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We study a random-bias model defined by a random walk with stochastic transition probabilities
modeled by a dichotomic Markov noise. Conditions under which the model can be described by a
Markovian chain with internal states are given. The effective Green's function of the problem is
calculated using the resolvent-matrix method. The moments of this distribution and the non-

Markovian master equation which it satisfies are analyzed. Nondiffusive behavior is found during a
transient regime. The model of random bias is extended to a situation with static disorder modeled

by a waiting-time density with a long-time tail. It is found that the random bias leads to a change of
the coefficient in the anomalous diffusion law.

I. INTRODUCTION The stochastic master equation

A simple model for transport in a disordered system
consists of a random walk on a one-dimensional lattice
with random hopping rates. ' This gives a good under-
standing of conductivity experiments on amorphous
media. Several methods such as the efFective medium
approximation, renormalization-group calculations,
and the continuous-time random-walk (CTRW) theory
(Hartree approximation) have been developed to study
these problems.

Random walk in a medium with static disorder leads to
anomalous diffusion in some circumstances, for example,
in the presence of an underlying fractal geometry. In the
context of CTRW theory, anomalous diffusion is associat-
ed with a waiting-time distribution with a long-time
tail. ' ' More recently, models of random walk with glo-
bal dynamical disorder have been considered. In this
paper we address the problem of the effect of global
dynamical disorder in anomalous diffusion in the frame-
work of CTRW theories.

More specifically, we study a random-bias problem as-
sociated with a random walk in a dichotomic random
uniform external field. The problem can be formulated in
terms of a random walk with internal states and it is
solved using the resolvent-matrix method' to calculate
the effective Green's function of the random walker. In
this approach we profit from the possibility of introduc-
ing a waiting-time distribution modeling static disorder
to consider the simultaneous" effect of static and global
dynamical disorder in diffusion problems.

As a model of random bias we consider the following
one-step master equation functional of an external noise
a(t):

+[rp+a(t)r&](K —1)]Q(s, t, [a(t)]),

where the operators K, K ', and E are defined by their
eff'ect on an arbitrary function f (s) as

Kf (s)=f (s+1),
K 'f(s)=f(s —1),
&f (s)=f (s) .

(1.2)

Equation (1.1) models random walk in a medium with
global dynamical disorder in which the transition proba-
bilities per unit time for jumps forward and backward
have a stochastic part with the same value except for the
opposite signs.

The solution of Eq. (1.1) depends on the nature of the
stochastic process a(t). Here we assume that a(t) is a
two-level Markov process' which takes values +6 and
has correlation time v

(a(t)) =O, (a(t)a(t')) =&'e

Under these assumptions the e+ectiue Green's function
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(i.e., the walker propagator averaged over the external
noise)

P(s, t)=(Q(s, t, [a(t}])) (,)
(1.4)

will obey an integrodifferential equation which must be
solved in order to understand the problem. An alterna-
tive point of view can be taken for the problem stated in
(1.1), introducing a master equation with internal states
(i.e., composite Markov processes' ) where the internal
states represent the values of the external noise. The
joint probability distribution P(s, p, t) is the probability
for the walker to be at site s and the noise in the internal
state p at time t. The effective Green's function can be
obtained as

II. EFFECTIVE GREEN'S FUNCTION

P„(s)= g P„(s,P),
P=kh

(2.1)

where the distribution P„(s,P) is determined by the re-
currence relation (1.6). Due to the translational invari-
ance we can transform to the Fourier space [the Fourier
representation will be characterized by the argument
(s ~k) of the functions], then

(Ii~ t,(k) %t, ~(k)

(k) (P (k) (2.2a)

We wish to find the properties of the marginal proba-
bility distribution

P(s, t)= QP(s, P, t) .
P

(1.5)
where

P„(s,P) = g %(s s', P,P')P—„ i(s', P'),
s'P'

(1.6a)

This is the main idea of the present work: to represent
the random bias as a problem with internal states and to
solve it by means of the resolvent-matrix technique. '

For the problem described by Eq. (1.1), we introduce a
Markovian chain with internal states; P„(s,p) is the joint
probability of the walker to be at site s with internal state
P in the nth-step walk. It satisfies the following re-
currence relation:

(Pt(&(k) = g e'"' ' '(Ii(s —s', P,P'), (2.2b)

that is, according to (1.7),

(P+t, zt, (k) =2r cos(k) + 2ib sin(k),

y t(( k ) =5
(2.2c)

The resolvent matrix X is the space convolution operator
for the non-Markovian recurrence relation of the margin-
al distribution

where

g %(s —s', P,P')=1 .
s, P

%' is the matrix which defines the model,

(1.6b)
P„(s)= g g X„„.(s —s')P„(s') .

n' s'
(2.3)

Using the results of Ref. 10, the generating Green's func-
tion of P„(s) in Fourier space becomes

%(s s', p, p')=—5tttr[5. (.(r p)+5, +, , —(r+p)]

+5p tr5„~ p ~, (1.7)

the parameter r is the single-step transition probability
for the walker in absence of noise, and the internal state
runs over the values P=kh. The Markovian chain
[(1.6)—(1.7)] can be transformed into a multistate CTRW
(Refs. 14 and 15) introducing a waiting-time density P(t).
It is shown in the Appendix that this continuous-time
version of (1.6) and (1.7) is equivalent to the original
random-bias problem (1.1) only for a particular choice of
the parameters, namely, ro —rA, , r, =A, , v=26K, with
g(t) =A,e

The paper is organized as follows. In Sec. II we solve
the problem posed by (1.6) and (1.7) using the resoluent
matrix method. We construct the associated CTRW and
we calculate the corresponding diffusion coeScient and
spectrum of the velocity autocorrelation function. In
Sec. III we derive the equation for the effective Green's
function of the CTRW problem calculated in Sec. II.
The Markovian limit of this equation is discussed. Final-
ly, in Sec. IV we go beyond the random-bias problem
defined by (1.1) introducing a static disorder. This is
done using a long-time-tail waiting-time density as is
usual in the CTRW theory. This gives a model of ran-
dom bias in the presence of static disorder which allows
some understanding of the simultaneous effect of static
and global dynamical disorder.

R(k,z)=—g z "P„(s)
n =0

Po(k)+z [P,(k) —Po(k)/2, (k)]
1 —[z Xzp(k)+Xz((k)]

(2.4)

where /20(k) and Xz((k) are the relevant elements of the
resolvent matrix, which are obtained as the solutions of
the following set of linear equations

X2o(k) g%titr(k)+Xz((k) g %tetr(k)= g 0t(tr(k)
P P P

(2.5)

Po(k) and P, (k) are a set of parameters determined by
the initial preparation. '

From (1.6) and (2.1) we obtain

Po(k)= QPO(k, p),
P

P, (k}=g Vtttr(k)PO(k, p') .
P,P'

For our model the (I((k) matrix is given by Eq. (2.2), so
supposing the walker initially at the origin we get

Po(k)=c, +c2 ——1,
Pi(k) =2r cos(k)+(c2 —ci }2i5 sin(k)+ b, ,
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X2,(k}=4r cos(k),

X20(k)=4(b, —r )cos(k) —3b,
(2.8)

Note that the normalization condition, Eq. (1.6b), implies
that

2r +b, =1 . (2.9}

where c, =Pa(k, b, ) and c2 ——Po(k, —5) characterize the
initial preparation (i.e., equilibrium initial preparation of
the noise corresponds to the case: c, =c2 ———,

' ).
By resolving (2.5) one gets

solves our problem because the effective Green's function
(in discrete time) is

P„(k)=,8,"R (k, z) i,
1

n! (2.12)

Having solved the Markov chain problem posed by Eqs.
(1.6)—(1.7), we can now introduce a continuous-time
description by using the CTRW hierarchy. ' The
effective Green s function in the continuous-time descrip-
tion [the Laplace representation will be characterized by
the argument (r ~u) of the functions] is

This requirement also appears as the normalization con-
dition for the marginal' probability distribution P„(k)
given by

P(k, u)= R (k, z)
Q z =Ps)

(2.13)

gX„„.(k)
l
k=0=1

n'
(2.10)

(2.11)

The generating Green's function (2.4) completely

Due to the fact that the (r —P) is a transition probability
[see Eq. (1.7}], we conclude that the b, parameter is
bounded to the values

where P(u}=J "e "'P(t)dt is the Laplace transform of
the waiting-time density, and P(k, u) is the Laplace
transform of P(k, t). It is well known that the exponen-
tial waiting-time model [g(t}=A,e '] gives the natural
extension from the discrete to the continuous-time
description. ' ' ' ' ' ' The effective Green's function
can then be obtained from Eqs. (2.4) and (2.13) using
f(u)=A/(A, +u),

Po(k)+ [A, /(A, +u)][Pi(k) —Po(k)X2, (k)]
P(k, u)=

A+u 1 —[A, /(A. +u)] Xzo(k) —[A/(A, +u)]X2i(k)
(2.14)

This expression permits the calculation of all the mo-
ments of the effective distribution.

The first moment is 1+6 [1—(1+26,k, t)e ']

(s(t)) =I.„' —. P(k, u)
i k

i Bk

T

+(1+36) A, t ——+ A,r+ —e

= —(c, —cz }(1—e ')—2i,ht (2.15)

(2.16)

Using the eff'ective Green's function (2.14), we obtain

(here L„' represents the inverse Laplace transform).
Note that for equilibrium initial preparation of the noise
(c, =c2 ——

—,'), (s(t)) vanishes identically. The charac-
teristic time [rz ——1/(2A, b, )] of the transient decay of
(s(t) ) coincides with the correlation time of the external
noise. We also note that if the transition probability of
the external noise goes to zero (b ~0), the first moment
vanishes.

The second moment is

(2.17)
From (2.17) the diffusion coefficient, the velocity auto-
correlation function, and its spectrum can be calculated.
Noting that

lim (s (t) )~(1+36)kt,
f —+ oo

we obtain for the diffusion coeScient

(2.18)

D = —,'A.(1+36) . (2.19)

Since unitary lattice parameter has been used in our mod-
el (1.7), Eq. (2.19) gives the effective diffusion coefficient
per unit length. Note that for 6=0 Eq. (2.17) reproduces
a pure diffusion behavior but for 5&0 a nondiffusive re-
gime occurs during the transient.

The spectrum of the velocity autocorrelation function
1s
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FIG. l. Numerical evaluation of rico)/@{0) as given by Eq.
(2.20) for three values of the noise amplitude 4. The frequency
is in units of A.(=1).

III. NON-MARKOVIAN MASTER EQUATION
FOR THE EFFECTIVE GREEN'S FUNCTION

We now study the equation which governs the evolu-
tion of the el'ective Green*s function of the walker. The
Green's function of the walker in the model defined by
(1.1) is a functional of the external noise a(t) and the
ejective Green's function is the average over the different
realizations of the stochastic process a(t) [see Eq. (1.4)].
We have described this situation by using Eq. (1.5) and a
Markov chain with internal states and later going to a
continuous-time description (the equivalence of the two
procedures is proved in the Appendix). As a conse-
quence, the Green's function, of the original problem
(1.1), averaged over the external noise, is given by Eq.
(2.14).

To derive the equation for P (k, t) we rewrite (2.13) in
the form

2

x(a)) =Re (s (u) )
2

P(k, t)=L„' R(k, z =g(u)}
Q

= J C(t r) g g—'"'(r)P„(k)«,
0 n=0

(3.1)

—,'A( 1 h)co +4k, b,—(I+6, )ri) +8k, 'b ( I+36 )

(~2+ 4g2g2 )
2

(2.20)

In Fig. 1 we show ~(co)/~(0) as a function of frequency.
The effect of the external noise is to reduce the ac con-
ductivity relative to the dc conductivity. The constant
asymptotic limit at high frequency is due to the pure
jump-diffusion description used in the present model. '

The transient behavior of the mobility is due to the corre-
lation time of the external noise. The frequency where
~(co)/~(0) reduces itself to half value is of the order of
co=—26k, as was expected.

limP (s, t) =Po(s),
0

lim 8,P (s, t) =A [P, (s)—Po(s) ] .
t~0

(3.2)

Using Eq. (2.14), and a few algebraic manipulations, we
obtain

where 4(t) is the probability that the walker remains
fixed during the time interval (O, t) and g'"'(t) is the prob-
ability density for the time at which the nth step
occurs. ' If an exponential waiting-time density
[f(t}=A,e '] is used, we obtain a relation between the
marginal initial conditions d, P(s, t) ~, 0 and the set of
parameters Po(s) and P, (s),

u P(k, u) —uPO(k) —A[P, (k) —Po(k)]+A[2 —X~,(k)]uP(k, u)

=A[2—Xz, (k)]Pe(k) —I, [1—X2)(k)—X2O(k)]P(k, u) . (3.3)

Laplace inversion of (3.3) using (3.2) gives

8' a
Qt2 Bt

P(k, u)+A[2 —X~,(k)]—P(k, t)= —A, [1—X2,(k) —X~0(k)]P(k, t) . (3.4)

This is a non-Markovian evolution equation for P(k, t). We stress that this equation is an exact resu1t valid for gen-
eral Xz,(k}and /20(k) (i.e., a general Markovian chain with internal states where P runs over two different values' ).

Equation (3.4}can be written in the usual form of a generalized master equation as follows:

P(k, t)= J M(k—, t r)P{k,r)dr, —y

0

where

(3.5)

[u + A (k}u +B(k)]P(k, t =0)
uP(k, t =0)+[OP(k, t =0)/Bt]+ A (k)P(k, t =0) '

A (k)=A[2 —X2,(k)],
B (k)—:I, [1—X2,(k) —L20(k)] .

(3.6)

(3.7)
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From this equation it is easy to see that the normalization condition is satisfied because g„X„„.(k =0)= l. In real
space the effective Green's function satisfies the following evolution equation:

tP—(s, t)= f QM(s s—', t r—)P(s', r)dr,
Bt

' 0,,

where

M(s —s', t)=—pe '"' ' ' B(k—)— P—(k, t =0)A (k) — P(—k, t =0)
2

(3.8)

ter—(k) BP(k, t =0)
5(t) .

(3.9a)

and

(3.9b)

E tio (3.5) and (3.8) (in Fourier and real space, respectively) give a complete description of the effective Green s
f tio . They are equivalent to Eq. (3.g). The time-dependent transition probabilities M(k, t) (in Fourier space)
characterize the generalized master equation of the marginal problem. Equation (3.8) is the evolution equation o

t description of two types of fluctuations, one describing the random walk by a discrete Markovian master equation,
and the other the external noise, which was introduced at the level of the master equation by replacing the constant
coefficients by random processes [Eq. (1.1)]. It is obvious that the generalized master equation (3 8) in general involves
nonvanishing transition probabilities for any step size. This is an important difference with the one-steP stochastic mas
ter equation of Eq. (1.1). For illustrative purposes we consider here the long-time regimen of Eq (3 8) In this reg™
we explicitly show that the transition probabilities for the effective Green's function involve spatial hopping for any step
size. We observe in (3.8) that the non-Markovian effect is a causal convolution of P(k, t) with exp[ (t r)lr—,(k—)]
The characteristic time r, (k) can be used to define a transient, non-Markovian regime.

Considering for times t »r, (k) we can approximate the generalized master equation by a Markovian one as follows:

f dr P(k, r)exp[ (t —r)lr, (—k)]—=r, (k)P(k, r);
0

then Eq. (3.5) reduces to

(3.10)

a—P(k, t)=M (k)P(k, t) .
Bt

Using (3.9a) and (3.9b) we obtain for the transition probability in the limit t »r, (k) (Markovian regimen)

(3.1 1)

4h k
M (s —s')=

+ n =Oh =0

a&

02

h

2hc
a2

h n —h

X (c'—1) g
m =0m'=0

h
m ( —1) 5(n —2(m +m') —(s —s'))

1 —c 2

+
4

2X—

h+2

m =0
—h+1

m'=0

n —h

m'=0

h
P7l

( —1) 5(n —2(m +m' —1)—(s —s') )

( —1) 5(n +1—2(m +m') —(s —s'))

—(1—b, )5[0—(s —s')]+ 1 —5
2

[5(1—(s —s') )+5( —1 —(s —s') )]

+cd, [5(1—(s —s')) —5( —1 —(s —s') )] (3.12)

where c =—cz —ei, a, —:1 b„and az =—1+6,. In gen—eral, M (s —(s+n) ) involves nonvanishing transition probabilities
for any n Note that .Eq. (1.1) is a one-step stochastic master equation, while the master equation (3.11) for the process
averaged over a(t) (effective Green's function) involves transitions to any site.

We write Eq. (3.12) up to the contributions to third neighbors as
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(2c —1)b, 4c b, (1—c )b, (1—c )cb,
S —S = —+ + 2 ss+ 2 1+ 2 3s

az az 2Q z az

(1—c )sst cg 2c g+ + z 1+ z
5—zs —s'

Qz az az

2cb, (1—c )5+ —' ———cd+ Q&—
2 2 Qz 2az

3(l —c )cb
2

5—1,$ —s
az

2ch (1—c )b, 3(1—c )cb,
—,——+cd — — a)+ 5)2 2 Qz 2Q2 Qz

(1—C2)g2 Cg2 2C2g3 (1—C2)g2
+ —,ttt+ 2 52, , +

az az Qz 2Qz
a&—(1—c )ch

53,
az

(3.13)

Note that if the external noise is turned off (b, =O) we reobtain the expected one-step master equation (usual random
walk without external noise),

'M (s —s')
~ a o

———,'(5, , +)+5.. . ) —5, , (3.14}

If we consider the equilibrium initial condition for the noise (c& ——c2 ———,
' ), the expression (3.13) becomes much simpler,

'M (s —s') i, = —(1—b, )5, , + (5. . .+5 . . . )
(1—6)(1+26)

2(1+6,)

+ 2, s —s'+ —2,s —s'}+ 2
( 3, s —s'+ —3,s —s'

t3 (1—b)
+ ' ' 2(l+b) (3.15)

0.40—
1 (1-6)(1+26)

( 1 y Q ) g {f1r st n e i g h 1or s )

0.20—

0.00

E

-0.200

e -0.40
CJ

~ -0.60

2

s e cond neighbors
1+6,

+c
Nt

third neighbors
2(1+8)'

-0.80

From this result we can study the relative amplitude of
the transition probability for hopping to sites far away
from the nearest neighbor. In Fig. 2 we show this factor
as a function of the noise parameter h. It is seen that the
transition probabilities to remote sites diminished with
jump size.

IV. RANDOM BIAS IN A RANDOM MEDIA

The effective Green's function in the continuous-time
approach is calculated from Eq. (2.13) where P(u) is the
Laplace transform of the waiting-time probability densi-
ty. Waiting-time densities with divergent first moments
have been used by Scher and Montroll to study transport
processes in amorphous solids. In their model the car-
riers move by hopping between localized states, created
by a random potential arising from the static disorder.
Schlesinger and Hughes ' take for the form of P(t) at
long time f(t)=At ' (with 0&a&1), so that
t)'jlu) =—1 —( A /a)I (1—a)u . We now consider a CTRW
version of the Markov chain model [(1.6)—(1.7)] using
such waiting-time density. In this way we introduce the
effect of a static disorder in our model. We can then ana-
lyze the long-time behavior of our random-bias model in
the presence of static disorder. This give some under-
standing of the effect of simultaneous dynamic and static
disorder.

Using the long-tail waiting-time density in Eq. (2.13),
the long-time behavior of the second moment of the
effective Green's function is

-t 00
0.00 0.20

dz
lim (s (t})=limL„' —

2 2P(k, u)
~ k ot~ oo u p gz

t
(I+36, )a

2b, A I (1—a} (4.1)

FIG. 2. Probability transition [Eq. (3.15)] to first, second, and
third neighbors as a function of the noise amplitude 5 for the
"effective" walker in the Markovian regime [t »s;(k)].

Here we have used c=0 as the initial condition for the
external noise. Equation (4.1) gives the variance of the
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walker probability distribution, where two averages have
been carried out: one over the external noise a(t) [given
by Eq. (2.13)] and the other over a random media
modeled here by the Scher and Lax long-time-tail
waiting-time density. ' ' '

From (4.1) we conclude that in this model global exter-
nal noise does not change the anomalous exponent t
which is determined by the average over the random
media. External noise (global dynamical disorder) only
changes the prefactor.

In the limit of weak external noise (b, =—0}, a detailed
calculation shows that

1 —a+a(a+ 1 ) /2
0 I ( I+2a)

X
a t2

AI (1—a) (4.2)

This result can be physically understood because in the
limit b =—0 the time between changes of the external noise
(t~) =-(A,b, ) ~~ (see the Appendix). In this limit the
walker feels the presence of a "fixed" bias' for which the
result (4.2) was expected.

V. CONCLUSION

We have presented a straightforward method to calcu-
late the effective Green's function of a random-bias prob-
lem by using the resolvent matrix theory.

The evolution equation for the effective Green's func-
tion was given in Sec. III. We studied the Markovian re-
gimen [t »r, (k)] of this equation and found that the as-
sociated transition probability M [s (skn—)] involves
nonvanishing steps for all n, in contrast with the one-step
stochastic master equation (1.1). This is a consequence of
making the average over the external noise a(t}. In Fig.
2 we show a graphic of M [s —(skn)] to at most third
neighbors, as a function of the noise amplitude h.

We have studied the behavior of the moments of the
effective Green's function; nondiffusive behavior is found
during a transient regime of order r~ = 1/(26K, ).

Using the fluctuation-dissipation theorem we have ob-
tained the mobility of the random-bias model, showing
that the transient behavior has the duration of the corre-
lation time (rz) of the external noise a(t). As a conse-
quence of the noise, the ac conductivity is reduced rela-
tive to the dc conductivity, for a fixed value of the noise
amplitude 6, as shown in Fig. 1.

In Sec. IV we discussed in the context of the Scher and
Lax theory the random-bias problem in a random medi-
um, by using a waiting-time density with a long-time tail.
We showed that the presence of the global external noise
does not change the anomalous exponent of the second
moment of the effective random-walk propagator. At

long times the external noise only introduce a "renormal-
ized" diffusion coefficient.

This analysis gives us insight into the study of static
and dynamic disorder. We have shown that the resolvent
matrix appears to be a useful technique to attack the
problem of global dynamical disorder.
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%(s s', p, p', t) =—f(t)%(s si, p, p') . — (A 1)

Here P(t) is the waiting-time density and the transition
matrix 4 is given in (1.7). Our model of random walk
with internal states then corresponds to a particular se-
parable model given (in Fourier) by

%~ ~(k) %~ g(k)

(k} qi ~(k
t 7

(A2)

where P(t) is the waiting-time density of the CTRW
theory.

The model defined by the one-step stochastic master
equation (1.1) can be written as composite Markov pro-
cesses. ' Then the evolution equation for the joint proba-
bility distribution P(s, a, t) is a Liouville master equa-
tion. ' ' As is well known, there is a close connection
between the multistates continuous-time random walk
and the generalized master equation with internal
states. ' For the composite Markov processes associat-
ed with (1.1) we can write the following waiting-time den-
sity matrix 4 (in Fourier representation):

APPENDIX: CONNECTION BETWEEN
EQS. (1.1) AND (1.6)

The generalization of the Markovian chain with inter-
nal states, Eq. (1.6), to a continuous-time random walk
with internal states (as was used in this paper) follows
using a separable model. The transition probability den-
sity matrix is

B&(k)exp[ B&(k =0}t]P&&(t)—

exp[ —B~(k =0}t]f ~ ~(t)

exp[ Bz(k =0)t]f~ z—(t)
B z(k)exp[ B~(k =0)t]$ ~

—~(t) (A3a)
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where

B+t,(k)—:2rocos(k) + 2r, bi sin(k), (A3b)

which follows immediately from Eq. (1.1) for each fixed
value of the external noise a(t). P+t, +a(t) is the proba-
bility that the noise remains fixed in the level +6 at time
t since it arrives at this level at time 0 where

tfl+g +~(t)= 1 —f f (t')dt' (A4)
0

and fzz + ~( t }dt =f ( t }dt is the probability that the noise
at level +6 at t=0 makes it transitional to + 6 at time
between t and t +dt. For the two-level Markovian noise
characterized by Eq. (1.3), f (t) =(vl2)e

From Eqs. (A3) we can see that the model defined by
(1.1) will correspond to a separable model if and only if
the parameters take the following values:

(tii ) = f tg~(t)dt =(2ro) '=[(1—b, )X]
0

( t„)=f tg~(t)dt =(v/2) ' =(l,b, )
0

where

(A6)

time density matrix (A3) is nonseparable: a site-
independent time-dependent waiting-time density cannot
be factorized. As a consequence a direct connection be-
tween (1.1) and (1.6) no longer exists. In such cases a sto-
chastic inaster equation such as (1.1) can be studied in
terms of multistate CTRW theory with a nonseparable
4 matrix.

The values given in (A5) imply that the mean time be-
tween steps of the walker (tii, ) and the mean time be-
tween changes of the external noise ( tz ) are proportion-
al

2ro=(1 —b, )A, =2rk, ; r, =k; v=2kb, . (A5)

In this case the multistate CTRW constructed in (A2}
from the Markovian chain (1.6) is equivalent to the
CTRL associated with the composite Markov process
equivalent to (1.1}. In a more general case the waiting-

fir(t)=Bt, (k =0)exp[ Bz(k —=0)t)

=B t, (k =0)exp[ Bz—(k =0)t]
=2roexp( —

2rot ),
gz(t) =f+t, +t, (t) =(v/2)exp[ —(v/2)t) .

(A7}
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