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Nematic alignment at a solid substrate: The model of hard spherocylinders near a hard wall
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A system of hard spherocylinders near an impenetrable wall is studied in the low-density Onsager
approximation. Using a simple local approximation for the one-particle distribution function, we
show that the preferred orientation of the nematic director is parallel to the wall. The density and
order-parameter profiles are calculated. The nematic main order parameter Q is enhanced near the
wall even though the density is reduced. The wall-induced biaxiality I' is small in the interfacial re-
gion. We find that wetting by the nematic phase should occur at the nematic-isotropic coexistence.

I. INTRODUCTION

The properties of liquid crystals are very sensitive to
boundary conditions. Even a weak interaction with a
limiting surface can change the structure of a liquid crys-
tal in the layer adjacent to that surface. Therefore it is
very important for practical applications of liquid crys-
tals to study the effect of boundaries on their properties.
Thus it is not surprising that the problem of liquid crystal
surfaces received both experimental' and theoreti-
cal ' attention.

One of the interesting and rather poorly understood
problems is the mechanism of alignment of liquid crystal
molecules at various limiting surfaces. One such surface
is the nematic free surface. The experimental re-
sults'" ' show that the preferred orientation of the
nematic director at this surface is, in almost all cases, '

normal or close to normal to the surface, especially for
temperatures close to the nematic-isotropic transition
temperature. On the other hand, in the case of the
nematic-isotropic interface, the director is usually tilted
with respect to the normal and the tilt angle is in the
range of 50'-70'

We have shown recently, ' studying the Onsager model
of a nematogen, ' that anisotropic hard-core interactions
favor perpendicular alignment of molecules at the nemat-
ic free surface and also a tilted director at the nernatic-
isotropic interface. The tilt angle has been found to be
close to 60' independently of the length-to-width ratio of
a molecule. Of course, to explain the variations of the tilt
angle with temperature" ' one must take into account
attractive forces. ' Nevertheless the results obtained
for anisotropic hard-core interactions alone suggest that
the short-range repulsion plays an important role in the
mechanism of the director orientation at both the free
surface and X-I interface. Thus one can expect that also
in the case of liquid crystal alignment at solid surfaces the
short-range fluid-fluid and substrate-fluid anisotropic
repulsion is very important.

Numerous experiments have been performed to study
solid substrate-liquid crystal interfaces. ' Often
the substrates have been treated by special techniques
like rubbing, buffing, oblique evaporation, and others. '

They are thought to produce a desired director orienta-

tion at the surface. They do not, however, always lead to
unique results ' and in some sense hide the true mecha-
nism of the alignment of liquid crystal molecules. An
insufficient purity of the liquid crystal may also lead to
confusing results. For example, impurities produced by
hydrolysis of the liquid crystal can change the director
orientation from homogeneous to homeotropic. Such a
behavior has been observed for MBBA [N-(4-n-methoxy)
benzylidene-4'-(n-butyl) aniline] and 5CB [(4-n-pentyl-4'-
cyano) biphenyl] in a remarkable experiment by
Ohgawara et al. The authors show that if they remove
the impurities and deal only with clean inorganic sur-
faces, then the alignment of all nematic liquid crystals of
Schiff base, biphenyl, ester, PCH, and azoxy compounds
is parallel to the surface, This fact cannot apparently be
explained by van der Waals forces nor by polar order-
ing. 26 Thus the short-range anisotropic repulsion seems
to be responsible for the liquid crystal alignment, at least
for some kind of solid substrates.

In this paper we study the nematic-wall and the
isotropic-wall interfaces assuming that liquid crystal mol-
ecules interact with one another and with the wall only
via hard-core repulsion. The Onsager model of a nemato-
gen adapted to a nonuniform system is assumed. We find
that if the nematic phase is in contact with the wall, the
minimum of the nematic-wall surface tension occurs for
the director lying on the wall. The main order parameter
increases near the wall even though the density decreases.
Close to the wall the system is biaxial but the amount of
biaxiality is small.

The paper is organized as follows. In Sec. II we specify
the model and derive the expressions for the surface ten-
sion, and for the density and the order-parameter profiles.
In Sec. III we present the results of numerical calcula-
tions and Sec. IV is devoted to the discussion. Some de-
tails of analytical calculations are presented in the Ap-
pendix.

II. THEORY

A. The liquid crystal-~all surface tension

We consider the system of hard spherocylinders of
length L and diameter D in the presence of a hard wall.
The position and orientation of a spherocylinder are
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director and co is the unit vector along the symmetry axis
of a molecule. When the wall is present, instead of solv-
ing Eq. (2.5) we approximate p(z, co) as follows:

f (co), (2.6)p(z, co) =pbe

which means that molecules "feel" the wall only through
the direct molecule-wall interaction. This approximation
can be also seep as the first step in the iterative procedure
of solving of Eq. (2.5) if we start from the uniform solu-
tion. Of course, such an approximation would be trivial
for a fluid of hard spheres but it is by no means trivial in
our case because of the coupling between the orientation-
al and translational degrees of freedom. We also assume
that the director orientation does not change throughout
the sample. This assumption is reasonable provided we
do not take into account the nematic-isotropic interface
which favors director orientation other than the wall. '

Substitution of (2.6) into (2.1)—2.3) and subtraction of
the bulk term leads to the expression for the liquid
crystal-wall surface tension y. For hard-core interactions
only entropic terms contribute to the free energy; thus y
can be expressed as follows:

p(r, ~)1= &'f p(r, ~)I+ &'"[p(r,~)
—P)(cfdrdcop(r, co)

+Pf drdco p(r, co)V«t(r, co), (2.1)

where

Xd= fdrd~p(r, ~)[in[a'p(r, ~)]—1I, (2.2)

)M is the chemical potential, P= I/ks T is the Boltzmann
factor, V,„, stands for the external potential, and A
comes from the kinetic energy. oc'" is the excess part of
the free energy corresponding to the interactions between
molecules. We assume the low density Onsager approxi-
mation for V'", i.e.,

y S hp,

k&T ks ksT
(2.7}

,' f-«-(d~, «,d~g, (r„,~„~,)
Xp(r, , co, )p(r&, co2), (2 3) where S is the surface entropy per unit area,

determined by r and co=(8,(p), respectively. The z axis is
chosen to be perpendicular to the wall. The system is
athermal as only hard-core interactions are taken into ac-
count and the only parameters appearing in the problem
are the ratio L/D and the density of the fluid pb at
z =+ Oo. The grand thermodynamical potential 0 as a
functional of the one-particle distribution function p(r, co }
has the following general form:

where f2 stands for the Mayer function which is equal to
—1 when two molecules overlap and 0 otherwise. The
expression for the external potential exerted on a mole-
cule by the hard wall reads as follows:

+ (tt) if z &z (8)
0 ifz~z (8) (2.4)

where 8 is the angle between the z axis and the symmetry
axis of a molecule, and z (8)=—,'(L

)
cos8) +D) stands

for the minimal distance between the wall and a molecule
of orientation ~. The minimization of 0 with respect to
p(r, co) leads to the integral equation for p(r, co),

e~"
p( l col)=

3 e"p —~V«t(rl coi)

+ f dr(zdco2f2(r)z, co„co2)

Xp(r2, coz) (2.5)

In the absence of an external potential Eq. (2.5) has a spa-
tially uniform solution p(r, co) =p),f (co), where f (co) is
the orientational distribution function normalized to uni-

ty. For the isotropic phase f(co)=1/4' and for the
nematic phase f (co)=f (n co), where n is the nematic

bp=p kT ln(A—pb/4n')

r = f dz d~[p(z, m) pb f (m)]=——A(z~(m)) f(~)
0

(2.8)

(2.9)

stands for the adsorption, and ( )f( ) means averag-
ing over orientations with angular distribution f (co). S
contains contributions from both translational and orien-
tational degrees of freedom, i.e., S =S„„+S„.The rota-
tional entropy comes only from the ideal term in the free
energy

S,o, /ks ——pb(z~( co)in[4m.f (co)])f(~) . (2.10)

S„=S'„+S;,",
where

(2.11)

The effect of the wall is twofold: it restricts the rotational
freedom of a molecule and reduces the number of mole-
cules close to the wall. For the isotropic phase the dis-
tinction between S„,and the contribution to the transla-
tional entropy, S„,from the ideal term is the matter of
convention. Thus we have defined S„,in such a way that
it vanishes for the isotropic phase. Both the ideal and the
excess term contribute to S„,i.e.,

St„/ks —— pb (z~(co) )f(cg)—
S«" /k& ——2pb f d cold cozf (co) }f(co, )zttt (col }VO(col & co2 }

+ ,'p), fdco)dco2f (co()f—(co2)f, dz(2[z(q z(col)+z (co~)]V(—
) z,2 ),co(,co~),

V()z)2) ~) ~2)= —f«124 12f2(r)2 ~1 ~2)

(2.12)

(2.13)

(2.14)
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and

V.(~„~,) = —f«,g, (r)2, ~),~Q} (2.15)

is the excluded volume for two spherocylinders. The
derivation of Eq. (2.13) is given in the second part of the
Appendix. S'„ is always negative because the wall re-
stricts the translational freedom of molecules. S'„" is the
correction to S„due to the intractions between pairs of
molecules. Both terms contributing to S'„" are positive.
The first one takes into account the pairs of molecules
one of which interacts directly with the wall whereas the
other does not. The second term takes into account all
pairs in which both molecules interact directly with the
wall. The reduction in the number of molecules near the
wall is given by I, which is always negative, like S',„.

The nematic-wall surface tension y~~ is a function of
n as the director enters through f(co}=f(n ro). Thus

yN)i, (n) should be minimized with respect to n in order
to find the equilibrium value of the tilt angle 0, between n
and the normal to the wall.

The orientations preferred by each of the terms con-
tributing to y)vti, (n) are discussed in Sec. III.

which means that the molecules tend to lie on the wall
but the symmetry in the xy plane is not broken. If the
bulk nematic phase is in contact with the wall then all
profiles depend on the director orientation. Disregarding
the problem of the equilibrium orientation of n we study
here two extreme cases: the perpendicular and the paral-
lel orientation. If n is perpendicular to the wall then the
nematic phase is uniaxial also in the interfacial region
and we find that

n —8 (z)

f sin8d8P2(cos8)f (cos8)

Qz, «)= ~-e. (z)

f sin8d8 f (cos8}
(2.21)

Close to the wall 8 (z)-(m/2) —(2hz/L) and hence
Q„(z) &0. Thus for the perpendicular aligninent, Q„(z)
decreases from a positive bulk value to Q„=——,

' at

hz =0. This means that in a thin layer adjacent to the
wall the molecules order in a similar way as in the isotro-
pic phase, close to the wall. If n is parallel to the wall

then the nematic phase in the interfacial region is biaxial.
In this case the main order parameter Q and the biaxiali-

ty P are given by

B. The density and the order-parameter pro61es Q (z ) =Q„„(z) = —,
' ( 3 sin 8 cos ((p —1 )f ( ) (2.22)

Q; (z)= —,'&3~;~, —s;, )f„„)
—pV,„,(z, ~)

—,
' ( e '"' (3';co~ —5;, ) )f(„)

Pvext(z'~) x
~f( )

(2.17)

If the wall is in contact with a stable isotropic phase we
find all profiles immediately substituting f (co)= 1/4m.
into (2.16) and (2.17), which gives

2hz
P(z) =Pb L

Q„(z)=—1 2hz
2

1

2
'

(2.18)

(2.19)

Q„„(z)=Qyy(z) = ——,'Q„(z) (2.20)

for 0(hz (—,'L. In the interfacial region the density is
reduced and tends to zero as z~0. Q„(z) is negative,

In our approximation (2.6) for the one-particle distri-
bution function p(z, co), the thickness of the interfacial re-

gion, I, is equal to the range of V,„„i.e., 1= ,'(L+D)—.
For z & l the density and the order parameters are equal
to their bulk values. Thus only the range

,'D &z & —,'—(L+D) is interesting. For z & ,'D, p(z)=0-
and the order parameters are undefined. Integrating
p(z, ro) over the angular variables, we find that

—pv „t(z,a))
p(z) pb(e

n —0 (z)

=pb f d(p f sin8d8 f (co), (2.16)

where 8 (z) =arccos(2hz/L), bz =z —
—,'D. The orienta-

tional distribution function is equal to
f (z, co) =p(z, co)/p(z) in the interfacial region and the ten-
sor order parameter is given by

and

& (z) = —,
' [Q„(z)—Qyy

(z) ]

= —,'(cos 8—sin 8sin (p) f( ), (2.23)

respectively. Hence, for Az =0 we find that

Qo= f d(p P2(cos(p)f (cos(p) f d()(&f(cos(p), (2.24)
0 0

and

P, = ——,
' f d(csin'(p f (cosy&) f dy f (cos(p}

0 0

= ——,'(1 —Q()) . (2.25)

Thus Eq. (2.25) gives the relation between the main order
parameter and the biaxiality at the wall.

III. RESULTS

We calculate the nematic-wall surface tension yN)i (n)
and the isotropic-wall surface tension yi~ for the chemi-
cal potential p corresponding to the nematic-isotropic
coexistence, using Eqs. (2.7)—(2.15}. We take f (co) for
the nematic phase and the values of the nematic and iso-
tropic densities at coexistence from the paper by Lash-
er. The key function in our model is V(

~
z, 2 ~, co), co2).

To calculate this function we neglect the spherical and
cylindrical parts of the excluded volume solid for two
spherocylinders. This approximation, described in more
detail elsewhere, ' is consistent with the low-density On-
sager approximation. It also retains all symmetries of the
full solid of excluded volume. The details of calculations
are given in the Appendix.

All integrals appearing in the problem have been per-
formed numerically by the Monte Carlo method. %e
have found that S„,and each of both terms in S;," prefer
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the perpendicular orientation of n. On the other hand
S'„and (hp}I' prefer the parallel alignment because then
the volume inaccessible for molecules is the smallest.
The effect of restricted freedom of translation of mole-
cules caused by the wall, and described by S'„and (hp)I,
turns out to be dominant.

In Fig. 1 the dependence of the nematic-wall surface
tension on the tilt angle 0, is shown for L /D =5, 8, 10,20.
In all cases the minimum of yz~ occurs at 8, =90', i.e.,
for the parallel alignment. Figure 1 agrees qualitatively
with the experimental results of Yokoyama and van
Sprang. The equilibrium surface tension

y,q=y~w(8, =90') as a function of D/L is presented in
Fig. 2. Its decay to zero with D/L ~0 results from the
fact that at constant p the fraction of the volume occu-
pied by spherocylinders tends to zero when D/L~O.
Having calculated the nematic-wall and isotropic-wall
surface tensions for the nematic-isotropic coexistence we
can compare them with the nematic-isotropic surface ten-
sion yzi obtained in our previous paper. ' We find that
the following inequality holds: yew(90 }+ym(~i }& yiw
for 0(t9, (90'. Even though our simple model does not
take into account director distortions we can conclude
that the wetting by the parallel aligned nematic phase
should occur. It is also worth mentioning that for the
perpendicular alignment the opposite inequality holds,
i.e., y~w(0')&yNz(8, }+yiw. In Figs. 3—5 we have plot-
ted the density p(z), the main order parameter Q(z), and
the biaxiality P (z), respectively, for the equilibrium
parallel alignment. Q(z) is strongly enhanced near the

02)

req

0.5

0.0 0.1 0.2

FIG. 2. Equilibrium nematic-wall surface tension

peq( 8& 90' ) as a function of D /L.

wall. P (z) is also enhanced but its value is rather small in
the whole interfacial region. A11 profiles do not depend
on the ratio L/D. This is the consequence of applied ap-
proximations which lead to f (co} independent of L /D.

IV. DISCUSSION

There is a growing evidence' ' ' that the essential
physics of liquid crystals stems from the anisotropic
short-range repulsive forces. The long-range attractive
interactions should serve as an auxilliary factor responsi-
ble for the density change when a change in temperature
occurs. Our results obtained for the model of hard
spherocylinders interacting with a hard wall confirm this
point of view. The main result is that the hard wall
prefers the parallel alignment of the nematic phase. It
has been obtained for the nematic-isotropic coexistence
but it can be extended beyond the coexistence conditions.
This finding is in line with the simple intuitive picture
based on consideration of the translational entropy of the
system. It also results from our model that for the
parallel alignment the main order parameter Q (z}
=Q„„(z) is enhanced near the wall. On the other hand
Q„(z)= ,'Q(z)+P(z)—is—negative. Q„(z) is also nega-
tive for the isotropic phase, which is in line with some ex-
perimental results.

We have found that the wall should be wetted by the
nematic phase. This has not been observed experimental-
ly so far, however. The experimental results indicate that

1.0—
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00
I

30'
et

I

60O 90' 0.0
2 DZ

L

0.5
I

1.0

FIG. 1. Nematic-wall surface tension (in k& T/D2 units) as a
function of the tilt angle 8, for L /D =5,8, 10,20.

FIG. 3. Density profile p(z)/pb for the nematic phase (paral-
lel alignment) in the interfacial region.
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FIG. 4. Nematic main order parameter Q(z) in the interfa-
cial region for the parallel alignment.

FIG. 5. Biaxiality P(z) in the interfacial region for the paral-
lel alignment.

rather complete or partial wetting by the isotropic phase
occurs for the random planar boundary conditions but
this behavior is not entirely universal. ' Certainly our
approximation for the one-particle distribution function
is rather crude and we intend to improve our model in
the future work.
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APPENDIX

= —,
'

Vo f dr f ds f dt 5(rA +SB +tC —
I z&z I),—1 —1 —1

(A3)

and

f 5(z)dz=8(z ) —8(z, )
Z ]

(A4)

where V0 ——2L D sinO, z is the volume of the prism and
A =a k, B =b k, C =c k. It is obvious from (A3) that
V is symmetric in A, B,C and depends only on their abso-
lute values. To calculate the integral in (A3) we make use
of the following two identities:

V(
I z~z l, co&, coz)= f dr&aX(r'&z, rn&, coz)5(k r', z

—
I z, z I

),
(Al)

where g is the characteristic function of the excluded
volume solid and equals 1 inside and 0 outside the solid, k
is the unit vector normal to the wall, and 5 is the Dirac 5
function. In our approximation' we integrate only over
the inside part of the excluded volume solid, which is a
rectangular prism, and neglect the contributions from the
cylindrical and spherical parts. The prism has a rhombus
of the side L and the angle O, z in its base, and the thick-
ness of the prism is 2D.

A vector belonging to the prism can be represented in
the following form:

r1z ——ra+sb+tc, —1 ~ r, s, t (1 (A2)

When the solid of excluded volume for two sphero-
cylinders of orientations co, and ~z, respectively, is cut
with a plane parallel to the wall and distant from the cen-
tre of the solid by I z, z I, then the area of the cross sec-
tion is equal to V(

I
z, ~ l, co&, co&). To calculate the func-

tion V(
I
z, ~ l, co&, coz) we make use of the following iden-

tity:

f f (z)8(z)dz =F(z )6(z ) F(z, )6(z, —)
Z

(A5)

V0

16I 4BC
I i j,k =0, 1

i+j+k &3

x6(;,/,
—

I „I
), (A6)

where z,,k
——( —1)'

I

A
I
+( —1)J

I

B
I
+( —1)"

I
C

I

. As
V is symmetric in

I
A I, I

B I, I
C

I
we can assume that

I
A

I
&

I

B
I

&
I
C

I

. Then we have the following possi-
bilities.

) lz»
I

&
I
~ I+ IB I+ I

C I,

V=O . (A7)

(2)

I

~ I+ IB I

—IC
I

& Iz I
&

I
~ I+ IB I+ IC I

(triangle),

for z~ &z& and F(z)=1+(z')dz', where f (z) is an arbi-

trary integrable function. The function 8(z) stands here
for the Heaviside step function. Let us assume 6rst that
A, B,C&0. Then one easily finds, using (A4) and (A5)
and changing properly the integration variables, that

where a= ,'Lco„b= ,'Leo&, and c=Dc—o&X—cop/
I
a)) X cop

I

are the three vectors on which the prism is spanned. We
change the integration variable r, z for r, s, t, which gives

(
I
~ I+ IB I+ Ic

I

—
I

(A8)
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(3)

I
a

I

—
I
B

I
+

I
c

I
&

I z„ I
&

I
a

I
+

I
B

I
—

I
c

I

(trapezoid),

Vo
(

I
~ I+ IB I

—lziz I
}.

(4}
I I

~
I

—
I
B

I

—
I
c

I I
&

I
z

+
I
C

I
(pentagon),

[(I 41+ IB I+ lc I

(A9)

(b)
I

A
I

& IB f+ fC
f

(hexagon),

Vo
[( I

~
I +

I
B

I + I
C

I

—
I ziz I

}'

I+ I
B

I

—
I
c

—(
I
~

I

—
I
B

I
+

I
C

I

—
I Ziz I

}'

I
+

I
B

I +
I
c

(A12)

—( I
w I+ I

B
I
—

I
c

I

—Iz„ I
)'

—(
I
~

I

—
I
B

I
+

I
C

I

—
I Ziz I

)']

(A10}

In parentheses we have indicated the plane figures corre-
sponding to the given cross sections that follow each pos-
sibility. If

I
A I, I

B 1&0 and
I
C

I
=0 only the possi-

bilities (1), (3), and 5(a) remain. If
I

A
I
+0 and

I
B

I
=

I
C

I
=0 only (1) and 5(a) can be satisfied.

I z121)
I
B

I + I
C

I
(parallelogram),

v= vor21~ I
(Al 1)

1. Derivation of the expression for S,,"

Subtracting the bulk term from oc'" [see Eq. (2.3)] and
making use of the approximation (2.6} and the definitions
(2.14) and (2.15) we arrive at the following expression:

~tr I'kit = r' f—dcoidcoz f dzi f "zzP(zi col)P(zz~coz) V(
I ziz I

ico»coz) Pb Vo(c—o»coz)f (cot }f(coz)
L

= 2pb fdcoldcozf (col }f(coz)zm(col) Vo(colicoz)
~'

,'p',f d—co—,dcozf (col)f (coz) dzl dzz V(
I ztz I

m»uz) Vo(~ii~2) (A13)
zm(~i) z~(~z)

where the lower limits of the integrals over z& and z2 come from the presence of the hard-wall potential. We transform

these integrals as follows:

f dz, f dzz V(
I zlz I, lc,ozc)oVo(col&coz)

'm' 1' I 'm'"2'

dzl dz2V(
I ziz I ~~»~2) —Vo(~»~z)

(~&)—z

dzlz v(
I z12 I ~l ~2}

m 1 m 2 1

00 12

dziz V(
I ziz I &col, coz) dzi

z (@JAN)
—z (tzJ2) m 1 m 2

dz, z[z, z
—z~(co, )+z~(coz)]v( I z, z f, co, , coz) .

z (t2J
&

) —z (tzJ2)

(A14)

Substituting (A14) and (A13) we recover Eq. (2.13).
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