coherent scattering. The fact that non-Gaussian behav-
ior was not observed in previous work' on colloidal
tracer systems might be because in that case qa was much
larger than 1, which restricts the measurements to short
times.

We would like to point out that it cannot be concluded
from our data that az(t) will diverge at short times, al-
though the values of a2(t) presented here roughly behave
as t ' on the time span observed. In order to establish
the behavior of uz(r) at very short times experiments
have to be done using particles with a radius larger than
80 nm r.

We found that u2(t) is positive, which means that the
probability density function P(hr, t) for the particle dis-
placements hr in a time t has a higher central peak and
broader skirts than a Gaussian function of the same stan-
dard deviation. From this it follows that both very small
and very large values of the displacement are more prob-
able than for a normal distribution of the same standard
deviation. ' A significant quantitative difference of the
present experimental results for the Brownian movement
of colloidal particles with the molecular-dynamics simu-
lation results for liquid argon is that the value of az(t) ob-
tained here is roughly one order of magnitude larger and
appears to decay to zero much slower. Gaylor et al.
performed Brownian dynamics simulations for a dilute
dispersion of particles interacting with a long-ranged
weakly screened Coulomb pair potential and obtained re-
sults for a2(t) comparable to those obtained by Rahman
in his molecular-dynamics simulation of liquid argon. So
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far no Brownian dynamics simulations of concentrated
hard-sphere dispersions have been reported. En light of
our new and unexpected experimental results, it would be
extremely interesting to perform such calculations to see
whether they would provide further evidence for the pro-
nounced non-Gaussian behavior of the particle displace-
ment statistics observed in the present study.

The significant difference of the behavior of the non-
Gaussian term with the corresponding quantity for sim-
ple liquids indicates that notwithstanding some formal
similarities between the dynamics of concentrated parti-
cle dispersions and simple liquids there are apparently
also important differences.
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