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Scaling structures of fluctuation spectra near chaotic transition points
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The symmetry dynamics and the fluctuation dynamics for local expansion rates are investigated
in the vicinity of two kinds of intermittency transition points. This is done with the aid of the
characteristic function A.~ and the fluctuation spectrum o (a) describing the global characteristics of
time series. In both cases they obey the scaling laws A,

q
=e"L (q/e") and 0.(a)=e"+ S(a/e"), where

e is the deviation from the transition point, and L and S are the scaling functions, p and v being
constants.

I. INTRODUCTION

The multifractal theory of strange attractors' is one of
the inain topics of recent studies on chaotic dynamics.
This is essentially based on the Renyi exponent (dimen-
sion} De (Ref. 2) which was first applied to chaotic dy-
namics by Hentschel and Procaccia " and
Grassberger. ' ' The multifractal theory aims at global
characterization for the cell to cell fluctuations of the
probability exponents on the strange attractor. A similar
global characterization of fluctuations has already been
proposed a few years ago in the context of the velocity
structure furictions in the fully developed turbulence.
On the other hand, an approach to the global characteri-
zation of chaotic time series was developed by the present
authors with the aid of the characteristic function A, . '

Recently, it became clear that D~ has close connection
in some cases with the characteristic exponent describing
the fluctuations of local expansion rates (LER's).
This interrelation between D and LER's suggests the
possibility of the uni6ed treatment of the global charac-
terization of fluctuations. One attempt has already been
carried out by the present authors from the viewpoint of
the self-similarity of relevant fluctuations. We have
shown that this straightforwardly leads to the fluctuation
spectrum concept and the statistical-thermodynamics for-
malisrn. Very recently Paladin and Vulpiani" have also
proposed a similar unified treatment of multifractal phe-
nomena in various systems.

Imagine a steady time series

u„I =ui, up, u3, . . .

of a„ for a large n and (ii) the realization probability of
the fluctuation.

The purpose of the present paper is to discuss the criti-
cal behavior of characteristic functions [Eq. (2.1)] and
fluctuation spectra for the dynamics near two kinds of in-
termittency transition points, i.e., (a) the symmetry dy-
namics near the breakdown of chaos symmetry, '2 and (b)
the fluctuation dynamics of local expansion rates near the
type-I intermittency transition point. ' The present pa-
per is constructed as follows. In Sec. II we briefly de-
scribe the fluctuation spectrum theory of a time series.
We shall study the critical behaviors for case (a) in Sec.
III and case (b) in Sec. IV from the scaling structure
standpoint. In Sec. V, we give a summary and remarks.

II. FLUCTUATION SPECTRUM THEORY
OF TIME SERIES

p„(a')-e a(a' )n

is shown to be related to A, as

(2.2)

For a steady time series (1.1), the reduction of the fluc-
tuations of the local time average (1.2) is evaluated by ob-
serving how the probability density p„(a') that a„ takes
values between a' and a'+da' approaches 5(a' —a„)as
n ~ Do. Let us define the characteristic function )(,e by

A,
q
=—lim —ln( exp(qn a„)),1 . 1

(2.1)
q n~co Pl

(dA, ~/dq )0), ( ) being the ensemble average. Then the
fluctuation spectrum o (a'), defined through the assump-
tion

Our fluctuation spectrum theory concerns how the local
time average )), = ——min [o(a') —qa']

ip
(2.3)

n

a„=—g u,
j=l

(1.2} by employing the saddle-point technique. This is
equivalent to the Legendre transform

approaches the long-time average a„
=lim„„n g,".

, uj, which is no longer a fluctuating
variable, being assumed to be identical to the ensemble
average of u .. Even if n is sufficiently large, however, a„
is still a fluctuating quantity. The fluctuation spectrum
gives information about (i) the possible fluctuation range

d(qle) dA,a=, o(a)=q
dg Gg

We have noticed that

da d o(a))0,

(2.4)

(2.5)
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k =ko+Dq, (2.6)

where D =Co /2+ g„" i C„, C„=( u„uo ) —A e being the
double-time correlation function. The quantity D is re-
lated to the variance of a„as

(( „- .)')=2D
n

(2.7)

for a large n, and has the meaning of the diffusion
coefficient. ' The asymptotic law (2.6}leads to

The fluctuation spectrum o (a) has a single minimal value
o =0 at a=a„(=Ac—(u„)}.

If we expand (2.1) in the series of cumulants, the ex-

pansion converges for
~ q ~

&«, «being the convergence
radius. The ~ separates three typical regions of q,
(q « —«,

~ q ~
&&«, q&&«) as follows. ' For

~ q ~
&&«,

can be approximately written as

f(x)= ,'s—int[2n+2sin '(2e)]xI ( ~x
~

& —,') .

This has the inversion symmetry, f ( —x)= f—(x).
When the control parameter e is positive, there exist mi-
gration channels connecting two regions x &0 and x ~ 0.
For @&0, migration channels disappear and the phase
point is located in one of regions x & 0 and x ~ 0. The lo-
cation of the phase point is uniquely determined by the
initial condition. Since the migration channels are nar-
row slightly above the threshold @=0, the average dura-
tion in each region is long for e 0. The long duration
causes the intermittency concept. ' Of course the present
intermittency is different from those by Manneville and
Pomeau. ' Such symmetry dynamics is studied by observ-
ing the temporal evolution of the coarse-grained vari-
able" "

a =ko+2Dq,

(a —A,e)
cr(a) =

4D

(2.8)

(2.9)

.~ 1.0 C

b
a

1 1
Ae A,e~ — —ce exp( —7/e i q i

)
q

(2.10)

The parabola (2.9) agrees with the central limit theorem
result and is valid for

~

a —A.e ~
&&

~
a(q =«) —A,e ~

. On
the other hand, for Oq »«, (8=k), we generally get

—0.1 —0.

0 5 ~ ~

0.05 , :, q

where ~e, c&, and g& are positive constants. Its Legendre
transformation gives

a=Re„eceriee—xp( —r)e
~ q ~

),
1 1 a&o(a)= ——

~

a —A, e„~ ln
re ne

"
I

a —~e. I

(2.11)

(2.12)

a
b

C
~ ~ ~ 1 Q

where rie- 0( 1/«) and a e —=eceye. The derivative
der(a)/da logarithmically diverges as a~Re„.

The existence of three characteristic regions of q is
mathematically due to the finiteness of the convergence
radius ~. As was shown in Ref. 5, on the other hand, its
physical reason is the nonperturbative disconnectivity
among the diffusion characteristic for

~ q ~

&&«and the
two intermittency characteristics for

~ q ~

&&«..
Near chaotic transition points, A, often obeys the scal-

ing laws of the form Aq v"F(q/a), ' ' ——where p is a
constant and F(x} is a scaling function. Combining this
with (2.4) leads to a (a) =«"+'G(a/«") with
6 (y)=g dF(g)/1 g, where g(y) is the inverse function of
y =d[(F(g)]/dg. In the following sections, utilizing
concrete models of two types of intermittency transitions,
we shall determine explicit forms of F and G.

—1.0 —05

0 01"

0.5 1.0

III. DYNAMICS ASSOCIATED WITH BREAKDOWN
OF CHAOS SYMMETRY

A typical example of the dynamics associated with the
breakdown of the chaos symmetry is the band-splitting
phenomenon observed in a wide range of chaotic phe-
nomena. ' ' ' ' The model we employ here is the one-
dimensional mapping system x„+&

——f(x„)with'

FIG. 1. Numerical results of the characteristic functions and
the Auctuation spectra for the symmetry dynamics near the
band-splitting point of the model (3.1). The o.(a)'s were ob-
tained by the numerical derivative of A,~. Parameter values are
m=4)&10 (a), 10 (b), and 2&(10 ' (c). As a~0, the stair-
case structure of k~ develops. Consequently, the parabolic
structure of cr(a) diminishes.
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1 (x„)0)
Q —1 (x„&0) . (3.2)

cr(a) 2 1

~ 1+[I(a)]
(3.9)

The numerical results for the characteristic functions
and the fluctuation spectra are shown in Fig. 1. As e~O,
the slope D =dA, /dq

~ o becomes steep as'

D~1/v e. (3.3)

This is due to the elongation of the characteristic time
near e=O. Namely, since D-~, the correlation time ~
being inversely proportional to the migration probability
per unit step, we have D -r-1/I p, where I is the width
of the migration channel (l —v'e) and p[-0(e )] is the
probability density at extrema of the map. ' This gives
(3.3). Simultaneously the staircase structure develops as
@~0, A,~„(=+1) being insensitive to e, and the concave
structure of o(a) tends to diminish. For @=0+, o(a)
lies on the a axis, i.e., 0 (a)=0 for

~

a
~

& 1, which is the
alternative representation of the fully developed staircase
structure of A, . For e & 0, the phase point is trapped in
one of regions x &0 and x &0, and cr(n)=0 at either
a=+1 or —1 according to the position of the phase
point. Except for that point with 0 =0, we obtain cr = ~.
This successive change of the fluctuation spectrum is
characteristic of a symmetry-breaking transition.

Let us turn to the determination of the approximate
forms of A, and cr(a). The dynamics for e~0 yields

So dA, »/dq is an even function of q, being
expanded as

where I(a) is the solution of (3.8), [q/q, =I(a)]. The
characteristic times r+ [Eqs. (2.10) and (2.12)] are thus
evaluated as r+ ——n. D /4=2. 47D.

In a previous paper, ' on the other hand, we have de-
rived another scaling form of A, , which is regarded as the
mean-field treatment result in the equilibrium critical
phenomena. The result is

mq, 4q
ln cosh

4 7Tq ~

Its Legendre transform yields

~ ~ 1.0

0 5.

—io

"—05

dkq q=D 1—
dq q„

2

+ o ~ ~ (3.4)
~ ~ —1.0

if
~ q ~

is appropriately small, where we have noticed
that the q term in d A, /dq acts so as to suppress the rela-
tion dA, /dq =D near q =0 as q is increased. On the oth-
er hand, dA, ~/dq should be proportional to q for a
large q [Eq. (2.10)]. One simple interpolation approxima-
tion satisfying these requirements is to put

")0

dkq D
dq 1+(q/q„)'

(3.5)
~ 05

The integration of (3.5) with the boundary condition
k„=1 leads to'

(3.6)

2
X, =—tan-'

7T q,
(3.7)

—0.5

(bj
0.5 1.0

2, qa =—tan
1+(q/q, )' (3.8)

The parameter q, estimates the width of the q region
satisfying k =A,o+Dq. Namely, q, is roughly equal to
the convergence radius of the expansion (3.4). The 6uc-
tuation spectrum cr(a) is obtained by the Legendre trans-
form as

FIG. 2. Scaling relations of characteristic functions and Auc-
tuation spectra shown in Fig. 1. Symbols 0, 6, and )& are the
results of a, b, and c in Fig. 1, respectively. The quantities q~
have been calculated by (3.6). Phenomenological scaling func-
tions (3.7), (3.9), (3.10), and (3.12) are denoted by solid lines.
The two approximations give quite similar results. We obtain
excellent agreement between theoretical results and numerical
ones over all regions of q and a.
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u =tanh 4q

mq,
(3.11)

In order to study the scaling structures of A,
»

and o (a),
let us first postulate that the scaling behavior

o(a) =—[(1+a)ln(1+a)+(1 —a) ln(1 —a)] .
q~ 8

(3.12) OF~q K
(4.5)

These scaling functions are characteristic of the coin toss-
ing. The». + are evaluated as i+ ——2D/ln2=2. 89D.

Thus we have two types of approximate analytic scal-
ing expressions as A.

» =F,(q/q, ) and o(a)/q, =G&(a).
Numerical results given in Fig. 1 are plotted in the scal-
ing forms in Fig. 2. l» and cr(a) exhibit the scaling be-
haviors and both approximate scaling functions given
above are in excellent agreement with numerical results. —c exp(») q ) (4.6)

holds for q except for a large-q region. Fz(y) is the scal-
ing function [Fz(0)=1],and ~ estimates the convergence
radius of the cumulant expansion. The estimation

„=A,OF2( —~ )-A,o agrees with the observation
„~~e. Equation (4.5) can be generally expanded

as

IV. FLUCTUATION DYNAMICS
OF LOCAL EXPANSION RATES

for —q &&i~ [Eq. (2.10)]. We further postulate that this
asymptotic form is valid not only for —q &&v but also for

In this section we discuss the fluctuation dynamics of
LER's near the type-I intermittency transition. ' The
fluctuations of LER's slightly above the type-I intermit-
tency transition are due to both stochastic insertion of
bursts among long ordered laminar regions and a trajec-
tory instability in laminar regions. We use the one-
dimensional intermittency model of So and Mori'
x„+, f(x„)wi——th

0.2"

ft(x)=x + ,'+e (0&—x&c)f (x)=
fb(x)=( —x+1)(1 b)/(1 c)—+—b (c &x &1),

(4.1)

where c =&(3/4) —e, and b is a positive constant, being
chosen as b =0.3 in the present paper. e is the control
parameter and @=0 is the transition point. By putting
x„=y„+—,', (4. l) can be rewritten in the conventional
form

—1.0

0 01"

-0.5 0.5 1.0

2
~n +1 ~n +~n +~ (4.2)

near y„=O. The fluctuations of LER's are observed by
studying the time series

u„=ln
~

f'(x„)
~

(n=0, 1,2, 3, . . . ) (4.3)

[f'(x) =df (x)/dx ].
Numerical results of A, and cr(a) are shown in Fig. 3.

As the system approaches the transition point, the disper-
sion range of the characteristic function A, diminishes.
Especially, the conventional Lyapunov exponent A,o de-
creases as

0 005"

A.o ~ ~E (4.4) O. t

4

0.2

Furthermore, as @~0, (i) the spectrum boundary
a=A, „approaches zero, (ii) the width of the a region
where a(a) has a parabolic structure becomes narrow,
and (iii) the height of o (a) decreases. The decrease of the
height of o(a) indicates the elongation of characteristic
times» + [Eq. (2.12)]. The numerical observation suggests
that the slope D shrinks, obeying the power law D ~ e~,
where P =0.25 —0.35, and that A, „a:&e.

FIG. 3. Numerical results of A,
q

and o(a) for the fluctuation
dynamics of local expansion rates in the one-dimensional map
(4.1) with b =0.3. Parameter values are e=5 X 10 (a),
1.25X10 (b), and 6.25&(10 ' (c). As @~0, the dispersion
range of A,

q
diminishes. Numerically we found X „=0.35k.o, ir-

respectively for e.
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7 ]
C

2D

(A0 —A, „) (4.7a)

(4.7b)

Near @=0, these are evaluated as w ~ e and K ~ E'

provided that D ~e, i.e., /=0. 3 is used. As is well
known, the average duration n between successive bursts
is estimated with (4.2), i.e., y„/n -y„-e as n —I/&e
However, the evaluation of the characteristic time ~ in

for a large q gives r ~e ' . Since A. „—v e, we ob-
tain

F2(y) =r+(1 r)(e~ I—)/y, — (4.8)

where r—:A, „/A,0[=Fz( —~ )] is a numerical constant
of order unity (0 & r & 1). The scaling function (e~—1)/y
is characteristic of the Poisson process. The Legendre
transformation gives

q & q„q, ( & 0) being a certain characteristic value of q.
Requiring that the above expansion gives (2.6) near q =0
determines the parameters as

in the large-q region are extremely different from the
theoretical result (4.5). Nevertheless, these differences do
not appear in such a clear-cut way in the scaling form of
o(a). The fluctuation spectrum cr(a) is in this way in-
sensitive to observations or approximations in compar-
ison with the characteristic function A, .

As is seen above, the approximation (4.6) is far from
the numerical results for a large q. This suggests the ex-
istence of another scaling law valid for a large-q region.
Assume that there is no characteristic value of q except
q, which evaluates the region boundary between the Pois-
sonian behavior and a large-q behavior. So it is natural to
scale q with q, . Then the region boundary remains 6nite,
independently of e, on the q/q, line. If A, is scaled as
A, ~/A, „, then A,&/A, „ for q/q, & 1 takes a finite value as
a~0 On . the other hand, A,~/A, „ for q/q, &&1 ap-
proaches zero because A,

q
E' ' for q &q, and A.„-e ' .

Figure 5 shows the q/q, versus A, /A, „plot. The numeri-
cal observation seems to imply the scaling relation

a=A0[r+( I r) exp—(q/a. )] . (4.9)

Accordingly the fluctuation spectrum obeys the scaling
law

o(a) a
A,pfc A,p

(4.10)

where

62(y) =1—y+(y r) ln—
1 —r

(4.1 1)

The numerical observation suggests A,~-e~ ((=0.3)
for a sufficiently large q. Evaluating q„ the largest value
of q where the asymptotic law (4.6) holds, through the
matching condition 1,+2(q, /a ) —1,„-e~, we find

I

-8 -6

(a)

q, =a lne-' (4.12)

except for the numerical factor. Therefore we have two
characteristic q regions. One is for q &q„where (4.5)
and (4.6) hold. The magnitude of A,

~
in this region is

0(v'e). The other is for q »q„where A~ diminishes as
~@~. The ratio of A. 's in these regions is enhanced as

A, „/A, „~~. We note that the region where (2.6) and
(2.9) hold gradually shrinks as @~0 because K

Consequently, the boundary q, approaches zero. Howev-
er, since the ratio q, /x logarithmically diverges [Eq.
(4.12)], the scaling relation A, /AQ=Fz(q/a. ) tends to
gradually cover the whole q/~ region as e~O.

In order to check the validity of (4.5) and (4.8), the nu-
rnerical results in Fig. 3 are plotted in the scaling forms
in Fig. 4, where we put r =0.35. The theory explains nu-
merical results fairly well for q/~ smaller than a cross-
over value. The crossover value gradually becomes large
as @~0. This is compatible with the estimation

q, /~-1ne '. This agreement supports the validity of
several postulations made above. Numerical results of A.

q

0.5 '

(b)

FIG. 4. Scaling behaviors of characteristic functions and

Auctuation spectra given in Fig. 3. Symbols 0, 6, and )& corre-
spond to a, b, and c in Fig. 3, respectively. Solid lines are
theoretical results {4.5) and {4.8), where we have put r =0.35.
As a~0, the scaling region where {4.5) with {4.8) holds becomes
wider on the q/~ axis.
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(5.2)

forcase (a), and

& //2
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(5.1)

1.0 --- ————
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ping system where u„ is a unique function of x„as
u„=u(x„) the characteristic function A, from the first
principle is obtained by solving the eigenvalue equation

(5.3)

)i» = ——min&(Ref'") . (5.4)

The approximate expressions of scaling functions heurist-
ically or phenomenologically obtained in the preceding
sections are desirable to be justified by solving the eigen-
value equation (5.3).

In connection with the eigenvalue problem (5.3), let us
make a comment on the temporal correlation in Iu„}.
The characteristic function X is alternatively defined by

( exp(qn a„)) =Q„'«' exp(q A, n ),
where Q„'«' satisfying

(5.5)

lim —InQ„«'=0(

n~ oo
(5 6)

is relevant to the temporal correlation embedded in I u „I .
By introducing the quantity

H g'"(x) =exp( —g'")g'"(x),

where H is defined by H F(x)=H[e«"'"'F(x)] with the
q z~Frobenius-Perron operator H. Namely, A, is deter-

mined by the largest eigenvalue of H as

:-«(ru)= g Q„'«'cos(ron ),
n=0

(5.7)
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APPENDIX

In this appendix we give another solvable, simple ex-
ample exhibiting scaling behaviors similar to those ob-
served in Sec. IV.

The time series under consideration is the fluctuation
of LER's

its poles give the order-q characteristic frequencies and
damping rates. ' All eigenvalues in (5.3) contribute to
:"«(ro), which contains information different from those
in A. . In order to elucidate more precise statistical
characteristics of I u„j, we should go into the survey of
:-«(ru). Especially near the intermittency transitions,
long-lived temporal correlations aftect the shape of
:-«(ru). Further studies in this direction will be reported
elsewhere.

"30
I

Aq
Ik. i

I

l

q
I

15"

, E(qA )

-20 0

(b)
20

--1 5 --1 0

—10 01
(c)

0
0

FIG. 7. Scaling plots of A.q and u(a) for the fluctuation dynamics of local expansion of the model (A2) for p =0.2, 0.15, 0.1, and
0.06. As @~0, the exact results monotonously approach the scaling functions (dashed lines) given in Eqs. {A9) and {A10). {c),espe-
cially, should be compared with the characteristics depicted in Fig. 5.
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u„=in
~

f'(x„)
~

for the one-dimensional map

x„/p (0 &x„&p )

x„~,=f(x„)= (x„—p)/(1 —p) (p &x„&1)

(A 1)

(A2)

(q —1)A, (q —1)A,
A, =—ln(e "+e "),

q
(A3)

(0 &p & —,). The characteristic function A,
~

is easily ob-
tained as

Al
qlim

p~o
1 —q

' (q&0)
+~ (q&0), (A9a)

forms of A,
~

and cr(a). In the present model there exist
three characteristic values of the fluctuation o. for p ~0,
&.e.,

ho[=pl, „+(I—p)A, „],
The characteristic behaviors of fluctuations correspond-
ing to them are described by the limiting laws

where

A, „=lnp ', A, „=ln(1—p)

The Legendre transform of (A3) gi~es

(q —1)A. (q —1)~
A, „e "+A, „e

(q —1)A, (q —1)&
e "+e

o (a)=u —o (a),

(A4)

(A5)

Ay /I'g

lim =F(y) ( —~ &q & ~),
p ~0 Ao

~q 0 (q &1)
lim

1 —q
' (q&1),

(A9b)

(A9c)

where F(y)=(e~ 1)/y. —Such behaviors are drawn in
Figs. 7(a)—7(c). Furthermore, Eq. (A7) is simply written
as, for p~0,

where o (a)= —(1—x) ln(1 —x) —x lnx—:h(x), (A10)

&(a)= —(1 f~ } ln(1—f~) f~
—lnf— (A7)

(AS}

As p ~0, the spectral structures of A, and o (a) are di-
minished for q g 1 and are enhanced for q & 1, k, tak-
ing the value ln2 independently of p (Fig. 6). Such criti-
cal behaviors are studied by considering the asymptotic

where x =a/A, „. In Fig. 7(d), o (a) [Eq. (A7)] is plotted
as a function of a/A, „ for several values of p. One ob-
serves that o (a) approaches (A10) as p ~0.

The present simple example exhibits several aspects
similar to those found in Sec. IV. One of the important
differences is that in comparison with the crossover value

q, in Sec. IV, which approaches zero as the system ap-
proaches the transition point, it takes unity (q, =1) in the
present model.
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