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We study by exact enumerations a lattice model of polymers with fused loops (which also de-
scribes polymeric networks with even functional units). As the relative concentration of fused
crossings of the chain (or that of the tetrafunctional units in the network) is increased, the confor-
mations change their shapes from swollen (with self-avoiding-walk scaling properties) to compact.
Earlier renormalization-group studies predicted the tricritical point associated with this transition
to be in a new universality class, distinct from the e point. In particular, non-Gaussian behavior
with v, ( —, and y, g 1 in three dimensions (3D) was predicted. We have enumerated all conforma-

tions according to their length l and number of crossings (or tetrafunctional units) I with their end-
to-end distance r, on triangular (up to l =15, I =7), square (l =21, I =7), and cubic (I =15, I =5)
lattices. The locations of their respective transitions are determined from the divergence of the
specific-heat plots. Tricritical couplings and exponents are extracted by a D log Fade analysis. The
tricritical scaling exponents we find are v, =0.52(2), y, =1.25(20) in 2D, and v, =0.465(10),
y, =0.60(5) in 3D, in fair agreement with the renormalization-group predictions.

I. INTRODUCTION

In a series of recent papers, ' we have initiated the in-
vestigations of new tricritical points describing collapse
transitions in models of intersecting walks, polymers with
loops, and polymeric networks with even-functional
units. We have considered two basic models depicted in
Fig. 1: (i) trails [Fig. 1(a)] and (ii) their silhouettes [Fig.
1(b)]. Trails are paths followed by a walker allowed to
step at most once on each bond but which may self-cross
its path through an already visited site. The second mod-
el is that of the silhouettes or shadows of the trails. Note
that a silhouette may have many trails [e.g. , there are six
different trails corresponding to the silhouette in Fig.
1(b)]. The problem of their enumeration goes back to
Euler, who fathered graph theory.

By assigning a fugacity f=exp8 to each crossing, we
have a handle over their average concentration
(F.= —ks TH may be thought of as the energy gained by
the formation of the crossing). In Ref. 2 and 3, we have
presented and analyzed the scaling behavior of the trail
model [Fig. 1(a)]. In the present work, we follow a paral-
lel investigation of the silhouettes [Fig. 1(b)]. Their
enumeration presents a computational challenge to a cer-
tain degree. The computational complexities and the
technical details of their resolution will be discussed else-
where. The motivation for studying silhouettes are two-
fold: Firstly, it is a model of its own interest within the
realm of statistical mechanics, since it exhibits new scal-
ing (fractal) behavior with its own universal exponents;
secondly, this model describes polymers with fused loops.
Moreover, if the two ends of the polymer are forced to

join (and close the path), the same model describes po-
lymeric network with even-functional vertices. We note,
in passing, that only one crossing (or tetrafunctional unit)
is important. Whether double (or more) crossings, which
may occur if the coordination number is larger than four
(or hexafunctionals, octafunctionals, etc.), are allowed or
not is "irrelevant" in the renormalization-group (RG)
sense.

FIG. 1. (a) A directed graph that may be traced by two
different trail configurations; (b) the silhouette of these trails.
Note that six different trails have this same silhouette: The oth-
er four correspond pairwise to two other directed graphs.
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Concentrating on the silhouette model [Fig. 1(b)], all
previous results on their scaling behavior were derived
using the RG approach with an v e expansion
(E=4 —d}. These calculations were based on the "mag-
netic analog" Hamiltonian for the generating functions of
the configurations. ' Before proceeding to describe the
new results derived by exact enumerations, we summarize
the RG results. If was found that as the average densi-
ty of crossings {orof tetrafunctional units) is varied, three
regimes are encountered: A swollen phase with the scal-
ing exponents of self-avoiding walks (SAW) for small con-
centrations, a collapsed phase (with the shape exponent
v= 1/d ) for large concentrations, and a tricritical regime
at a critical concentration (or fugacity) which separates
these first two regimes. Our study focuses on this tricriti-
cal regime. The situation is very similar to that which
takes place at the Flory 6 point of linear polymer in poor
solvents or of a SAW with nearest-neighbor attractions.
The upper critical dimension of the 8 point is d =3 and
the conformations in three dimensions (3D) are Gauss-
ians {up to logarithmic corrections). ' The tricritical
points due to increasing the crossing concentration in the
silhouette model is in another universality class: In par-
ticular, its upper critical dimension is d =4 and the 3D
configurations are predicted to be non-Gaussian. This
tricritical point is of order v'e in d =4—e dimensions
and the expansion in v'e for the scaling exponents to
second order (e) are (a remainder of their definition is
given in Sec. II):

y, (e)=1——1 6
2 53

' 1/2
1 429 —756((3)
4 5618

1 1 6
v, (e) =— 1 ——

2 2 53
61 /2

where g(3)=1.20206 is the Euler g function, subscript t
denotes "tricritical" and

1/2

3D (2D) tricritical points. So the trend for smaller ex-
ponents below d*=4 should reverse itself at a lower di-
mension for v, to satisfy the 2D bound and the exponents
are expected to be monotonic function of the dimen-
sionality.

To check all these predictions, we have decided to ana-
lyze this collapse transition by exact enumerations of
silhouettes on 2D and 3D lattices. The results of these
extensive enumerations are presented in this paper which
is organized as follows: In the next section (Sec. II), the
basic definitions of the different statistical functions, their
relations, and the scaling exponents describing their
asymptotic behaviors, are given. The results for the
different lattices: triangular, square, and cubic are
presented in Secs. III, IV, and V, respectively. The last
section (Sec. VI) is devoted to discussions and con-
clusions.

II. DEFINITIONS AND SYMBOLS

Throughout the paper, the following notations are
used: l denotes the total number of monomers in the poly-
mer (proportional to its molecular mass), I denotes the
number of tetrafunctional units (crossings) in the network
configurations, r denotes the end-to-end distance of the
two free ends we associate with each configuration [Fig.
1(b)].

For each of the lattices, we have enumerated n(l, I, r )

as the total number of polymer configurations [Fig. 1(b)]
with length l, I crossings, and end-to-end distance r.
From them we have generated the following series: (a)
c(/, I)= g„n(l, I, r)—the total number of silhouettes of
length 1 with I crossings (namely tetrafunctional units)
and (b) d(l, r)= g„r n(l, I,r)—which is the average
square end-to-end distance (see below).

In order to control the average number of crossings
(tetrafunctional units), we introduce a fugacity f=exp(e)
(8= E/ktt T, whe—re E is the energy gained by the cross
linking) per such crossing. Using the coefficient c(l, I),
the weighted series Ut(e) are derived

1 535 —7560(3)
2 5618

which may also be approximated by the [1/1) Fade:

(1.2)

Ut(e)= g c(I,I)e
I&0

(2.1)

The average square end-to-end distance will be derived
from the following ratio:

1+O. 117~'"
v, (e)=—

2 1+O 285~'»
L

Inserting e= 1 in Eqs. (1.1) (1.2), we find in 3D

y, (1)=0.81,
v, (1)=0.40,

or from Eq. (1.3},

YE(1)=0 435 .

(1.3)

(1.4)

(1.5)

(1.6)

The most striking fact about these results are the
unusual deviations from the mean-field exponents to
lower values {y,&1 and v, & —,') in 3D. We anticipate
v= 1/d in the collapsed phase, v, ~ —,

' (and v, & —,
'

) at the

( '(8))= yt) 0 Ut(e)
(2.2)

The critical exponents are related to their behavior as
l ~ oo.8

U, (e) r(e)»'" '~'(8),

(.,'(8) ) -~(e)l"" .

(2.3)

(2.4)

The amplitudes I (8) and 8(e) as well as the effective
"growth parameter" p(e) are nonuniversal quantities.
The critical exponents y(e) and v(e), however, are
universal and are expected to assume only three possible
values: (a) v =vs~w, y =ys~w for 8 & 8, in swollen phase;
(b) v=v„y=y, at the tricritical point e=e„or (c)
v=1/d, y=y, in the dense phase 0~0, .
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1

5

23
103
455

1

10
67

TABLE I. The coefficients c(1,I)/6 for the triangular lattice.

—'c(/, I )

3

6
7
8
9
10

11
12

13
14

15

1991
8647
373 55
160689
688 861

2 944 823
12 559 201

53 455 781
227 131 875

963 627 597

383
2035
10336
50 972
245 916

1 166693
5 462 666
25 304 232
116 178 379
529 425 453

17—'

163
1163
7207
41 307

225 075
1 183 576~
6060 900
30 397 994—'

149 935 192

2
34
372-,'

3128

22 222
141 984

3

846 335
4 806492
26 336 7162

4
81

956
8669
67 164
465 757

2

2 985 233

6
168

2328
23 532
197 528

13
357-'

5481 33

In order to find the tricritical value 8, of the control-
ling parameter 8, we shall explore the behavior of the
specific heat defined as follows:

III. TRIANGULAR LATTICE ENUMKRATIONS

A. Tabulation

2

hi(8) =l ' lnUi(8),
88

= (I'(8) ) —(I(8))',
(2.5)

(2.6)

The enumerations of the series c(1,I)/6 and d(/, I)/6
for the triangular lattice up to 1=15 and I=7 are
presented in Tables I and II, respectively.

which measures the relative fluctuations in the number of
crossings. Rapaport first suggested, ' in the context of
the e point of SAW, to look for the specific heat diver-
gence (as a function 1) as the signature for the tricritical
point.

B. Speci6c heat

The specific-heat plots h, (8) for I = 11—15 are depicted
in Fig. 2. The plot with 1=11 is the lowest one and, as
expected, their relative heights increase with I. We find a
regular shift of the values of 8=8,„(l ) corresponding to

1

12
97
654
3977

8
132

TABLE II. The coefficients d(1,I )/6 for the triangular lattice.

6 d(1,I)
3

6
7
8
9
10

11
12
13
14
15

22 624
122 821
644082
3 288 739
16440648

80 783 857
391 310240
1 872 763 387
8 870 963 422
41 647 686 501

1344
10908
77 446
503 246
3 069 972

17 861 068
100 152 740
545 238 848
2 897 323 704
15 088 036 614

24
351
3818
34 169
267 736

1 908 555
12 681 386
79 824 910
481 385 766
2 803 780 558

2
58
894
10 328

99 484
841 712
6 463 020
46061 078
309 542 172

6
166

2652
315 82
314 142
2 760472
22 111099

12
392
6882
88 622
938 580

31
1016
18 597 72
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the maxima of h~(8) as I increases. We therefore improve
the estimate by a linear approximation: in Fig. 3, 8,„(l)

are plotted versus 1/I. The linear intercept with the
1/l =0 yields our estimate for the tricritical point 0, . Al-
though higher-order and noninteger powers (related to
the crossover exponent P) of 1/1 are certainly present,
the linear approximation provides a substantial improve-
ment over the choice of the highest maxima at the tricrit-
ical location. Using Fig. 3, we predict

8", =1.60+0.05 . (3.1)

C. D log Pade analysis

To extract the tricritical values p, and y, from the
asymptotic behavior of U, (8) [Eq. (2.3)], we apply the
standard D log Fade method to the series. In Table III,
values of )u, and y, for 8=1.6 (the extrapolated value)
and also for later comparisons, for 8=1.7, 1.8, and 1.9
(the latter being the location of the last, highest max-
imum). We observe that [6/7] has only defective poles.
Interferences of nonphysical poles also harm the results
from [7/6] and [7/7]. Based on the values from other ap-
proximants at 8, = 1.6, we estimate

vg
——0.516+0.16 . (3.4)

For higher values of 8, 1.7—1.9, we find even smaller
values of v, (smaller than 0.5 for [7/7] as well). We
suspect that the problems manifested in UI(8) by the
many spurious poles in Table III also alter the behavior
of (rl (8)) to give incorrectly small values of v, . An al-
ternative method to compute this exponent is discussed
in the next section.

D. Generalized ratio method

In a recent analysis of the 8 point, Privman introduced
an extension of the ratio method which gives with im-
proved accuracy both the location and the value v, of the
tricritical point. ' They are extracted from the recursive
estimates

bound (expected only in the dense phase. ) The value of v,
(in parentheses the "critical point" which should be ex-
actly one} for 8= 1.6 from the highest approximants are
[5/6], 0.495(1.010); [6/5], 0.480(1.012); [6/6],
0.495(1.010); [6/7], 0.495(1.010); [7/6), 0.520(1.008); and
[7/7), 0.516(1.008). Because the lower limit is 0.5, only
the last two values are physically possible, and we choose
as our best estimate the [7/7] result:

yt =1.4+0. 1

p", =5.07+0.25 .

(3.2)

(3.3}
(3.5)

We note that had we chosen the highest maxima 8=1.9
(without extrapolation), the value of y, would have been
smaller (y, —1.25 —1.3) and p, larger (p, -5.45—5.50).
The value of v, is extracted from (r&(8)) in Eq. (2.4).
This series diverges and has one as the critical point. The
exponent v, must be larger than —,

' which is the lower

n+m
5v( =v(—

k=n+1
vk .

and the deviation from the average v

(3.6)

0.16 I l I 4.5

0.14-

0.12-
4.0

0.10
Qo

0.08

3.5

0.06
3.0—

0.04
2.5—

0.02

0.00
0.0 2 ' 0 6.0 8.0

2 ' 0
0.0 0.2 0.4 0.6 0.8

1/)
FIG. 2. Specific-heat plots h&(0) for 1=11—15 for the tri-

angular lattice.
FIG. 3. The specific-heat maxima 8,„(l) (from Fig. 2) vs 1/I,

for the triangular lattice.
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TABLE III. y, (p, ) vs 0 between 0,„(1=15)=1.9 and 0,„(extrapolated)=1. 6 for the triangular
lattice. X indicates defective poles.

r (v)
[L/M]/8

[5/6]

[6/5]

[6/6]

[6/7]

[7/6]

[7/7]

1.6

1.403
(5.076)

1.398
(5.077)

1.425
(5.071)

X
(x)
1.545

(5.050)

1.544
(5.050)

1.7

1.368
(5.193)

1.359
(5.195)

1.400
(5 ~ 185)

X
(x)
1.564

(5.158)

1.546
(5.161)

1.8

1.326
(5.322)

1.309
(5.327)

1.374
(5.311)

X
(x)
1.610

(5.276)

1.540
(5.284)

1.9

1.285
(5.464)

1.252
(5.473)

1.356
(5.449)

X
(x)
1.738

(5.400)

1.537
(5.420)

In Figs. 4 and 5, we plot v& and 5v&, respectively, for
1=11—15 (n =10, m =5). The tricritical point is sup-
posed to be at the point of minimal spread in 5v. If we
include all 5v, the minimal spread is at 8;„=2.1, and if
5vI for l =12—15 are included, the minimal spread is at
8;„=1.9. This last value coincides with the last max-
imum in the specific heat but does not account for the
steady trend of the shift in 8, (and which is accounted for
by the linear extrapolation). The difference between the
values of 8 at the minimal spread, with (8;„=2.1) and
without (8m;„=1.9) the 5v~

&
term, indicates that a steady

shift in 8;„ in the Privman s method is likely to take
place. The value of v at 8;„=1.9 is in perfect agreement
with the Fade result at that value of 8, namely v, =0.48.
As the shift implies a smaller asymptotic value for 0;„,
larger values of v, ( & —,') will also be obtained. Since we

do not have enough terms to actually calculate a quanti-
tative estimate for the shift, we are also limited in our
possibility to use this method to get reliable values for the
exponent v, . The results of this section will be discussed
and compared with those of the square lattice (next sec-
tion) in the last section (Sec. VI).

1.0 0.05

0.8— 0.03—

0.6 0.01—

0.4 -0.01

0.2 -0 ~ 03-

0.0
0.0 1.0 2.0 3.0 4.0

-0 ~ 05
0.0 1.0 2.0 3.0 4.0

FIG. 4. The exponents v~{0) (1=11—15) from the general-
ized ratio method [Eq. 3.5)], for the triangular lattice.

FIG. 5. The values of 6vI(0) (1=11-15)extracted from vi in

Fig. 4 using Eq. (3.6), for the triangular lattice.



38 TRICRITICAL BEHAVIOR OF POLYMERS WITH LOOPS 3715

6
7
8

10

1

3
9
25
71

195
543
1479
4067
11025

17
54
184
554
1738

TABLE IV. The coefficients c(/, I )/4 for the square lattice.

—'c(l, I )

3

1

5.5
29
105

11
12
13
14
15

16
17
18
19
20
21

30073
81 233
220 375
593 611
1 604 149

4 311333
11 616669
31 164 683
83 779 155
224 424 291
602 201 507

5128
15 380
44702
130704
375 216

1 079 572
3 068 788
8 729 776
24 623 430
69 449 248
194666 934

394
1323
4364
14069
43 961

136928
416 130
1 263 268
3 768 812
11 233 384
33 052 280

8
53
208
830
3024

10476
35 492
116744
376 284
1 198 294
3 746 540

18
99

446.5
1764
6874
24 807
87 142
297 832

9
48
234
1040
4270
16250

2
16
130
587

IV. SQUARK-LATTICE ENUMERATIONS

A. Tabulation

The series c(I,I ) l4 and d(l, I )/4 for the square lattice
up to 1=21 and I=7 are presented in Tables IV and V,
respectively. (They took about 100 CPU hours on a
VAX8600 to enumerate. )

B. Specific heat

The specific-heat plots h&(8) for l=ll —21 for the
square lattice are plotted in Fig. 6 with 1=11 being the
lowest and i=21 the highest in ascending order. We
again observe the same trend of shift in the maxima dis-
cussed in Sec. III B. Here, however, there are also super-

TABLE V. The coefficients d(l, I )/4 for the square lattice.

46(j,I)

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20
21

1

8
41
176
679

2452
8447
28 120
91 147
289 324

902 721
2 777 112
8 441 319
25 398 500
75 744 301

224 156984
658 855 781
1 924 932 324
5 593 580 859
16 175 728 584
46 572 304083

36
214
1048
4538
18 188

68 792
249 336
873 774
2 980 300
9 941 824

32 551 736
104 905 092
333 500 620
1 047 696 230
3 257 208 608
10033 256 694

1

69
400

2098
9616
41 100
165 016
633 289

2 342 232
8408 186
29 434 872
100908 548
339 692 960
1 125 821 936

24
176
944
4848
22 544

98 136
406 100
1 606 188
6 134956
22 739 320
82 180 844

12
68
475

2464
12 260
56 596
247 399
1 031 936
4 150920

32
192
1280
6720
33 000
150986

4
96
608
3691
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imposed oscillations due to the interference of the "anti-
ferromagnetic singularity, " typical of "two sublattices"
lattices, and which were not present in the case of the
close-packed triangular lattice. Therefore our method to
extrapolate 8,„(1)versus 1/I to 1/I =0 (depicted in Fig.
7) is not as efficient here to determine 8„as it was for the
triangular lattice. Based on this plot, we estimate
0',q —2.45 —2.49.

C. D log Pade analysis

In Sec. VI, these results will be discussed and com-
pared with the estimates extracted in the previous section
for the triangular lattice.

V. CUBIC LATTICE ENUMERATION

A. Tabulation

The coefficients c(l,I)/6 and d(l, I)/6 for the cubic
lattice with l = 1 —15 and I=0-5 are tabulated in Tables
VIII and IX.

The extrapolated value of t9',q is between 0=2.45 and
2.49. For values of L9 in this range, we present in Table
VI the results for y, (and p, ). We choose to show the re-
sults from the highest possible diagonal [M/M], and
off-diagonal [(M—1)/M] and [M/(M —1)] Fade ap-
proximants. Defective poles are denoted by crosses. We
note the good convergence of the result for 0, around 2.8
(except for [10/9] which deviates slightly). This leads us
to the following estimates:

B. Specific heat

The specific-heat plots hi(8) with l =11—15 are plotted
in Fig. 8. Again, the lowest plot corresponds to I =11,
the next 12, and so on up to the highest with l = 15. The
plot of the locations of their respective maxima 8,„(l )

versus 1/l is shown in Fig. 9. Based on the extrapolation
to 1/I =0, we estimate the tricritical point to be in the
range 8', -2.5 —2. 8.

y', =1.250+0.006,

p', q=3.24+0.01 .

(4.1)

(4.2)

v', q=0. 53+0.03 . (4.3)

The series for (ri(8)) do not follow such a coherent
behavior. The approximants [9/10] and [10/9] yield only
spurious poles. The results for v, (and for p, ; the "loca-
tion" of the critical point should be p, —:1) from the oth-
er approximants are presented in Table VII. Since v', q= —,

'

is a lower limit, we give more credibility to the results of
[8/9] and [10/10] from which we conclude the estimates

C. D log Pade analysis

The extrapolated 0; for the simple cubic lattice from
the specific-heat maxima is between 2.5 and 2.8. We
therefore present (Table X) the results for y', and p', as
derived from the highest diagonal and off-diagonal ap-
proximants for this range of values of L9. The figures from
[6/7] and [7/7] deviate due to the presence of another
pole not far from the physical one. However, that may
also be an indication for a crossover to another behavior
at large I. We still choose to base our estimates on the
behavior of the other approximants for t9-2.6-2.7. Our
best estimates are

0.16 4.5

0 ~ 14-

0 ~ 12-
4.0—

~ 0.10

0 ~ 08

3.5—

0 ~ 06
3.0—

0 ~ 04
2.5—

0 ~ 02

0.00
0.0 2.0 4.0 6 ~ 0 8 ~ 0 10.0

2.0
0.0 0.2 0.4

I

0.6
1 /(

0.8 1.0

FIG. 6. Specific heat h~(0), I = 11—21 for the square lattice. FIG. 7. hl(0) vs 1/I for the square lattice.



38 TRICRITICAL BEHAVIOR OF POLYMERS %ITH LOOPS

TABLE VI. The exponents y', and the growth parameter p', for diferent values of 0 on the square
lattice.

[L /M]0

[8/9]

[9/9]

[9/10]

[10/9]

[10/10]

2.45

1.269
(3.217)

1.261
(3.221)

1.257
(3.224)

1.257
(3.221)

1.250
(3.228)

1.265
(3.198)

2.46

x
(x)
1.261

(3.226)

1.258
(3.227)

1.254
(3.230)

1.247
(3.234)

1.261
(3.203)

y, {p,)

2.47

1.258
(3.232)

1.256
(3.232)

1.254
(3.234)

1.251
(3.236)

1.243
(3.240)

1.256
(3.208)

2.48

1.252
(3.239)

1.251
(3.239)

1.250
(3.240)

1.247
(3.242)

1.239
(3.247)

1.252
(3.213)

2.49

1.246
(3.247)

1.246
(3.246)

1.246
(3.246)

1.244
(3.248)

1.235
(3.253)

1.247
(3.253)

TABLE VII. The exponents v', (and the critical coupling p', :—1) in the vicinity of 0', of the square
lattice.

[L/M]/8

[8/9]

[9/8]

[9/9]

[10/10]

2.45

0.550
(0.996)

0.498
(1.000)

0.456
(1.006)

0.551
(0.994)

2.46

0.478
(1.002)

0.552
(0.995)

0.497
(1.000)

0.547
(0.994)

v, (p, )

2.47

0.553
(0.995)

0.452
(1.007)

0.788
(1.041)

0.543
(0.994)

2.48

0.555
(0.995)

0.495
(0.999)

0.450
(1.007)

0.539
(0.994)

2.49

0.557
(0.994)

0.494
(0.999)

0.448
(1.007)

0.535
(0.994)

1

5

25
121
589

TABLE VIII. The coefficients c(I,I ) /6 for the simple cubic lattice.

6c(I,I )

2

2
16

6
7
8
9
10

11
12

13
14
15

2821
13 565
64 661
308 981
1 468 313

6 989 025
33 140457
157 329 085
744 818 613
3 529 191009

126
780
4784
27 100
152 148

823 488
4423 380
23 281 204
121 767 700
628 827 480

6
79
720-
5612

38 288
249 501

1 523 630
9 116706
52 529 729

3

528
5664

3

45 806
351 106
24 049 62

16

381
5164
51 143

4
216
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l ubqc lattice.I)/6 for the simple cuTABLEI- eQcjeg, ts d ( I

& d(l, i)
2

38

1

2
3
4
5

6
7
8
9
10

11
12
13
14
15

1

12
97
672
4261

25 588
147 821
830 576
4 566917
24 692 980

131 682 825
694386864
3 626 770 709
18 790632772
96675 376705

248
26P4
22 240
168828
1 182 200

7 82p 704
49 547 760
3p3 596 852
1 810823 512
10566185208

6
112
1638
17656

164 640
1 36p 944
10404126
74651504
511p52 492

56

1104
14 992
163 566
1543 336
13 227 474

32
941
14 264
176911

16
536

c 0.60+0.05 ~Vt

c 6 05+0. 15Pr

(5.1)

(5.2)

C„(a„dthe critical value I g
Tah]e XI, the resu ts o "&

'
) are given fpr theh h is supposed tobe pr
ants. From thesed th same approximasame rang eof0an e

ants we estimatebest-behaved approximan s w

CQNC USIQNSDISCUSSIQN N

ubic latticebtain for the»mp

1 and &r&2
f a newThis lends strong suppo

' '
l behavior at the coss for the tricritica

ill be ex-
universality class o

l networks. It wof evenfunctionalapse transit&on ov'=0. 465+0.010 .r (5.3)

I I0 ~ 16 I I I I
11.0

0.14-

0.12

0.10
Z)

0.08

9.0—

8.0—

x 7 0
E

0 ~ 06

0.04

5.0—

0.02 3.0—

0.00
0.0 2.0 4.0 6.0 8 ' 0 10.0

0
t h (8), I=1—1 —15 for the simple cubicFIG. 8. Specific heat

lattice.

2.0
0.0 0.2 0.4 0.6

1/I
0.8 1.0

I for the simple cubicic lattice.FIG. 9. h&(0) vs 1/ or,
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TABLE X. The exponent y', and the growth parameter p', in the vicinity of 0; of the cubic lattice.

y, (p, )

[I./M]/8

[5/6]

[6/5]

[6/6]

[6/7]

[7/6]

[7/7]

2.5

0.756
(5.77)

0.691
(5.81)

0.708
(5.80)

0.620
(5.86)

0.697
(5.81)

0.611
(5.86)

0.717
(5.88)

0.643
(5.94)

0.660
(5.93)

0.573
(5.98)

0.648
(5.93)

0.541
(6.00)

2.7

0.678
(6.00)

0.594
(6.07)

0.610
(6.06)

0.529
(6.12)

0.599
(6.07)

0.467
(6.16)

0.639
(6.14)

0.546
(6.22)

0.562
(6.21)

0.488
(6.27)

0.551
(6.22)

0.381
(6.35)

TABLE XI. The exponent v', (and the critical coupling p', =1) in the vicinity of 8', of the cubic lat-
tice.

Vr (Pr)
[I./M] /8

[5/6]

[6/5]

[6/6]

[7/6]

[7/7]

2.5

0.452
(0.99)

X
(x)
0.477
(0.98)

0.466
(0.98)

0.457
(0.99)

0.490
(0.98)

2.6

0.448
(0.98)

X
(x)
0.476
(0.98)

0.463
(0.98)

0.453
(0.98)

0.492
(0.98)

2.7

0.443
(0.98)

X
(x)
0.474
(0.98)

0.459
(0.98)

0.448
(0.98)

0.493
(0.97)

2.8

0.438
(0.98)

X
(x)
0.472
(0.97)

0.456
(0.98)

0.443
(0.98)

0.493
(0.97)

tremely interesting to try to control the number of
tetrafunctional units in addition polymerization reactions
and actually observe this new scaling behavior experi-
mentally.

In 2D, the series for the square lattice exhibit a more
regular behavior than the triangular ones (despite the in-
terference from the "antiferromagnetic" singularity). We
therefore give more credibility to the square lattice re-
sults over those of the triangular lattice. Since we expect
the exponent rl, defined by (2—71, )v, =y, to be non-
negative, the asymptotic values of v, (and/or y, ) in 2D
will be somewhat larger (sinaller) than our present esti-
mates. For comparison, the best estimate we have used
for trails are v, =0.48(3), 7', =0.43(6) in 3D and
v, =0.52(2), 7, =1.18(4) in 2D.

Although our series provide support for the RG pre-
dictions for a new tricritical point, other independent ap-
proaches will be more than welcome. Our enumerations
have large error bars, due mostly to the uncertainty in

the determination of the location of 8, of the tricritical
point. Other methods may give more precise values for
the exponents. These include Monte Carlo simula-
tions' ' of large clusters and finite-size scaling' (in 2D)
which have in the past been proved to be the most
eScient on similar problems. Recently exact values for
the tricritical exponents at the e point were conjec-
tured. ' Since all 2D models are presumed to be confor-
mal invariant at their critical (tricritical) points, ' the
same should hold for the one discussed here. We there-
fore urge this tricritical point to be located within the
classification implied by the conformal in variance'
which will yield the exact values of the 2D exponents.

ACKNOWLEDGMENTS

We are grateful to A. Aharony, S. Fishman, P.-G de
Gennes, Y. Oono, P. Pincus, V. Privman, and M. Rubin-
stein for very fruitful discussions. This work was sup-



3720 H. A. LIM, A. GUHA, AND Y. SHAPIR 38

ported in part by funds provided by the Xerox Webster
Research Center. We thank the High Energy Physics
group at the University of Rochester for using their com-
puter facilities during the early stage of the simulations.
One of us (H.A.L.}would like to thank the Supercomput-

er Computations Research Institute staft'and Miss D. E.
Middleton for assistance and the partial support provided
by the U. S. Department of Energy under the Contract
No. DE-FC05-85ER250000.

'Permanent address: ATEST Bell Laboratories, 480 Red Hill
Road, Middletown, New Jersey 07748.

'Y. Shapir and Y. Oono, J. Phys. A 17, L39 (1984).
H. A. Lim, A. Guha, and Y. Shapir, J. Phys. A 21, 773 (1988).
A. Guha, H. A. Lim, and Y. Shapir, J. Phys. A 21, 1043 (1988).

4Y. Shapir, A. Guha, and H. A. Lim (unpublished).
5A. Malakis, J. Phys. A 9, 1283 (1976).
A. J. Guttmann, J. Phys. A 18, 567 (1985); 18, 575 (1985).
P. J. Flory, Principles ofPolymer Chemistry iCornell University

Press, Ithaca, 1953).
P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell

University Press, Ithaca, 1979).
M. Stephen, Phys. Lett. 53A, 363 (1975).

OM. A. Moore, J. Phys. A 10, 305 (1977).
Y. Oono and T. Oyama, J. Phys. Soc. Jpn. 49, 301 (1978).

' D. C. Rapaport, J. Phys. A 10, 637 (1977).
T. Ishinabe, J. Phys. A 18, 3181 (1985).

'4V. Privman, J. Phys. A 19, 3287 (1986).
B.Duplantier and H. Saleur, Phys. Rev. Lett. 59, 539 (1987)~

' P. Lam, Phys. Rev. B 36, 6988 (1987).
' H. Meirovitch and H. A. Lim, Phys. Rev. A 38, 1670 (1988).
' J. Cardy, in Phase Transitions and Critical Phenomena, edited

by C. Domb and J. L Lebowitz (Academic, New York, 1987),
Vol. XI.
B. Derrida and H. J. Herrmann, J. Phys. (Paris) 44, 1365
(1983).


