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RoundofF-induced periodicity and the correlation dimension of chaotic attractors
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Due to roundoff, digital computer simulations of orbits on chaotic attractors will always eventual-

ly become periodic. The expected period, probability distribution of periods, and expected number
of periodic orbits are investigated for the case of fractal chaotic attractors, The expected period
scales with roundoff e as e ",where d is the correlation dimension of the chaotic attractor.

m-e —d/2 (la)

Here D is the correlation dimension of the chaotic at-
tractor,

Numerical experiments using digital computers have
played the key role in many fundamental advances in the
understanding of chaotic dynamics. It is therefore of
great interest to investigate inherent limitations imposed
by computer roundoff on numerical investigations of
chaos. In particular, since computers approximate the
continuum of numbers by a discrete set, any orbit on a
chaotic attractor must repeat exactly, if the orbit is fol-
lowed long enough. Hence, such orbits always become
periodic. Since true (i.e., without roundoS chaotic orbits
do not repeat, computer simulations of orbits on chaotic
attractors may be brought into question if the orbit is fol-
lowed too long —in particular, longer than the expected
computer-roundoff-induced periodicity time. It is our
purpose here to investigate this phenomenon for the case
of fractal chaotic attractors of D-dimensional maps. For
related work see Refs. 1 —4. The new feature in the
present paper is the treatment of the fractal case [in par-
ticular Eq. (1), below]. The principal results are as fol-
lows.

(1) The expected value of the period scales with round
ofFe as

(3) If one puts down I initial conditions, one expects, on
average, to find N (l) different roundoff-induced periodic
orbits, where

(3b)

z„+,——p +Bz„expi [n a /( 1+—
1 z„~2

)],
with parameters p =1, 8 =0.9, a=0.4, and a=6. This
map is a model of a nonlinear laser cavity system. Figure
1 shows the resulting attractor. For this attractor, we nu-

I

N (l)= g
, 2j —1

(3a)

An excellent approximation to Eq. (3a), which is good to
within better than 0.3% for l )2, is

N (l)= —,
' lnl+0. 982 .

Note that Eqs. (1)—(3) do not depend on the details of
the map considered and that Eqs. (2) and (3) are indepen-
dent of e so long as e ((1.

In what follows we Arst present numerical experiments
on Eqs. (1)—(3) for a particular two-dimensional map
with a chaotic attractor. Following that, we discuss Eqs.
(1)-(3).

The numerical results we present are for the example
of the Ikeda map (z =x +iy ),

in+ p,
z

d= lims-o ln5
(lb)

I.O—

(2)

where

F(x)=&n/8 I exp( x /2)dx-
x

=&n /8[1 —(m /2)' erf(x/&2) ],
and erf denotes the error function. See also Ref. 2 for
this result.

where we construct a D-dimensional cubic grid of edge
length 5 and denote by p; the frequency with which the
chaotic orbit visits the ith cube.

(2) The periods m have substantial statistical fluctua-
tion. That is, P(m), the probability that the period is rn,
is not strongly peaked around m. This probability is
given by

P(m) =(1/rn )E(&tr/8m /m ),
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FIG. 1. Chaotic attractor for the Ikeda map.
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merically determined the correlation dimension to be
d =1.67. To simulate roundoff at a level e, where e is
greater than the actual roundoff of the computer used, we
replace all numbers after each iteration by a rounded-off
number obtained as fo11ows:

I 2 3 i I i i+I n-I n

period=rn=n-j+ I

x ~e 1I1t(x /e)

where int(u) is the integer part of u. (The same results
for the average period versus e were obtained when this
roundoff operation was performed after each line in our
computer code. )

Figure 2 shows a log-log plot of data obtained for the
period m resulting from a single initial condition
zp =0. 1 +i 0. I and 300 roundoff levels in the range
3 )& 10 & e & 10 . In each case we iterated the
rounded-off map until, at some iterate n +1, z repeats a
previous point on its orbit (Fig. 3), z„+&——z&, n & j. At
this point we say that the orbit has "locked in" to a
periodic orb&t of period m =n —j +1. The data in Fig. 2
show substantial scatter. In particular, the results for
nearby e values appear to be essentially uncorrelated.
Nevertheless, an overall power-law trend is clearly evi-
dent, as indicated by the line with the slope predicted by
Eq. (1) (slope = —d/2=0. 835) which we have superim-
posed on Fig. 2. In order to make the agreement with
Eq. (1) more easily discernible and precise, it is desirable
to average in such a way as to eliminate the scatter. To
do this we calculate an average period m corresponding
to a raundoff level E'p by taking a small interval be about
ep ep —ke/2 & e & ep+ he/2, choosing a large number of
e values in this interval, and averaging the resulting
periods over the e values in this interval. Results of such
calculations are shown as the dots in Fig. 4, in which we
have also plotted a line of best least-squares fit. Each dot
corresponds to he/E'p=0. 1 with 100 values of e in each
interval. The slope determined from the least-squares fit
is 0.832 as compared to d/2=0. 835.

Next we wish to numerically compute the probability
distribution of m. To do this we choose a small interval
in e centered at @=10, 0.95X10 &a&1.05X10
Using 9000 evenly spaced e values in this interval, we
determine the m value for each e. The same initial condi-
tion, zp ——0. 1+i0.1 is used each time. We then make a

FIG. 3. Schematic illustrating the generation of a periodic
orbit from a single initial condition.

histogram of P (m) versus m using 30 equal size bins for
m between 1 and 4.1 m. The results are plotted in Fig. 5
where the dots correspond to the centers of the 30 bins.
Also shown in Fig. 5 as a solid curve is the theoretical
prediction, Eq. (2). Again the agreement is very good.

Finally we wish to check Eq. (3). For definiteness we
choose to consider the case of ten initial conditions
(I =10), which, according to Eq. (3), should result in an
average of 2.13... distinct periodic orbits. Again we
choose a large number of e values in a narrow interval
about some central value. For each such e value in the
interval, we follow the orbits originating from ten ran-
domly chosen initial conditions until they lock into
periodic orbits. We then compare these ten periodic or-
bits to each other to determine if they are the same or
not, and count the number N of distinct periodic orbits.
Thus for each e we determine N . Averaging N over the
e values in the small interval, we obtain N . We have
done this using 300 values of e near a=10; we obtain
N =2.1+0.1, in good agreement with the value predict-
ed by Eq. (4), Nz ——2. 13. . . . A somewhat surprising
feature of Eq. (3) is its independence of e. We therefore
repeated the procedure at a different e, namely, @=10
(100 values of e were chosen in the interval) with the re-
sult N =2.04+0. 15, again in agreement with Eq. (3).

We now turn to the derivation of Eqs. (1)—(3). Imagine
that we construct a cubic grid of grid size e in the phase
space. Now suppose that we iterate the exact map (i.e.,
without roundoS, keeping track of which cubes in the
grid have been visited by the orbit. We iterate until the
orbit falls in a previously visited cube. Let n +1 denote
the iterate at which this happens, and let j denote the
iterate at which the cube was first visited. Let q =n
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FIG. 2. Log-log plot of m vs e for 300 values of e evenly

spaced along the loge axis between e=3)& 10 and e= 10 FIG. 4. Log-log plot of m vs e.



3690 CEI.SO GREBOGI, EDWARD QTT, AND JAMES A. YORKE 38

0.8—

0.6

0.2

0.0
0.0 1.0 2.0

rn/rn

l
l

1
(

I

3.0 4.0

ing time for the e grid. (Note that for our numerical ex-
periments m =4q and rn )&1; e.g. , m -5000 for
e-10 .) With these assumptions, the answer to our
question is that the probability of repeating box j is the
natura1 measure of the attractor in box j. This measure,
however, is itself a random variable. This is because the
initial condition was picked randomly. Thus its jth
iterate can be anywhere on the attractor. Hence the
probability of a speci6c box being visited on the jth
iterate is also the attractor measure in the box. There-
fore, the probability of the box visited on iterate j being
revisited on iterate n + 1 is

FIG. 5. mP(m) vs m/m. Theory, Eq. (2), is the solid curve.
Dots are data from the numerical experiments.

—j+ 1. (Note the analogy with Fig. 2.) Now imagine
that we choose many random initial conditions according
to the natural measure on the attractor, and that we cal-
culate q for each one. The two fundamental hypotheses
leading to our results in Eqs. (1)—(3) are the following.

(i} The statistics for q (generated using the exact map
and randomly chosen initial conditions} is the same as the
statistics for m (using the map with roundoff e). In par-
ticular, if we write the probability distribution of q as

P(q) = (1iq )P[&m /8(q iq )],
where q denotes the incan value of q, then F [defined in

Eq. (2)] and P are the same function.
(ii) The scaling of q and m with e are the same (e.g., for

the data in Fig. 2 we find that m =4q ).
We have no rigorous argument supporting these hy-

potheses (although they seem reasonable on intuitive
grounds). However, the excellent agreement between the
resulting analytical predictions and the numerical experi-
rnents strongly suggests their validity.

We wish to obtain the distribution function P and the
scaling of m using the hypotheses stated above. Thus we
consider iterates of the exact map and where they fall in a
cubic grid of edge length e. Suppose we choose an initial
condition at random with respect to the natural measure
on the attractor. Suppose, in addition, that we iterate
this initial condition for n iterates and find that the orbit
has not visited any box of the grid twice. We then pick
one of these n previously visited boxes. Let j denote the
iterate at which this box was visited. What is the proba-
bility that iterate n+1 will fall in box j"? To answer this
question we assume that the dynamics on the attractor is
mixing and that the time between the first and second
visits of the box is long. By long we mean that this time,
n —j, is large enough so that, on the scale e of the grid,
the attractor measure in the box visited at iterate j has
essentially spread over the attractor. This mixing process
is particularly effective because of the subsequent ex-
ponential divergence (chaos) of points which were in the
chosen box at iterate j. For the purposes of our subse-
quent calculation, a typical value of n —j is q, the average
q. Thus we require q to be larger than the effective mix-

Thus the probability that an orbit, which does not repeat
after n iterates, repeats at iterate n + 1 by falling into any
one of the previously visited n boxes is approximately

p, (n)=n(p) . (6)

The probability that iterate n+1 does not repeat is
[1—p, (n)]. The probability that an orbit of length n has
no repeats is thus

pb(n)=[1 —p, (1)][1—p, (2)] [1—p, (n —1)],
or

pb(n) = [1—&p & ][1—2(p ) ] (1 (n ——1)(p ) ] .

This expression for pb(n) can be approximated for
n (p ) « 1 as follows:

lnp (n)= g ln(1 t'(p))= ——g t(p) = —n (p)/2,

and thus

p(n)=p, (n)pb(n) .

It is equally likely that the orbit point n +1 map to each
of the previous n orbit points (see Fig. 3}. Thus, given
that repeat occurs for the first time at (n +1},the proba-
bility that n —j+1=q is

n ' for q&n,
0 for q&n .

Hence, for large q, the probability distribution of q is

P(q)= f p(n)p, (n, q)dn .
0

Combining Eqs. (6)—(10), we have

P(q) =&8/~& p ) '"P((p &'"q }

(10)

pb(n)= exp[ —(n (p )/2)] .

The approximation n(p ) «1 is justified, if q(p) « l.
Since we shall obtain q —(p ) '/, we require q »1 for
the validity of Eq. (7). (This requirement is clearly
satisfied for the data plotted in Fig. 2.) The probability
that an orbit goes n steps without repeat and then repeats
on step (n +1) is
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FIG. 6. Schematic illustrations of what can happen when two
initial conditions are put down. (a) The second initial condition
does not generate a new periodic orbit. (b) It does.

where P is the function defined following Eq. (2).
Evaluating the integral q =f qP(q)dq, we obtain

0

q=&~/s&p &-'". (12)

From Eq. (lb) and our hypothesis (ii), Eq. (12) yields
m -e ~, which is Eq. (la). Also, using Eq. (12) to elim-
inate &p ) from Eq. (11), hypothesis (i) yields the desired
expression for P(m), Eq. (2). [In addition, from (9), the
average time to lock in to a periodic orbit is 2m].

We note that Eq. (2) [and also Eq. (3)] do not explicitly
involve &p ). Thus they would also apply if each box had
equal probability, in which case we would have
&p ) = I IN(e), where N(e) is the number of boxes in the
grid needed to cover the attractor. Hence with the re-
placement &p ) ~1/N, the result (2) is the same as that
for a random map of a set of N points into itself (i.e., a
map where every point has equal probability of mapping
to any point in the set). There is an extensive literature
on random maps, and Eq. (2) has been previously de-
rived. We have included the derivation here for com-
pleteness and also because the intermediate steps are
necessary for the derivation of Eq. (3) (which we have not
found in previous literature).

We now derive Eq. (3). For illustrative purposes, first
consider the case of two initial conditions on the attrac-

tor, I =2. We iterate the first initial condition until it re-
peats (necessarily generating a periodic orbit). Let n,
denote the number of iterates of the first initial condition
before repeat. Now we iterate the second initial condi-
tion until it repeats after, say, n2 iterates by falling in one
of the n

&
boxes visited by the orbit generated by the first

initial condition or by falling in one of the n2 boxes it
visited by the orbit generated by the second initial condi-
tion. These two possibilities are illustrated in Figs. 6(a)
and 6(b). In the former case [Fig. 6(a)], the second initial
condition fails to generate a new periodic orbit, while, in
the latter case [Fig. 6(b)], it does generate a new periodic
orbit. Let P2 denote the probability that the second ini-
tial condition will generate a new periodic orbit, i.e., that
Fig. 6(b) will apply. Similarly, we let P be the probabili-
ty that the jth initial condition will generate a new
periodic orbit. In terms of the P~, the average number of
periodic orbits produced by I initial conditions is

N~(l) = g P, . (13)

and the probability that its repeat will generate a new
periodic orbit is

Hence the probability that the kth initial condition will
generate an orbit that repeats for the first time at step
nI, +1 is pkpk, and the probability that it wiH repeat for
the first time at step nk+1 and will generate a new
periodic orbit is pkpk'. Thus

(Clearly P1 ——1.) To derive Eq. (3) we need to evaluate P .
[We will obtain P, =1/(2j —1).] The probability that the
kth initial condition on the attractor, will go n„iterates
without repeat giuen that initial conditions 1,2, . . . , k —1

went n, , n2, . . . , nk, iterates before repeat is [cf. Eq. (7)]

exp[ (n, —+ . +nk ) & p ) /2]
Pk=

exp[ (n, +—. +nk 1) &p ) I2]

[We assume (n, + +nl, )&p) &~1.] Given that initial
condition k goes nk iterates without repeat, the probabili-
ty that it will repeat at iterate nk+& is

pI =("1+ ' ' +nk)&p ~

, =f dnj . f dn2 dn, (p, p', p2p2
. p~, pj', p, pj') .

0 0 0

Lettingyk (n, +n2+—— . +nk)&p)'~, the above integral becomes

V3 V2 V 2/2
PJ dy' dy2 dy lyly2

Performing the integrations we obtain

P, = 1/(2j —1), (14)

tion, Eq. (3b), we note the definition of Euler's constant

y= lim [1+(—,')+( —,')+ . - +(1/m) —ln(m)]

from which Eq. (3a) follows. To obtain the approxima- in terms of which we obtain for the sum in Eq. (3a),



3692 CELSO GREBOGI, EDWARD OTT, AND JAMES A. YORKE 38

N~
——( —,

' ) Inl+( ln2+y/2)+o(1), for large l.
For the validity of Eq. (7) and hence the derivative of

Eq. (14) we required (n, +n2+ . . +nt)(p) «1. The
expected value of n&+ . . +n~ is

f . f (n, + . . +nt)p'p, . p/'ptdn, dnI,

which is approximately v'21/(p ). Thus Eq. (3) requires
l(p) «1 or 1«m -e for its validity. This is well
satisfied for our nutnerical experiments on Eq. (3) and in
typical practical situations. Another reason why we must
have I (p ) «1 for Eq. (3} to be valid is that we take the
probability of falling into a previously visited box as con-
stant at (p ). If we have many initial conditions, the high
probability boxes will tend to get used up as more and
more boxes are visited. Hence the probability of return
to a box visited by the orbit generated by initial condition
I will decrease with I if 1 becomes so large that I (p ) « 1

is violated. A problem somewhat related to Eqs. (3) has
been considered by Kruskal who calculates the expected
number of all periodic orbits of a random map of a set of
N points into itself. He obtains for this quantity
( —,')InN+y+o(1), for large N. This equation would be

difficult to realize in numerical experiments because of
the large number of initial conditions (I-N) needed to
obtain all periodic orbits. Also to treat chaotic attractors
such as Fig. 1 one would have to generalize Kruskal's re-
sult to the case of multifractal chaotic attractors (i.e., to
highly nonuniform p;).

As an example of an application of Eq. (1), we discuss
the case of one-dimensional maps of the form

x„+&

——1 —2
~
x„~', z & 0, which was previously con-

sidered in Ref. 4. In this case almost every initial condi-

(The term ttze arises because there are of order I/e inter-
vals, and each interval, except for those near x =+1, has

p; -e.) Thus, from Eq. (lb), the exponent in Eq. (la) is

for z &2,
d/2=

, 1/z for z&2 . (15}

The equation for d versus z is nonanalytic in z at z =2
(the derivative is discontinuous). This type of behavior
was pointed out in Ref. 8 and its analogy to a phase tran-
sition noted in Ref. 9. A main result of Ref. 4 is
m-e ' *, which agrees with Eq. (15) for z&2. Refer-
ence 4, however, makes no distinction between the z & 2
and the z & 2 regimes, and applies the formula m -e
to z =1 for which it yields' the incorrect result % -e
(rather than m -e '~ [cf. Eq. (15)]).
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tion in —1(x &1 generates an orbit yielding a smooth
density p(x) in —1&x &1 with singular behavior,
p(x)-(1 —~x

~
)
' " ' near x =+1. In this case the

contributions to (p ) = g,. p; are of two types: that aris-

ing from the singularities at x =+1 and that arising from
the bulk of the e intervals in —1 ~ x ~ 1,

e for z&2,
(p ~= gp; -ttie +ttze- zane ' forz)2.
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