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We study the roughness of aggregates that are formed by ballistic deposition with nonzero flux
density of incoming particles. The flux density is controlled by a parameter 0<p < 1. The scaling
behavior of the interfacial width & does not depend on p and is the same as £ found in a variety of
other, related models. For short times £ « ¢!/ for a one-dimensional substrate and £ « %22 for two-
dimensional ones. The latter is not consistent with various theoretical predictions. Rough numeri-
cal estimates for the long-time exponent are also presented. In addition, we derive a relation be-
tween the width of the geometrical boundary of the aggregate and the width of the active region of
growth. This relation, true for models in which the active zone is asymptotically correlated to the
surface of the aggregate, is verified by our simulations.

I. INTRODUCTION

It has long been recognized that the roughness of thin
films is an important factor in physical phenomena such
as adsorption, '~ catalysis,? and the dissolution of a frac-
tal object.® Optical phenomena also depend very much
on the surface structure,”® as do the wetting properties
of a surface.’

From a theoretical point of view, the structure of a
growing interface is interesting in many respects. It is a
problem which involves both random dynamics and
geometry, features that are common to many nonequili-
brium phenomena. The interface is the region where
growth occurs in real systems and its structure will ulti-
mately determine the structure of the whole deposit.? It
is not yet clear, however, how this actually occurs since
similar structures, whose surface properties belong to the
same ‘“‘universality class,” may not have the same bulk
properties. For example, it is believed that many aspects
of the interfacial dynamics are the same for a class of
models that include the Eden model and ballistic aggrega-
tion.” 14

In this paper we will discuss the interfacial roughness
for aggregates that are obtained by finite-density ballistic
deposition. This model, to be described in detail below, is
such that at any time step, a finite fraction of the perime-
ter sites are occupied with probability p. An important
measure of the roughness is related to the height auto-
correlation function® G(u)={(h—h)(hg—h)), where
h 4 and hjy are the heights at 4 and B which are separat-
ed by the distance u, and % is the mean height. In the
limit where u goes to zero, G (u) gives £, the square of
the fluctuations for the height £ which we may take as a
measure of the interface width. We will consider, in par-
ticular, the following questions:

(i) How does the width scale with time?

(ii) What is the effect of changing the random flux of
the incoming particles? (One might expect that lowering
p increases the amount of noise, and therefore changes
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the scaling behavior and/or the morphology of the inter-
face.)

(iii) What is the relationship between the active zone
(the zone that captures the incoming particles) and the
geometrical zone (the boundary of the aggregate)?

The behavior for the finite systems at long time is also
treated briefly.

It has been conjectured by Family and Vicsek’ that the
width of models such as ours scales like E~L%f(h /L7),
where L is the linear size of the base and f(x) goes like
x*(yv=a) for small x. There have been conflicting
values reported for the scaling exponents in the case in
which the base is two dimensional. On the one hand, the
Kardar et al.'® renormalization-group analysis of con-
tinuous models gives a=1,v=1. Based on this and
simulation results they conjectured the same values for
the exponent in two dimensions. On the other hand, a
treatment of the single-step model of Meakin et al.'®
mapped onto the six-vertex spin model gives a=0,v=0.
In addition, the latter authors pointed out that their
simulation results correspond to none of the above. Our
results, close to the results of the simulations of Meakin
et al., are a=0.31,v=0.22. This suggests a kind of
universality in the sense that our scaling exponents are
robust with respect to the density control parameter p.

In Sec. II we describe the finite-density ballistic model
and give a brief review of the results for other models and
the analytical calculations that have been done. In Sec.
III we write the stochastic equations that describe the
growth. Under the assumption that the growth velocity
is constant, we derive a simple relation between the width
of the active zone and the width of the geometrical sur-
face. In Sec. IV we present the results of our simulations.
In particular, we verify the relation between the geome-
trical width and the active width derived in Sec. III, and
we study the short-time (£~t") and the long-time
(E~L?%) scaling behavior of the interface. We conclude
our paper with a review of our results and a discussion of
the problems that remain open.
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I1I. FINITE-DENSITY BALLISTIC DEPOSITION
AND OTHER MODELS

A. Model

Finite density ballistic aggregation'® is a generalization
of the original ballistic deposition model of Vold and
Sutherland'"'%10 that was introduced to describe col-
loidal aggregation. The Vold-Sutherland model is also
relevant for the description of vapor deposition of thin
films.!” In fact, simulations of the ordinary ballistic
deposition model reproduce the familiar columnar struc-
ture!’ that is seen in vapor-deposited thin films grown on
cold substrates. In this simplified model a particle falling
from a random point in a straight line sticks as soon as it
meets an active site, i.e., a nearest neighbor of a particle
of the deposit. This is an idealization of low-temperature
deposition when relaxation can be neglected. One and
only one particle can be added at a time, and the film is
grown on a flat substrate by adding many particle sequen-
tially.

We will study a generalization of this model in which
many particles are added simultaneously to the structure
at each time step. The growth algorithm is as follows.
At each time step all the columns of the lattice normal to
the substrate along which a particle may fall are sampled
and a particle is allowed to fall independently and ran-
domly in each column with a probability p. These parti-
cles then fall in their columns and stick to the cluster
when they meet an active site. The active sites at time N
do not include nearest neighbors of the other particles
that are dropped at time N. This parameter p mimics an
incoming flux that we can vary at will, and allows us to
“tune” the fluctuations in the dynamics of the process.
Our numerical results indicate that the scaling exponents
are apparently independent of p. However, other aspects
of the growth do depend on p. In the limit where the
number of incoming particles is small, i.e., p, goes to
zero, we recover the ordinary, asynchronous ballistic
deposition model. This is confirmed by our simulations.
The results of our model for small p agree very well with
the results for the ordinary ballistic deposition model.
This is shown in Fig. 5 and will be discussed further
below. In addition to its use in the current study, our
model of finite-density ballistic aggregation has some oth-
er interesting features. As p is varied, the bulk morpholo-
gy of the deposits varies in an intriguing way. The model
has also been shown to manifest quasiperiodic growth os-
cillations whose frequencies depend on p.'® Before we
proceed to the analysis of the interface, let us review the
scaling hypothesis® for deposition of aggregates and sum-
marize the results that have been obtained by other au-
thors for related models.

B. Interface results for related models

The scaling behavior of the interface has been studied
for a number of models of growing dense structures.
These models include the Eden model, !> ordinary
ballistic deposition,®!® and the single-step model of Mea-
kin er al.' In all these models, the interface width has
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been found to scale as & ¥ for short time and to saturate
at a value which increases with the linear dimension L of
the substrate as L.

It appears that the values of the exponents fall into
universality classes. The results to date, suggest further-
more that the universality classes are determined only by
the dimensionality of the system.

It is generally believed that the short- and long-time
scaling behavior can both be summarized in a scaling
form®

E~L°f(h/LY), (1

with f(x) being constant for large x and f(x)«<x” with
v=a/y for small x. The existence of this scaling form
has been explicitly demonstrated, however, only for the
case of ballistic deposition in one dimension.® (The di-
mension we use here and in the following is the dimen-
sion of the substrate. The reader is cautioned that other
authors refer to the dimensionality of the whole aggre-
gate.)

In one dimension the numerical results for all the mod-
els examined are consistent with the values of a=1 and
v=1. For example, for ordinary ballistic deposition the
simulations of Family and Vicsek®’ give v=0.3010.02
and a=0.42%0.03 for the active zone. The v exponent
was determined by studying growth on a square lattice
with a base as wide as L =2000 with 4 between 20 and
1000. A larger-scale simulation (L =2'8, 7 =5000 for the
short-time exponent) was done on a square lattice by
Meakin et al.'® Their results are a~0.47 and
v=0.331~0.006. In the same paper they studied a
closely related model, the single-step model. Their re-
sults are v=0.332+0.003 (L =2") and a=0.5000
10.015 obtained from square lattice with bases of size
64 <L <1024.

Similar simulations have been done for the Eden model
by Meakin, Jullien, and Botet (their model Q.1 They
studied deposition along the axis and along the diagonals
(staggered lattice) of a square lattice. The size of their de-
posits were 108-2 10° sites with a base of 32 < L <1024
units. They extracted an exponent a very close to 0.5
(from 0.498 to 0.505 along the axis and from 0.492 to
0.499 along the diagonal). Using a base L up to 8192,
they found v=0.307+0.007. The supercomputer simula-
tions of Zabolitzky and Stauffer'* on the Eden model
grown from a linear substrate gave v~ 1 with L up to 2%.
However, as they pointed out, this might be only a lower
bound; the effective exponent showed a definite increase
toward the end of their simulations. They also found the
exponent a to be 0.51110.025.

Two different analytical calculations of the scaling ex-
ponent in one dimension have been done. The single-step
model was mapped onto a spin model, '® giving a=1 for
long time scaling behavior. This result follows from the
fact that the spins become uncorrelated when the steady
state is reached. Using a different approach, Kardar,
Parisi, and Zhang'® argued that growth of the interface
(in the moving frame) can be described in the continuum
limit by the equation
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This is a nonlinear Langevin equation where the 7(x,?) is
uncorrelated Gaussian noise. Kardar et al. claim that
higher-order nonlinear terms as well as the exact form of
the noise are irrelevant for the scaling behavior. Using
dynamic renormalization-group techniques they found
a=1and v=1 exactly.

Thus, in one dimension, all results, both numerical and
theoretical, are consistent with the values a=1,v=1 for
a number of different but related models. The situation
in two (and higher) dimensions is less clear. While the
continuum equations of Kardar et al. may still be applic-
able, there are now two stable fixed points, one at b =0
and the other at b = . Assuming that the strong cou-
pling fixed point is the relevant one (the fixed point at
b =0 would yield the trivial exponents, with logarithmic
corrections to scaling in two dimensions), the exponents
are not computable in perturbation theory. (However,
via a mapping to a polymer problem, Kardar et al. nu-
merically measured exponents of v~ %,az%.) It has also
been argued by Meakin et al.'” that the continuum equa-
tions lead to a scaling relation

< |-
@

a

in any dimension.

A model related, but not identical, to the single-step
model is the six-vertex model. Under the assumption
that the long-time behavior of the single-step model
reduces to the equilibrium ensemble of the six-vertex
model with equal vertex energies (the analogous result be-
ing known to hold in one dimension), Meakin et al. de-
rived the result that the height autocorrelation function
G (u)~Inu for large u. This implies that a=0 and, as-
suming the validity of the scaling relation (3), also that
v=0. Care must be taken with this analogy, however, be-
cause there are important differences between the allowed
configurations and their weights in two dimensions of the
single-step and the vertex models.

None of the above seem to agree with the simulation
results in two dimensions that indicate a=0.333 for the
ballistic (regular) model,'® and a=0.363 for the single-
step model. '° The short-time exponent v for both models
seems to be close to L. Unfortunately, in that case the
data is not conclusive and it is not obvious that the
asymptotic regime value (L — ) has been obtained. To
be in that regime, we need h << L7; otherwise we may ex-
pect significant crossover effects between the long- and
short-time regimes. these constraints are easily dealt
with in one dimension (although, as stated earlier, Zabol-
itzky and Stauffer'* pointed out that the value v=1 for
the Eden model might be only a lower bound). On the
other hand, in higher dimensions, memory size severely
restricts the scale of the simulations. In fact, a large-scale
(supercomputer) simulation'* of the Eden model with a
base 81928192 did not reach the true asymptotic re-
gime (L — oo ), with v starting to increase.
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III. FORMALISM

In this section we describe some formal properties of
our deposition process. The geometric surface, defined as
the highest occupied site for each column, is
parametrized by the height A, (x) where x is the position
of the column and N is the time. hy(x) is a single-valued
function. The active zone is parametrized by ay(x) and
is the highest site of each column that has a nearest
neighbor which is occupied.!® The width &y and 8y of
the geometric surface and of the active zone, respectively,
are thier standard deviations. The dynamics of the syn-
chronous ballistic deposition model follows the following
two equations:

ay(x)=max{hy(x)+1,{hy(x")}}, 4)
hy 1=aqy(xX)ay(x)+[1—gy(x)]hy(x) . (5)

hy(x') are the heights of the columns which are nearest
neighbors to the one at x. [More generally, if the sticking
range extended over more than nearest neighbors, Ay (x")
would include all those columns that directly “interact”
with particles in the column at x.] ay(x) is the height of
the active site for the column located at x, and gy (x) is a
random variable, independent for all x and N. It takes a
value of 1 with probability p and 0 with probability
(1—p). Although in our case the gy’s are uncorrelated,
generalizations can be made to take into account memory
effects.

The first equation implies nontrivial correlations
among different columns. Despite its apparent simplici-
ty, it is a difficult equation to deal with because of the
highly nonlinear Max operator. Various linear approxi-
mations of it have been tried without any satisfactory re-
sult. In the sequel, we will suppose that the dynamics
embodied in this equation implies that the active zone
(i.e., the ap’s) have the same growth velocity as the
geometric surface (i.e., hy’s). This assumption is support-
ed by the results of our simulations (see Sec. IV).

Now consider the second equation. Since gy =0 or 1,
we have

(gf)=(gy)=p , 6)

where ( ) may be understood to be either an average
over an ensemble of clusters, or an average over the ran-
dom variable in a single cluster. It is the former that we
shall have in mind in most of the remainder of this sec-
tion. In any case, if we average over a collection of clus-
ters, translation invariance will require (h N(x))
=(hy(y)) for any x and y.
Because gy =0 or 1, for any function ¢

lhy ) =gndlay)+(1—gy)dlhy) . 7

In particular,

eishN+1=quisaN+(l_qN)eishN , (8)
with
O<s <27 .

We can then obtain the characteristic functions
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(eiShN+l>=p<eisaN)-{-(l—p)(eiShN) ] 9)

The characteristic functions are the generating func-
tionals for the moments of hy and ay. As usual, it is
more convenient to consider the cumulants of the mo-
ments. The first cumulant is the mean, which is related
to the growth velocity. The second cumulant is the
square of the standard deviation and gives us the rough-
ness. The third cumulant is a measure of the deviation
from Gaussian behavior since all cumulants after the
second are zero for a Gaussian.

The generating functionals for the cumulants are

ish

uy(s)=In{e V), (10)

wN(S)=ln(eimN) , (11)
with

uy(0)=wy(0)=0. (12)
Therefore

uN+,(s)=ln[p(eisaN)+(1—p)(ei3h”)] . (13)

For s =0 a first differentiation gives

(hy 1y =play)+(1—=p){hy) (14)
or

Chy 1) —Chy) =p ({ay ) —Chy)) . (15)

On the left-hand side of (15), we have the growth veloc-
ity of the geometric interface V), and,

VN_VN—1=P[(<aN>_<aN—l))—"(<hN>_(hN-1>)] .
(16)

As we have mentioned, from Eq. (4), it is reasonable to
assume that the active zone is locked to the geometric
surface. Thus

Vy—Vy_,=0 17

and the average growth velocity is a constant.
The second cumulant follows (r =1—p):

uz'\?+1(s)=—wl-7"

(pe N 4re V)?

x[pwye ™ +rupe ™ +p(w) )%™
+r(up)e N (pe ™ +re )
—(pwpe ™ +ruye ™)) . (18)

If £ is the standard deviation for the geometric surface
and 8 the one for the active zone, then putting s =0
yields

Ey o 1=p8y +rén+play ) +r{hy)?
—(play Y +rihy) ). (19)

This is the evolution equation for the roughness. After
some algebra we find
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v: o ov: o1
7—7—;(&'“—%) (20)
and V is the average growth velocity.

The left-hand side is a quantity we will call Ay. The
term (&3 +1—§%v) is the derivative of the squared width.
Since (experimentally) the exponent 2v < 1, this term goes
to zero as t2¥~!. Therefore, for large N, Ay approaches a
constant A, and

&~ =

(21)

As we shall show in Sec. IV, Eq. (21) is supported by
our simulations. In the limit where p goes to zero, ac-
cording to the simulations for small p and the simulations
of the ballistic deposition model, A is finite (i.e., V' ~p).
Note that V ~p follows at once from the definition of p
and the fact that the £ and 8§ grow more slowly than
linearly. If the active zone and geometric interface grow
with the same velocity, then Ay is a constant. We believe
that this is a feature shared by a large class of models.
We also assumed that the roughness exponent is no larger
than 1 (for the squared width). If we consider that for in-
dependent columns, the exponent is 1 and if we believe
that the coupling between columns tends to reduce the
width, then the exponent may be expected to be no larger
than 1. This result agrees with the simulation results and
implies that asymptotically the active zone and the
geometric surface grow with the same power law.

IV. SIMULATION RESULTS

A. Description of our simulations

We performed simulations of finite-density ballistic ag-
gregation for different values of the parameter p. We also

6000 T I .
— p=0.95
a
‘S 4000 — p=0.75—
=3
g p=0.5
:é - _
= p=0.3
& 2000 — —
S
=3
T | p=0.4 N

0 | | 1

0 2000 4000 6000

TIME (time steps)

FIG. 1. Height of the deposit plotted against the growth time
for different probabilities. The growth velocity is constant. The
size of the base is 820X 820.
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simulated the ordinary ballistic deposition model (i.e., the
low-density limit of our model) for comparison. We stud-
ied the geometric surface and the active zone simultane-
ously. Most of our simulations were done for a two-
dimensional base but we did review briefly the one-
dimensional case.

In two dimensions, we studied the nonequilibrium be-
havior (h <<L?) of deposits on square lattice bases as
large as 820 < 820. These were grown for 4500 steps. In
addition, for the study of the steady state we grew sets of
ten runs of deposists on bases 50X50, 100X 100,
200 200, 300 300, and 400400 large and for as long
as 6500 time steps.

We first consider the mean height &y (as well as @y ).
These were obtained by averaging 4 y(x) [and ay(x)] over
all columns. This averaging is expected to be the same as
averaging over clusters and we shall use it in the analysis
of our simulations. After some initial transients 4, and
ay are linear in time (Fig. 1), implying that the growth
velocity is a constant. This result is true for both one and
two dimensions. Since the flux of particles is constant,
equal to pL? this means that the average density of the
bulk is uniform and that the deposit has a trivial dimen-
sion?® equal to the dimension of space.

We also studied the widths, £y and 8. Decreasing p
increases the widths of the interface and qualitatively de-
creases the smoothness of the curve (see Fig. 2). These,
when plotted against time (Fig. 3), show a smooth in-
crease, except for very late times when the curve becomes
noisier and finally fluctuates around some average value.

We will examine first how & and 8§ compare with each
other, then discuss in more detail their behavior with
time.

B. Geometric surface versus active zone

When we compare £y to 8y, we notice that after the
first initial steps £ is always larger than §,. As seen in

T ll"”" T |IIIIH| T T TTTTIT T T T
0
= 100 |—
3 -
o C
Q
ey 50
b
R
e
(]
| 9
g -
g p=0.1
~ p=0.3
£ 10 — p=0.5 -
a o ]
Z - p=075 ]
8 05 -
= = i
= L
< p=0.95 ]
n Lt 1 [IIIIII] 1 llllllll 11

10! 102 103
HEIGHT (lattice units)

FIG. 2. Short-time behavior. The active zone squared width
is plotted, and the size of the base is 820X 820.

BAIOD, KESSLER, RAMANLAL, SANDER, AND SAVIT 38

Fig. 4(a), this is true for all values of p, including the ordi-
nary ballistic deposition model (p—0). Consider
Ay=E% —8%. Our data shows that after an initial tran-
sient this quantity fluctuates around a constant. This has
been observed for both one-dimensional and two-
dimensional bases. It is also true for any value of the
probability p [see Figs. 4(a) and 5(a)] including the limit-
ing case of regular ballistic deposition (or p~1/L9).
However, Ay decreases when p increases, and it naturally
becomes zero when p goes to 1. But the duration of the
initial transient does not seem to depend on p. If we vary
the size of the base, the quantity Ay does not appear to
change appreciably [Fig 4(b)], although for very small
samples the fluctuations of Ay are larger and the tran-
sient is less visible. These results are consistent with the
assumption made in Sec. III that the geometric and ac-
tive zones grow with the same velocity. Ay is an impor-
tant dynamical quantity in that it measures the screening.
In the model discussed here Ay is nonzero and time in-
dependent. On the other hand, in the Eden model A, is
zero. It seems clear that the value of Ay is important in
determining properties of the bulk, for example, the
porosity. Its functional form might also be closely relat-
ed %glghe question of whether or not the bulk is frac-
tal. >

From a practical point of view, the fact that in our case
Ay depends asymptotically neither on time nor on size
implies that the scaling behavior, if any, of the geometric
zone and the active zone are asymptotically (in both lim-
its) identical. We therefore need only study either the
geometric width (which we shall do in one dimension), or
the active zone width (which we shall do in two dimen-
sions).

C. Dynamical exponents

Following Family and Vicsek,’ the smooth initial part
of the plot of £y or 8y is size independent and the width

T ITIIHI T 7 TIIIII| T T TT7T7T7T7 T

@ 400 X 400

= 10 — 300 X 300]

= - .
200 X 200

0 0

Q

3 - 4

© 5F 100 X 108

o - .

L

G

g - 50 X 50 -

o

N

= L ]

=

=

=

&2

[ 1= -]

= - ]

=) - .

n r L1 llllLLl 1 1 IIIIIII (- Illllll 1

102 103 104
HEIGHT (lattice units)

FIG. 3. Long-time behavior. The active zone squared width
is plotted, and the growth probability is 0.5.
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should behave like . We studied this regime, bearing in
mind the limitations of the computer simulations dis-
cussed above.

In one dimension, when we analyze the geometric
width versus time, we observe that the exponent is

=~1/3 for all values of the probability p. This is com-
forting since it is consistent with the universality of the
exponent claimed by Kardar et al., 15 and with numerical
results for other models'®% 1314

In two dimensions the active zone was considered.
Our results for the dynamic exponent come from simula-
tions with a base of 1000 1000 for p equal zero and

:@ F T l T l T

° 6 (a) __|
9 - |
E -
b . |
i ¥

3 4 —
g *
= l |
S p————p-03
g g
& 21— ]
9 - .
=
&) p=0.5 .
S’ = -
= = p=0.75 B
|

. 0= p=0.95 —j
g o 1 L 1 1 1 =3
= 0 2000 4000 6000

HEIGHT (lattice units)
w20 T I T l T
E - 4
3 - .
) L (b) |
=
3 L i
& 15 (— —
i L |
g éoepa,@a %a#m,ﬁaxeawﬁ@%wm@ i
2 10— ]
= - -
O
Z - 400 X 400 4
E i ° 300 X 300 i
5 05 [— ° 200 X 200 —
a | ]
= i o 100 X 100
& |
< - x 50 X 50 s
g 00 i 1 l 1 l 1 ]
g 0 2000 4000 6000
HEIGHT (lattice units)

FIG. 4. The difference between the squared widths for the
geometric surface and for the active region of growth is a con-
stant, independent of time [as seen in (a)], and of the size of the
base [as seen in (b)]. The size of the base is 820 820 for the
first plot. The expected values from Eq. (21) are 6.4, 2.7, 1.2,
0.4, and 0.05 for p =0.1, 0.3, 0.5, 0.75, and 0.95, respectively.
For the second plot, the growth probability is 0.5, and the plot-
ted curves represent an average of ten runs.
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820820 for p different from zero. The asymptotic
power-law regime is attained for the active width sooner
than for the geometric width. The plot of the geometric
zone width shows an initial curvature in a log-log plot
versus time but finally aligns itself with the active width
plot. This is consistent with the relation between the ac-
tive and geometric width that we discussed above.

The two-dimensional dynamic exponent is found to be
v=0.22 independent of the probability p [see Figs. 2 and
5(b)] and including the limit p =0 (ballistic deposition).
However, this is inconsistent with the theoretical predic-
tions mentioned earlier.'®'® (v=1 or v=0). We cannot

2 |
=
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3
o —_
3
s
3
E
g —
s
2 - n
g
~ 1 i
3] 5 H— |
Z
=
a4 -
=
=
E .
(=]
5 (a) 7
b : ]
E 0 1 1 1 | 1 1 1
5 0 200 400
HEIGHT (lattice units)
TTTT T T T 11T

rlllllll T 7T

. In between: p=0.01 1
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SQUARED WIDTH (squared lattice units)

111 II 1 1 L1111 ll Il 1 L 11 IT
10 50 100 500
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FIG. 5. Small-growth-probability regime. As p becomes
smaller we recover the ordinary ballistic deposition model
(p—0.). Plotted against the height of the deposit, we have in
(a) the difference between the squared width of the geometrical
boundary and the squared width of the active zone, and in (b)
the squared width of the active zone. For p =0.01, 0.03 the
base is 820x 820 wide, and for p =0.0 the base is 1000< 1000
wide.
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preclude the possibility that we have not yet achieved the
true asymptotic regime, though we have pushed the com-
putation to the limits of our computing resources. The p
independence of our exponent, however, renders this an
unlikely possibility, in our opinion.

D. Finite-size effects

If we wait long enough, the curve of the width versus
time first becomes noisy, then fluctuates around a con-
stant value (Fig. 3). We believe that this is a finite-size
effect. This is supported by the fact that as L increases,
this behavior sets in at a later time. (Remember that the
short time curve is common for different sizes; see Fig. 3.)
Our data comes from sets of ten runs with square bases of
sides L =50, 100, 200, 300, and 400. The structure of the
crossover and of the plateau is not clear. The large effect
of the noise hides any pattern. The curve, however, be-
comes smoother after averaging.

A rough computation of the long-time exponent gives
a=0.3. This is not very accurate since the oscillations of
the plateau (even upon averaging ten samples) restricts
our precision. At any rate, it is not accurate enough to
check Meakin et al.’s scaling relation'® or to compare
with their simulation values (a¢=0.33 for the p =0 ballis-
tic deposition model or a=0.36 for the single-step mod-
el). On the other hand, it is very different from the
theoretical predictions (=0 or ozz%),m’15 a difference
which we regard as significant.

V. SUMMARY AND CONCLUSIONS

The finite-density ballistic aggregation model we have
studied is an interesting generalization of the ordinary
ballistic deposition. !> The former depends on a param-
eter p and the latter is recovered as pL? approaches 1
from above. This parameter allowed us to check the
universality of the scaling behavior as p is varied.

The width of the deposit scales with time in the short-
time regime and with the size of the base for the long-
time regime. In one dimension, we showed using Monte
Carlo simulations that the scaling exponents were con-
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sistent with those found in a variety of other one-
dimensional models, and with theoretical predictions for
one-dimensional systems. The short-time exponent is
v=1, independent of p, and this is the same as the Eden
model, '*!* the single-step model'® or the Vold and Suth-
erland model.>'° In two dimensions, our value for the
short-time exponent is v~0.22. This is again indepen-
dent of the value of the parameter p. It is also consistent
with previous numerical results for the ballistic deposi-
tion model'® and the single-step model.'® However, it
corresponds to none of the theoretical predictions. %3

A rough estimate at p =0.5 in two dimensions for the
long-time exponent gives a~0.3. This is to be compared
with a~0.33 for regular ballistic model’® and a~0.36
for single-step models. ' But here also theoretical predic-
tions are not met (a=0or a=1).1%1

Our simulations showed that the width of the active
zone (screening zone) is related to the width of the
geometrical surface of the deposit by a simple relation.
The quantity Ay =(£% —8%) is asymptotically indepen-
dent of time or of the size of the deposit. This was
confirmed by our analysis that showed the result to be
true for any model where the active zone grows at the
same speed as the geometrical surface. For this class of
models, the growth velocity is asymptotically constant
(aside from the effects reported in Ref. 16) and the bulk is
compact.

The limitations of computer power show the need for a
theory that gives meaningfully accurate results. The ex-
isting analytical calculations of the scaling exponents are
satisfactory only in one dimension. A more complete
theoretical picture is necessary for the description of the
interface of growing deposits, which is important in many
physical applications.> All the current theoretical treat-
ments'®!> are, we believe unsatisfactory, and reflect the
primitive nature of our understanding of even this very
simple model of nonequilibrium development.
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