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Tricritical disorder transition of polymers in a cloudy solvent: Annealed randomness
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The effect of annealed randomness caused by impurities diffusing in a polymer solution (i.e., a
cloudy solvent) is analyzed exactly within the framework of the continuum Edwards model, in di-
mension d. It is shown that an infinite series of local P-body interactions of all orders P )2 is gen-
erated in the cloudy solvent, whose coefficients are calculated as functions of the impurity density.
The impurities can be repulsive or attractive for the chains. The present state of polymer theory
(perturbation expansion, regularization, and renormalization) allows a detailed study of the effect of
these interactions to all orders, as a function of dimension d, 2 &d &4. For an impurity density
below a special threshold p„ the polymer solution is not cloudy and is as it would be in a pure sol-
vent. At p, the polymer chains undergo a transition toward a standard tricritical 8 state, and
beyond that density to a dense state with phase separation. For 3 & d & 4 the transition is Gaussian.
The universal tricritical behavior at the transition in 2&d &3 is given. The limiting dimension
d =2 is singular and subtle and is the cornerstone of a new type of behavior for 0 & d & 2.

I. INTRODUCTION

The effect of randomness or "disorder" in statistical
systems is a widely studied subject. The most diScult
case is of course the quenched one, where the logarithm
of the partition function has to be averaged over the dis-
order. Usually the annealed system, where the partition
function itself is averaged over the external disorder vari-
ables, is relatively simple. In bond-diluted magnetism,
the effect is a renormalization of the critical exponents of
the pure magnetic system near a second-order phase tran-
sition into annealed exponents according to the rules'

v= v/(1 —a),
y =y/(1 —a),
9

a= —a/(1 —a),
f P f

=P/(1 —a),

where v, y, g, a, P, and 5 have their usual meaning in
critical phenomena for the pure system. This is valid if
the pure magnet specific-heat exponent a is positive. A
particular consequence is that the specific heat of the di-
lute system does not diverge at the transition. If a is neg-
ative, no renormalization of exponents takes place.

All this concerns bond-diluted magnetism. The an-
nealed site-diluted magnetic models cannot be reduced in
the same way. For instance, the annealed site-diluted
spin- —,

' Ising models are related to the Blume-Emery-
Griffiths model, which embodies a tricritical point. This
also occurs in two-dimensional models. Generally, there
is an effective aggregation of diluted sites induced by the
annealed average on the spin variables.

The effect of disorder on polymers has led to much de-
bate, probably because of an early confusion between

annealed and quenched cases. In particular, the analysis
of randomness in bond dilution on a lattice is easy to per-
form for the annealed average of correlation functions or
partition functions and leads to a trivial renormalization
of the effective connectivity constant of the self-avoiding
walk (SAW), hence to no new critical behavior. The
quenched average of logarithms is much more diScult to
perform and is a subject under investigation, not gen-
erally solved. One expects there to be a transition to-
wards dense states at strong enough disorder.

However, the annealed disorder for polymers can lead
to nontrivial behavior of physical interest, when one con-
siders site dilution. For instance, a model of SAW s on
the two-dimensional hexagonal lattice has been recently
proposed (see also Ref. 8} where a proportion p of hexa-
gons are forbidden to the self-avoiding walks. It has been
shown that a new transition takes places at the exact site
percolation threshold p =p, =—,

' of the centers of the for-
bidden hexagons. An exact mapping onto the hexagonal
O(n) model for n =1 in the critical low-temperature
phase, analyzed by Coulomb-gas techniques, leads to the
two-dimensional exact values of the polymer critical ex-
ponents

v= — y= — g=04 8 (1.2}

(crossover exponent) . (1.3)

We note at this stage that the change of exponents (1.2)
induced by the annealed site disorder is not of the Fisher
renormalization form (1.1). Indeed, for a pure two-
dimensional SAW, one has the Nienhuis values

v= — ex=2 —vd =—
4 ~ z ~ ~ 32 ~ I 24 s

and their "renormalized" counterparts (1.1) do not coin-
cide with (1.2) and can even be meaningless
(v=2v=-,') 1).

A similar transition was numerically observed for a
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model of "dressed" chains. We proposed to identify
the collapse transition of the SAW at the site percolation
threshold of forbidden hexagons to the standard tricriti-
cal 0 point of SAW's, ' ' here in two dimensions. One
can show indeed that the random forbidden-hexagon
model is equivalent to attractive nearest-neighbor in-
teractions on the polymer chain and a subclass of attrac-
tive next-nearest-neighbor interactions. ' The model
proposed in Ref. 7 was solved, in the sense that the above
exponents calculated in two dimensions (2D) for the poly-
mer chains in the presence of forbidden hexagons with
annealed randomness were exactly calculated from
Coulomb-gas methods and conformal invariance. How-
ever, the question arises' ' of the universality class of
this model, and of the order of the transition (tricritical,
tetracritical, etc.). A simple (and rather conventional)
way to describe the tricritical 8 point on a lattice consists
of allowing only attractive nearest-neighbor interactions.
It is then possible (although unexpected) that adding a
subclass of nearest-neighbor (NN) attractive interactions
leads to a transition point of different order. (One ex-
pects that adding all NN interactions leaves the transi-
tion tricritical. ) In particular, one can imagine that there
are some curvature effects' which are relevant near the 8
point. (Note that in the hexagonal lattice model the po-
lymer chain turns by construction by an angle of m/3 at
each step. ) All these problems are genuinely open and
under investigation. ' ' At the very least the study of
Ref. 7 establishes the existence of a nontrivial transition
for a polymer in presence of annealed hard hexagons.

It is then worthwile to attack this problem from a
different point of view and to generalize it, by studying its
continuum limit in d dimensions. We shall consider here
a similar polymer model with annealed random forbidden
points' in the framework of the Edwards continuum
model, ' and in d dimensions. As we shall show, this
continuous model is amenable to an exact treatment. Re-
cently, Thirumalai' has studied this model for a single
chain with excluded volume in three dimensions in the
presence of annealed random obstacles. His results, ob-
tained within the realm of an approximate self consistent-
method, suggest a negative shift of the second virial
coefficient, and that a 8-like transition appears at a cer-
tain impurity concentration, towards a "disordered,
coiled state, "which, in the first approximation, is Gauss-
ian in three dimensions. But the study of Ref. 17 is not
sufficient. In particular, as we shall show, the annealed
disorder induces an infinite series of higher multiple-point
interactions, which are not treated in Ref. 17, nor their
regularization.

Rather than use a self-consistent method, we perform
the annealed average over the positions of the impurities
and get a new effective Edwards Harniltonian with an
inj7nite set of P-body interactions, P & 2, the coefficients
of which are explicit functions of the impurity density.
These higher-order interactions generated by the an-
nealed disorder have alternating signs when the impuri-
ties are repulsive (pointlike obstacles). In Ref. 17 only
the first effective two-body interaction (which is attrac-
tive) has been obtained, which leads to the collapse, the
three-body interaction being thought to be marginal in

three dimensions (3D), and the higher ones irrelevant in
the (infrared) long-range limit. However, one has to
study the (ultraviolet) short-range effect of all P-point in-
teractions, before concluding on the existence of the
disorder-induced transition. Indeed, the proper
mathematical analysis of the regularization of such a
model is subtle, as shown in the case of two- and three-
body interactions in Ref. 12. Any high-order P-body in-
teraction contributes to the interactions of order n & P,
hence to the excluded volume (n =2), and here the in-
teractions are infinitely many. So in particular the ques-
tion arises of the sign of the total shift of the second virial
coefficient, of the net effect of the annealed site random-
ness (attractive or repulsive), and of its stability. An illus-
tration of the need of a well defined regularization pro-
cedure, is furnished by Ref. 17. There the self-consistent
Flory-like equation (4.2) for the collapse transition in-
cludes a three-body term whose coefficient A [Eq. 4.3)] is
just infinite.

We study the complete disorder model in detail here,
by resumming for each n-body interaction, the contribu-
tion of higher-order ones, P)n. We confirm the ex-
istence of an universal rricritical transition towards a 8
state at a certain finite impurity density and for any di-
mension 2&d &4, and any number of chains. For d &2
this disorder-induced transition is in the same universali-

ty class as the usual 8 point. For 3 & d & 4, the tricritical
transition has mean-field Gaussian exponents. For
2gd (3 it develops a nontrivial universal tricritical be-
havior, which is given from known results. "' In refer-
ence to the preceding discussion on the two-dimensional
case, the limit d ~2 of the continuum model is also con-
sidered, and exhibits some subtleties, as expected.

At d =2, a new instability occurs, where all the
disorder-induced interactions become equally important,
and with alternating signs. Hence we can no longer draw
conclusions about the order of the transition, which is
reminiscent of the difficulties mentioned above for the
two-dimensional theory.

This article is organized as follows. In Sec. II we
present the multichain continuum Edwards model with
annealed random impurities, in space dimension d and its
transformation into a multichain model with an infinite
series of multiple-point interactions. Their coefficients
are calculated as functions of the impurity density p.

In Sec. III we consider a general model of chains with
any multiple-point interaction (i.e., the most generalized
Edwards model). We study its ultraviolet regularization,
and the cascading interaction structure induced in the
cutoff regularization. The transcription of cutoff-
regularized partition functions into dimensionally regu-
larized ones is performed in detail, the latter being re-
quired for locating later any multicritical disorder transi-
tion. This formalism allows us a disgression on k-tolerant
walks, which are proven in the framework of the continu-
um model, with the help of its cascading structure, to be
in the same universality class as usual SAW's.

In Sec,. IV we apply the formalism of Sec. III to the
effective disorder model of Sec. II. The real effective
multiple-point disorder interactions are calculated as
functions of the impurity density p, of the interaction
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II. ANNEALED-DISORDER MODEL

A. Effective annealed-disorder action

For simplicity, we first consider a single continuous po-
lymer chain embedded in d space, with a probability
weight given in a pure solvent by Edwards model'

P[r j =exp( —A [r j ),
2

L

+—f ds f ds'5 (r(s) —r(s')),
2 0 0

(2.1)

(2.2)

where r(s) is the configuration in space }R and s is the
abscissa along the chain, 0 & s & S, S being the size (essen-
tially the "continuum" number of monomers, or the
"Brownian area"' ). b is the excluded volume term,
b &0, for the model to be defined. For b =0, the pure
Brownian path has an averaged end-to-end distance

R = ( [r(S)—r(0)] ) =dS (2.3)

and S is homogeneous to an area, S = [L]2.
This model and its direct renormalization have been

studied in detail, and we refer the reader to Refs. 19-23
for a comprehensive study (another but more complicat-
ed formalism can be found in Ref. 24). Here we shall re-
call only that the perturbation expansion of the weight
(2.1) is naturally expressed in terms of the dimensionless
parameter z (Refs. 19 and 25)

(2~)—d/2bS2 —d/2 (2.4)

where one sees clearly that for d & d, =4 the interactions
are irrelevant in the asymptotic limit S~~. A last re-
mark: as such, the model (2.1) and (2.2) is ill defined
since there are short-range ultraviolet divergences ap-
pearing when two abscissas s and s coincide in the in-
teraction term (2.2). One has to regularize the model.
This can be done in two equivalent ways; ' ' ' ' either by
introducing a cutoff s0 for the minimal distance along the
chain for two interacting abscissas, ' '

strength P with the polymer, and of the ultraviolet cutoff.
Then the existence, for 2 &2 &4, of a tricritical disorder
collapse transition at a certain impurity density

p, (P,so, d) is established.
In Sec. V the various logarithmic laws expected at a

tricritical polymer 8 point in 3D are applied to the OD-
disorder transition. In Sec. VI the nontrivial tricritical
exponents, and universal scaling laws governing the 8D
transition in 2gd &3, d =3—e are given. The limit
d ~2, and the instability occuring in two dimensions are
then discussed. Section VII ends with a summary of re-
sults.

er' ' ' ' and we shall return to this later, when consider-
ing multiple point interactions of all orders.

Let us now cloud the solvent by introducing impurities
into it, with annealed randomness. ' We add to the ac-
tion (2.2) the local im-purity interaction term,

Ad;, Ir, pj =Pf ds f 5 (r(s) —R)p(R)d "R, (2.6)

where p(R) is the impurity density

N

p(R)= g 5 (R—R;), (2.7)

p [s]d/2 —i (2.8)

Let us consider now the partition function of the chain
defined by the functional integral

Z[S,pj = f d [rjexp( —A [rj —Ad;, Ir, pj ) (2.9)

and depending explicitly on the iinpurity density I p(R) j.
Since a troubled solvent is annealed, we have simply to
evaluate the disorder average,

(z[spj)—: f g ddt;zIspj,
yN

(2.10)

where V is the d volume, with the thermodynamic limit
to be taken in the end,

V~ oo,

N —moo,

N—=p, Q(p & Qo

V

(2.11)

p being the average density of scatterers. Hence the only
disorder average to be computed is the effective probabili-
ty weight

P'[rj = (exp( —A [rj —Ad;, [r,pj ))

=exp( —A Irj )(exp( —Ad;, [r,pj )), (2.12)

~ R;

where the R s are the positions of the random scatterers
(Fig. 1). P is a coefficient which embodies all the physical
parameters giving the strength of the local interaction of
the chain with the impurities. P is a real number, P) 0
corresponds to excluded impurity sites, and P&0 to at-
tractive ones. The dimensional analysis of (2.6) and (2.7)
leads to a dimension of P,

[s —s'i )so, (2.5)

or by dimensional regularization. Dimensional regulari-
zation is the most powerful method, but its correct inter-
pretation requires some care. ' Cutoff and dimensional
regularizations can be rigorously related one to anoth-

FIG. 1. Polymer chain floating in a cloudy solvent, with N
impurities at random positions R„i = 1, . . . , N.
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where we define

Pd;, Ir) ={exp( —Ad;, Ir,pj) }
N S= exp —P g f 5 (r(s) —R; )ds

i=1 0

It is easily factorized into

d"R s d
Pd;, [rl = f exp P—f 5 (r(s) —R)ds

(2.13)

e
—p[s] 1 y ( p)n [5]n

n&1

where

[5]"=f ds, f ds„5 (r(s, ) —R)n S S

X5 (r(s„)—R) .

Hence by integrating over R

&fd"g(e @')-

(2.15a)

(2.14)

and we use the usual trick of the Ursell-Mayer expansion
for real gases, writing symbolically'

dR Sdf exp Pf—5"{r(s) —R)ds
V . 0

d "R=1+f exp Pf—5 (r(s) —R)ds —1
V . . o

Now, taking the limit (2.11)N ~ 00 in (2.14) we find'

s n —1

=p g ( —p)", g f ds; g 5 {r(s;)—r(s. }) .
n&1 i=1 i=1

(2.16)

The notation for n =1 is to be understood in the sense
that there is no 5 distribution, and the n =1 term reads
simply —pPS. It thus corresponds to the mean field en-

ergy of the chain of size S in the bath of impurities with
density p.

Inserting (2.16) into the effective disorder weight (2.15)
we find exactly

Pd;, t r I
=exp( —Ad;, I r ] ),

Pd;, trJ =exp p f d R exp Pf—ds 5 (r(s) —R}

(2.15)

(2.17)

Ad„Ir] = —p g ( —1)"P"
n)1

s
X g f ds; g 5 (r(s,. ) —r(s„)) .

i=1 0 i=1

In Ref. 17 this effective weight was studied via the self-
consistent Edwards-Singh approximate method, and also
by some first-order perturbation expansions.

We depart from it here and calculate the complete
effective action. For this, we expand the exponential in-
side the square brackets of (2.15). We write symbolically

[5]=f ds 5 {r(s)—R}
0

and

Again the n =1 term in Ad;, is just pPS. So we see that
the annealed cloudiness of the solvent due to the impuri-
ties is exactly equivalent to an infinite set of local interac-
tions between multiple points of the chain, without disor
der. The only peculiarity is that the coefficients of these
interactions are correlated and depend on the variables p
and P only. Furthermore, they alternate in sign (for
P ~ 0). So we shall have to study their resulting effect.

Finally, the total weight (2.12) for a single annealed
disordered chain is of the generalized Edwards type,

P'I r I
=PI r IPd;, [rj =exp( —A'[r) ),

s dr n s ~ 1

A'IrI=AirI+A. ..Ir]= ,' f, „-ds+ g b.
, g f ds, g 5"(.(., )—.(.„»,

n&1 ' i=1 i=1

(2.18)

where b„ is the coefficient of the n-body interaction,

b„=5„2b+B„,
B„=(—1)"+'pP" .

(2.19)

(2.20)

The shift in the excluded volume coefficient (2.19) is iden-
tical to that obtained by Thirumalai' using the self-
consistent Edwards-Singh approximation. b

&

——pP and
the higher-order terms are new. Of course, had we put
into the pure model (2.1} the higher-order interaction
terms, they would add to b„ for n & 2. For simplicity, we
shall only discuss a pure model with the original excluded

volume term b. Our conclusions can be straightforwardly
applied to the more general case.

From the negative shift of (2.19) for b2 b —pP, one-—
can guess' the existence of a 0 point transition' ' to-
wards a collapsed state at some critical value of the densi-
ty p.

However, the higher-order terms b„all contribute to
the location of the tricritical 0 point' and it is not obvi-
ous if this point really exists for this model. Indeed, for
P & 0 (forbidden impurities) the coefficients b„alternate in
sign and induce similar effective two-body interactions.
So the value p, =b IP (in our notation), where b2 ——0,
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and proposed in Ref. 17 for the critical impurity density,
is only suggestive.

Note also that for }t})&0 (attractive impurities) all the
disorder-induced interactions in (2.19) and (2.20) are at-
tractive. Then the existence of a collapse transition
seems to be assured.

Let us remark also that the preceding effective action
(2.18) also applies to set of polymer chains. Indeed, the

disorder average for X chains of configurations r, (s, ) and
lengths S„a= 1, . . . , JV, reads as in (2.13),

JV N S
ps;, [r.}=(exp —p X X f ds, 6 }r,}s,}—R, } )

.
a=li =1

It can be transformed as in Eqs. (2.14)—(2.16) to yield

Pd;, I r, I
=exp( —A d;, t r, ] ),

S,
z;, [r, )= —p g ( —P)",f d R g f ds, 5 (r, (s, ) —R)

n&1 a=1

n

(2.21)

(2.22)

This action can be rewritten explicitly as

d;.Ir. I
= —p 2 ( —P)"

n&1 tv)gv=n
,a =1

S a ~ a

n f, 'nd. , fd"~ n n~'(. (., )-R)
n

�a
=1 j=l a=1 j=lva.

a=1

(2.23)

where v„O & v, & n, is the number of times the chain a
(a =1, . . . , JV) appears in the n-body interaction, with
the sum over all configurations tv, I

restricted by the
condition g, p rv, =n For .values of a such that v, =0
we set by convention that their contribution simply
disappear in (2.23), i.e., be taken equal to 1.

The inultiple interaction weight (2.23) is now just the
symmetric form of a series of n-body interactions (n & 1)
between N chains with their proper symmetry fac-
tors. ' ' The coeScient of the n-body term is
( —1)"+'pP", i.e., just the one-chain value (2.19) and
(2.20), as expected. The integral over the dummy vari-
able R just ensures the n-body interaction between the n

points s, , a E I 1,JVI, jE t 1,v, I, to take place at a same
arbitrary point of the space. The integration over R
could of course be performed to arrive at a (less sym-
metric) form as in Eq. (2.18), but this is not necessary
here.

B. Effective quenched-disorder action

Indeed, let us consider for simplicity a single chain with
disordered partition function (2.9), and average its free
energy by the usual replica trick,

(lnZ) = lim
(Z")—1

0
(2.24)

For JV integer the average (Z ) is then exactly the JV
chain average performed in (2.21)—(2.23). The only
change is that the original excluded volume term b now
applies only to each replica a =1, . . . , JV, but not to the
mutual interaction of these. On the other hand, the dis-
order induces mutual multiple interactions between the
replicas. For simplicity, we discard here the disorder-
induced interactions higher than n =2. Then the
effective action for the JV replicas in quenched disorder
reads

It is interesting to remark that the preceding formalism
allows also the (formal) treatment of quenched disorder.

I

2
s dr, s s

A~——g f ds+ —,'(b —pP ) g f f ds ds'5"(r, (s)—r, (s'))
0 dS

1
0 0

JV

,'pP'——
a, a'=1 &,

f f ds ds'5"(r, (s)—r, (s'))+ .
0 0

(2.25)

The average ( Z ) is then simply the functional integral

(Z~) = f n d Ir, jexp( —A~) .
a=1

(2.26)

For discussing the effective sign of the disorder-induced
interactions, one really has to take into account all multi-
ple interactions, as will be done below for the annealed

case. The results will equally apply to the quenched-
disorder action (2.25). Anticipating a little, we shall see
that the structure (2.25) is formally stable when resum-
ming the effects of high-order interactions, leading to
some renormalization of 13, into p"s. Now we see that the
polymer replicas in quenched disorder are a very peculiar
polymer system. For small enough disorder, the self-
interactions of the replicas remain repulsive t}b —p(p"s)
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III. CASCADING INTERACTIONS
AND REGULARIZATION

A. General remarks

It is sufficient to discuss the ultraviolet regularization
of the one-chain model, which is straightforwardly ex-
tended to JV interacting chains. ' '9 So we consider a
general action of the form

P

A'{rj=—,
' f ds

P P —1

+ g b, f g ds; g 5 (r(s;)—r(s )) .
P)1 ' i=1 i=1

(3.1)

By dimensional analysis we find

[b ] [S](P—1)dl2 P— (3.1a)

and a convenient dimensionless interaction parameter is

( ~ 5 —(P —1)d/2C P —(P —1)d/2 (3.1b)

One sees here formally that the upper multicritical di-
mension d, (P) below which the P body interacti-on be-
comes formally (infrared) relevant is

d &d, (P)= 2P
(3.1c)

&0], while the mutual interactions between replicas are
always attractive [—p(P" ) ]. Hence the replicas tend to
aggregate. This system could present some interesting in-
stabilities. It should be possible to study it by direct re-
normalization methods. Clearly more work is needed to
treat correctly the quenched case and take the JV~O lim-
it.

Let us now return to the annealed-disorder action
(2.18) and study the effect of cascading interactions in-
duced by P-body interactions at the lower levels n &P.
This cascading effect must first be studied in the frame-
work of the cuto+regularization of the model [Eq. (2.5)],
which has to be linked to dimensional regularization in
order to find the 8 point. '

(2~) —(P —1)d/2s P (P ——11d/2
ZO, P= P ~o (3.1b')

which will be useful later.
Another way to regularize the theory is by dimensional

regularization. ' ' ' ' One extends analytically the
Feynman integrals of the diagrammatic expansion, from
d &2 to d y 2. There is then a rather subtle relationship
between the cutoff and dimensional regularization. ' ' A
pure P-body interaction in the cutoff so scheme can be
decomposed into P' body ones with 1 & P' & P, in the di-
mensional regularization scheme. For instance, for the
standard excluded volume (P =2), this leads to (P'=1)
point insertions as discussed in Ref. 19. For the tricriti-
cal case (P =3) this leads to cascading two-point interac-
tions and one-point ones, as discussed in detail in Ref. 12.
Note that this has led to much confusion in the field (see
the discussion in Ref. 12) concerning the shift of the 8
point and the meaning of dimensional regularization for
it.

B. First-order expansion

We study now this cascading effect for an arbitrary P-
body interaction, on a specific diagrammatic example,
hopefully illuminating. We shall later derive the general
structure of cascading interactions.

Let us consider the expansion of Z (3.2) to first order
in all bP terms. For each P-body interaction, it is given
by a diagram like Fig. 2. ' ' Standard diagrammatic and
Gaussian integration rules' ' ' give (see Ref. 27 for the
P-body case)

Z(S, Ibpj, so, d)=1+ g Dp,
P&1

(3.3)

where the so cutoff' regularized contribution of the P-
point diagram (Fig. 2) reads explicitly

tiple interactions induced by the impurities: its meaning
in the original model is that two points s and s' of a same
chain must be distant by an abscissa

~

s —s'
~

& so for in-

teracting with the same itnpurity scatterer in (2.15a)]. A
new dimensionless parameter appears in such a cutoff P-
point theory,

such that zP ~ oo for S-+ oo (long-chain limit). A geome-
trical derivation of (3.1c) is possible and is given in Ap-
pendix A.

Consider now the single-chain partition function

fd jrjexp( —A'Irj )
Z(S) =

fd I r j exp( —AoI r j )

which is normalized by the pure Brownian partition func-
tion, ' where Ao is the weight (2.2) for b =0.

For d &2, the perturbation expansion of a partition
function like (3.2) involves Feynrnan-like integrals which
are (ultraviolet) convergent. ' ' ' ' For d & 2, one has
to regularize the theory and a physically appealing
way' ' is to introduce a lower cutoff area so (2.5), such
that, along the same chain, two interacting points are
separated by so. [Here this cutoff applies also to the mul-

Sl

S2

53

~ ~

~ g ~~ ~ ~
~ ~

~ ~
~ '~

~ ~
~ ~~ ~

O~

~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ 0't

~0
~ ~

~ ~
~ ~

~ ~
~ ~

~ 0
~ 0

~0

FIG. 2. First-order diagram Dp induced by a P-point interac-
tion and contribution to Z(S} (here P =5). The js; j,
i =1, . . . , P —1, are the internal areas appearing in the integral
representation (3.4). Their minimal value is so.



38 TRICRITICAL DISORDER TRANSITION OF POLYMERS IN A. . . 3653

D =( —b)f ds, . f ds, e S —ps; S —ps, (2n) ' "" gs;
0 0 i=1 i=1 i =1

(3.4)

The S, , i = 1, . . . , P —1, are the successive segments be-
tween interaction points and have a minimal size so (Fig.
2).

pole d =2 has generated a singular cutoff-dependent part
[compare (3.8) and (3.11)]. We now evaluate 2p (3.6) for
2&d &4,

For evaluating DP we use the identity

Xe(X)= f—i~+0 2aia
(3.5)

J = f e' [A(a)+X]
2m.ia

where A is the dimensionally regularized amplitude,

(3.12)

where o is a positive real number. Let us denote the
imaginary axis [ i o—o+o, +i oo+o] by C. Then

Dp —— bp2—p,
da 'P —1

eos (2~)—d/2 ds s d neP
2mia Sp

(3.6)

/1 (a)=I 1 ——a" '(2n )
2

'
and X the cutoff part,

1 i —d/2(2 )
—d/2 (3.12a)

Note that on this expression (3.6) one sees immediately
that the s integral converges for d &2 up to sp=0,
whereas it diverges for d )2, requiring a finite s0. It is
sufficient to study the loop integral

2(so, d) = f ds s " e " (Rea &0) .
$0

For d & 2 the integral converges at s0 ——0 and we have

and where we have suppressed the term 0(aso ) in
the limit so ~0 for 2 & d & 4. Expanding (3.12) we get

P —1 P&,= f ', e" y P ' [A(a)] ' pXp. (3.13)
~ 2~ia

On the other hand, the dimensionally regularized value is
simply obtained by retaining only the p =0 term [see
(3.10)],

g(so, d)=l 1 ——a / '+O as "/ (d &2) .
d
2

P I dim. reg.
= f 2m.ia

(3.14)

(3.8)

For 2 &d &4, it is convenient to rewrite (3.7) identically
as

2(so, d)= f (e "—1)s ds+ f s " ds
0 Sp

Sp—f (e "—1)s / ds (2&d &4),
0

(3.9)

e
—ass 2ds = I 1 — adim. reg. 2

(any d not an even integer) . (3.10)

Hence for 2&d &4 we find

J(so, d) = I 1 ——a
2

1 —d/2

+Q(as2 —d/2
)

where for 2&d &4 the first integral converges, whereas
the third one leads to a contribution of order
aso / ~0, when so~0 and d &4. [Note that if we had
d &4, we would subtract more terms re "of the Taylor
expansion ~ of e "near the origin in order to define a
convergent integral f (1—r)e "s "/ ds].

0
In all cases this convergent Taylor-subtracted integral

is just identical to the analytic extension of the d &2
value (3.8) to d y 2 (dimensional regularization),

(3.15)

So we see the aforementioned generation of (dimen-
sionally regularized) n-point interactions with 1 & n =P
—p & P from the P-point interaction of the cutoff theory.
Since the contribution of the diagram of order P (Fig. 2)
is [Eq. (3.6)] Dp= bp Jp, we s—ee that the coefficient of
the dimensionally-regularized. (P —p =n)-point interac-
tion induced by the cutoff' P-point interaction is just (to
this order)

B„(P)=bpXP

n =P —p, 0&p &P —1, 1&n &P . (3.16)

The case n =P, P =0 gives just Bp(P) =bp, which is of
course still the coefficient of the P-body term in dimen-
sional regularization induced by itself. The identity (3.16)
is exact to first order in bP. Higher-order diagrams
would give the terms 0 (bp), etc.

Let us now ascend this cascade and calculate the total
effective interaction induced at fixed order n in dimen-
sional regularization by higher-order ones P )n,

Hence we find for the cutoff regularized integral (3.6) and
(3.13)

P —1 p
~P = ~P

I dim. reg. + X X ~P —p I dim. reg.

(2 & d & 4) (3.11)

and we see that the jump from d & 2 to d & 2 across the
b„"'g= g B„(P) .

P, P=n
(3.17)
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Equation (3.16) gives to first order in all Bp's

oo

~reg ~ b~p n P —1
n

= ~ P P nP=n
(3.18a)

scheme given in Ref. 12 for two- and three-body terms.
It is important to realize that the b„"g, given by Eq. (3.17),
are functions of the {bp & „j and of so and d only, and not
of S. One can then write them as in (3.21) [see (3.1b)],

Xp "+P—'
n+p pp&0

(3.18b) greg y +S(d/2 —1)(n —1)—lg 1 pn n 0 (3.25)

where we recall that for 2 & d & 4

i —d/2(2 )
—d/21

1 —d/2
(3.19)

Note that for d &2, (3.18) is still valid by simply setting
X=0.

C. General structure

Z(S» {bJ»P & 1 j»d)
I dim. «g. (3.20)

We can be more specific for the one-point interactions
(point insertions). ' In an Edwards action like (3.1) it
simply gives a dimensionless contribution blS, which is
exponentiated in the partition function (3.2). By dimen-
sional analysis we can write the induced one-point inser-
tion b i'g (3.17) as

The pedagogical example given here clearly exhibits
the general downward cascading structure (3.17) obtained
when going from a cutoff polymer partition function like
(3.2) to its dimensionally regularized twin' ' ' ' (in the
limit so ~0)
Z (S, {bp, P ) 1 j,so, d)

Hence, in dimensional regularization, all ultraviolet
divergences (so~0) have been suppressed. This works
actually for all divergences stronger than logarithmic.
The latter appear for a discrete set of dimensions of mea-
sure zero on d E- [2,4].

One can show that this general set of "anomalous" di-
mensions is for a P-body interaction (generalizing the ar-
gument of Ref. 31)

d (P, q) =d, (P)
2

q(P —1)
2P

P —1

Note that for (Ref. 31)

P=2, 3, . . . ; qEN" .2

q P —1

Finally, let us note that this local study of ultraviolet
divergences applies equally well to any multichain parti-
tion function (possibly) with the following constraints:

Z (. . . , {S,j, {b,P & 1},s,d)
so~0

N S
~exp —g F,

a=1

XZ+. . . »{S,j, {bp",P)2},d) Idm „g . (3.26)

b'; =so'F, {zop, P)l, dj, (3.21) P =2, d (2, q) =4—2/q,
where the zo p are the dimensionless coefficients (3.1d) as-
sociated with bp and sp,

a —(P —1)d/2 1+(P—1)(1—d/2)
Zp p —Hp( A'77 J Sp (3.22)

Using X (3.19) and the definition of zo p gives the simple
result for the point-insertion function

P —1

We can calculate function F to first order in the zp p from
Eq. (3.18a)

b«g y b
P=l

and for (Ref. 12)

P =3, d(3, q)=3 —1/q,

where q is a positive integer. In dimensional regulariza-
tion, these dimensions occur as poles for the dimensional-
ly regularized amplitudes and can be reached only after
renormalization. Note that this is the case of dimension
d =3 for the relevant interactions"' P =2, 3 of the tri-
critical 0 point since 3=d(P =2, q =2)=d(P =3, q
= oo ). Note also that the set d(P, q) always contains for
any P, d (P, 1)=2, which thus plays a singular role for
any P-body interaction.

oo
1

Fi{zop dj= g
p 1

1 d/2 zo p+0( {zop j )
D. Digression on k-tolerant walks

(3.23)

Hence Eq. (3.20) is finally written as

Z (S, {bp, P & 1},so, d)

~exp[ —(S/so)Fi {zp p P) 1 d j]
&& Z(S» {bp«» P & 2 j»d) I »iim. «g. (3.24)

This is the full generalization of the "first renormaliza-
tion" of point insertions induced by two-body interac-
tions of Ref. 19, and of the dimensional regularization

Incidentally, the preceding study proves a now general-
ly admitted result concerning k-tolerant walks. A k-
tolerant walk on a lattice is a walk which can visit up to k
times the same site, but not more. A iong-lasting ques-
tion was whether it is in the same universality class as
the standard SAW (one-tolerant walk). The answer is
definitely yes. The k-tolerant walk on a lattice is entirely
analogous in the continuum model to a single (k+1)-
point local interaction (with cutoff) with a coefficient
bk+, ~0. The present study shows that it induces in-
teractions b„" =B„(k+1)with 1&n &k+1 in dimen-
sional regularization, including a standard excluded
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volume coefficient b~zg ——B2(k+1)&0. Equation (3.24)
reads here

+(S&bk+1&SO&d}
I k-tolerant walk

~exp — I'—
t Zd; „g (S,bz'g, . . . , bk'+gt, d) .

so

Now, in dimensional regularization and for 2&d &4,
since b2'g &0 interactions higher than n =2 are really ir-
relevant in the (infrared) long-chain limit and the univer-
sal behavior is dominated by the excluded volume term
b 2'g & 0 and is that of the good solvent or SAW-QED.

IV. EFFECTIVE INTERACTIONS
IN ANNEALED DISORDER

A. Calculation

We are now in a position to apply the above results to
the annealed model (2.18) of polymer chains in a troubled
solvent. The bare interactions are [Eqs. (2.19) and (2.20)]

b„= 5„ bi+( —1)"+'pP" .

Equation (3.18b) leads in dimensional regularization to
first order to

b«g= ~ b Xp n+p —1
n ~ n+p

p)0
tXI

=( —1)"+' P" y (-PX) "+P
p 0 - P

simple renormalization of the impurity interaction energy

P~g" "'—=P/(1 —yo) . (4.5)

Let us now generalize to include all disorder-induced
interactions to all orders. The bare disorder-induced in-
teraction is B„=(—1)"+'pP". Forgetting the pure sol-
vent parameter b, which induces only trivial point inser-
tions for n = 1 which we discard here, 8„ is renormalized
in dimensional regularization necessarily as

greg g b +greg

greg ( 1 }n+1 pn A reg( d/2
(4.6)

where A„"g is a function of x—:pso and of yo (4.2), i.e.,
of the only two basic independent dimensionless parame-
ters which one can form with p, P, and so.

Note that for P~O there is no renormalization, hence
A„"g(x,O)=1. Moreover, we have just perforined in
(3.17) the resummation retaining all Bp-pP (2.20) to
first order, which apparently amounts to taking the low-
density limit. Actually, the cutoff also plays a role and a
more precise study (Appendix} shows that the first-order
expansion (4.4) and (4.5) in all Bp's amounts to the limit
x =pso~ ~0, and yo finite No.te that since x-pso
yo-pso ~ for d &2, the zero

cutoff

limi so~0, which
we are primarily interested in [see (3.26)], seems to lead in
a natural way (i.e., for p and P fixed} to x ~0,yo ~ oo. So
for yo fixed, we have to take also P~O simultaneously
(Appendix}. Therefore what we have computed at first
order in (44) and (4.5) is really the limit x =psod~~~0,

+5„,bX+ 5„,b . (4.1) i.e.,

We set

SO
1 —d/2

yo ———PX =P(2m)
1 —d/2

(4.2)

f.(yo}= g yo
"

p=0

Note that y0 is negative for d & 2. We have to evaluate

A„"'(O,yo) =f„(yo)=
(1—yo)"

(4.7)

A„"g(x =pso, yo)„o——[A(O,yo)]"

in such a way that

Hence we conclude at this order x =0 that A„ factor-
izes into

(n —1)! dy" —'

1 d" ' „ i 1
n-i(n —1)! dyo

' 1 —yo

b" =5 b+8"
greg ( 1 }n + lp(Preg)n

P"g=—PA(O, yo), A(O, yo)=(1 —yo)

(4.8)

(4.9)

f (yo}=(1—yo) (4.3)

Subtracting and adding 1 to yo ', the (n —1)th deriva-
tive is easily evaluated to yield

This factorization statement is valid here only in the
low-density limit x =pso ~0, and to all orders in yo.
Its validity for all orders in x is not obvious. If it were
true, it would mean that disorder-induced parameters in
dimensional regularization all retain the same form

Hence we find the very simple result
n 1 }n+1 (preg)n

b„"'=5„,bX+ 5„,b + ( —1)"+ 'p
1 —yo

(4.4)

The first two terms are trivial and due to b.
Comparing the disorder induced n-point interactions

(2.20) to their counterpart in (4.4), we see that (to first or-
der in all disorder P-point interactions) the net result is a

Note that in genera1 we cannot predict the sign of
A z~g(x, yo ) for any value of x. However, we know that in
the limit x~0, A2'g ——[A (O,yo)] &0, and this proves
that there exists a certain range of parameters where the
disorder-induced shift (4.8) in the two-body interaction is
negative,
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B2'I' (0,
x =ps0 ~0,d/2

yo = (2m. ) Pso finite .1

1 —d/2

The existence of this domain is discussed in Appendix B.
This establishes at least in this range the assertion of Ref.
17. By continuity, A 2' & 0 will continue to hold true for

l

at least a certain interval of values of x & 0. For simplici-
ty we shall mainly place ourselves in the limit x ~0 and
use the factorized form (4.8). Otherwise one should use
everywhere the general form (4.6).

B. Existence of the tricritical disorder transition

We finally end up with a full disorder-induced model in
dimensional regularization,

A'[rI= —,'f
'2

ds+ —,'(b —pp A2'g )f ds f ds'5 {r(s)—r(s') }
0 0

n ~ n-1
+ g ( —1)"+'pP"A„"g, g f ds; g 5 (r(s;)—r(s„))

n)3 i=1 i=1
(4.10)

(where one-point insertions are suppressed). With the
short-range ultraviolet divergences (so~0) being elim-

inated, we focus on the long-chain infrared limit S~ 00.
The effective parameters (3.1b) are now in dimensional
regularization for the n-body interaction

b 2' = b —pp A 2' ——0,

with

A2g(x yo)=(1 —yo) for x =pso/ 0

(4.15)

(4.16)

b reg( 2 )
—d ( n —) ) /2g n ( ( —d /2 ) + d /2

fl N)2 n (4.1 1)
and

In dimensional regularization their strength is really the
effective one. Hence we see that for increasing n they
have decreasing effect, provided d )2,

y, = (2m. }
—"/2Pso) —'" finite .1

1 —d/2

Hence we see that this disorder-induced 8 point occurs
for a tricritical density

Furthermore, at a given dimension d & 2, only the in-
teractions such that their upper critical dimension (3.1e)

d, (n) )d are relevant, i.e., for

p, =bP [A2' (xy())] ' [=bP A (Oy())],

x~0

d
7f (

d —2
~ 00

and for (if integer),

z„=const (marginally relevant) .
(4.13)

b 2' ——0, b„"~» 0, b„"&4 arbitrary . (4.14)

Hence in our model (4.10) with cloudy solvent the true 8
point is obtained for the density,

So at fixed dimension 2(d (4, only a finite set of in-
teractions are thus infrared relevant, and because of the
order relation (4.12), one keeps only the lowest n,
n & d/(d —2), such that b„" &0g, which will dominate the
(multi)critical behavior.

As analyzed in detail in Ref. 12, the tricritica) 8 point
transition occurs in the Edwards model at the exact point
in dimensional regularization

which always exists (at least for x small), even if for p) 0
the successive interactions in the bare effective action A'
(2.18) have alternate signs.

In Appendix B we study in more detail the existence of
a domain of parameters p, P, and so, where the tricritical
condition (4.15) holds, and where the resummation (4.7)
and (4.16) is still valid, i.e. , in the simultaneous limits
so 0 x =pso 0 yo-Pso & r)0, andd/2 1 —d/2

b =pP (1—yo) & ao. The solution for 2&d &4 is
so~0, p-bso "~or), and P-so ' —+0, at pP fixed
and x =ps0 -s0 ~0. This establishes for d & 2 the
existence of a standard tricritical collapse transition in
the annealed-disorder model (2.6), in the same universali-
ty class as the usual 8 point, QED.

V. TRICRITICAL DISORDER TRANSITION

A. Minimal model

Since the existence of a 0-like tricritical transition is
now established in the annealed-disorder model (2.18) and
(4.10), we shall for 2 & d & 4 work with analytic continua-
tion in d and use the dimensionally regularized minimal
theory (forgetting the trivial one-point insertion term)
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'2

A'trI =—,
' f ds+ ,'[b——p(p"g) ]f ds f ds'5"(r(s) —r(s'))

+ —p(p"'g) f ds f ds' f ds "5"(r(s)—r(s'))5"(r(s') —r(s")),le 3

3f 0 0 0
(5.1)

since higher interactions are less relevant in the (infrared)
S~ oo limit.

The tricritical laws obtained from this model (5.1) are
now well established"' ' and we shall not repeat the re-
normalization calculations which are rather involved.
We simply state here the physical results. In order to
simplify the notations and to make contact with Ref. 11
and 12 we set (in dimensional regularization)

greg b p(Preg)2

b reg p(Pres }3

(5 2)

(5.3}

b'=b —p(P"g) =0,
c'=c+p(P"g) =0

(5.4)

(5.5)

(hence p"g & 0, attractive impurities), then the system will
undergo a tetracritical transition, with relevant four-body
interactions, and an upper critical dimension d, (4)=—,.
This seems not entirely impossible: one can first adjust
the impurity density to satisfy (5.5), and then vary the
temperature T of the solvent to adjust b to (5.4), b being
very sensitive to T, while c is not. However, experimen-
tally the difficulties would probably be considerable.

Finally, for the model (5.1)—(5.3), in dimensional regu-
larization, near the tricritical point, there are only two di-
mensionless relevant parameters, "' ' namely, the two-
and three-body interaction parameters

(2 )
—d/2biS2 —d/2

y' = (2n. ) c'S

The tricritical 8 point corresponds to

z'=0, S~ao .

(5.6)

(5.7)

(5.g)

We assume p & 0 (repulsive impurities), hence p"g & 0,
and c'&0. Otherwise (c'&0} the model is unstable at
b =0. In this case of attractive impurities (p & 0},a simi-
lar 8-point transition could nevertheless exist, and would
depend on the pure solvent three-body interaction c (like
b here), which has been neglected until now. Then, if
c'=c +p(p"g) & 0, one is still in the universality class of
the tricritical 8 point. If one has the simultaneous condi-
tions

parameter. At this upper tricritical dimension d =3, log-
arithmic divergences occur, ' ' which are experimentally
observable.

(c) d & 3. In this case S~~,y'~ ec, and new tricriti-
cal nontrivial exponents appear.

R =([r(S)—r(0)] )

or by its radius of gyration

RG —— f ds f d s&[r(s) —r(s')]2) .

(5.9)

(5.10)

Near the 8 point of the cloudy solvent they read, respec-
tively, in d =3 (Refs. 11, 12, and 30)

R =3S[Ao(y')(1 —~4'nh )+—', z'(h/y') "A~(y')]

(5.11)

and (Ref. 12 correcting Ref. 11)

RG= Ao(y ) 1 nh

+—'„",z'(h/y') "A (y') (5.12)

where h is the effective renormalized three-body dimen-
sionless virial coefficient" ' '

1h=
44m. lnS /so

(5.13)

and where Ao and A4 are regular functions of y', such
that Ao(y')=1+ —,",ny'+. . . and A4(0)=1. [The func-
tions" Ao(y') and A&(y') are to be distinguished from
the A„"g(x,yo) (4.6)]. In our disorder cloudy solvent, let
us recall that in d =3

We refer the reader to previous studies (Refs. 11, 12, and
23 and references therein) for the tricritical direct renor-
malization of the model (5.1) for d & 3. The universal re-
sults are as follows.

B. Tricritical logarithmic laws in 3D (Refs. 10-12,30)

The size of an isolated polymer chain can be character-
ized by the end-to-end square distance

One sees that the three-body parameter y' is relevant in
the long-chain (infrared) limit S~ao, only if d &3,
y'~ ao. Hence three situations are possible for a tricriti-
cal transition in d dimensions.

z' = (277) [b p(p' g )2]S

y'=(2~) 'p(P"g)' .
(5.14)

(a) 3 & d. In this case y'~0, for S~ ec. The tricritical
transition is of the mean-field type, all exponents take the
Gaussian values. The polymer chains are simply Gauss-
ian at the 0 point z'=0.

(b) 3=d. One has y'=(2m) c', and y' is a marginal

h/y'«1, y'44m ln(S/so) »1 . (5.15)

Furthermore, the effect of two-body interactions must be

It is important to define the domain of validity of such
tricritical logarithmic laws. They apply to long chains
such that S~ ao, h ~0, and
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dominated by the logarithmic (infrared) divergences due
to the three-body terms. The renormalized z ' parameter
in the tricritical theory is [see (5.11) and (5.12)]

nomeno1ogically on T. ' ' The energy reads

lnZ(S) (pB ——1/kB T},
B

(5.23)

g'—=z'(h/y') "A4(y'), (5.16)
yielding a specific heat

and one can show that the preceding condition reads

g' «h (5.17)

i.e.,

z'h -'"'y'-""A, (y ) « I .

Note that the first-order perturbation expansion of R
and RG is simply'

C/kB= —PB E .2 a

B

From the partition function we find an energy
I

E = — [4(h /y') /" A4(y')
dPB

z h 3/1ly 8/ll A 2( )]

(5.24)

(5.25)

R =3S(1 4ny—'+ —', z'),
(5.18}

Ra= (1 —"~y—+——'"z ) .
4 105

Hence we see in (5.11) and (5.12) that the smooth linear
dependence of the polymer size on z' (5.14), i.e., on the
solvent temperature through b (Ref. 30) or on the impuri-
ty density p, is renormalized by a large logarithmic factor

(h /y t)4/11 [p ln(S/s )] 4/11 (5.19)

where pB ——1/kBT, where C is the chain concentration,
and where the dimensionless second virial coefficient g
reads

g =g' —8h =z'(h/y') "A4(y') —8h (5.21)

and depends on p in a nontrivial way as in (5.14) and
(5.16),

g'=(2m ) [b —p(P"'8) ]S'

X [22(2~) p(p"'8) ln(S/sp)]

The partition function Z(S) of a single polymer chain in
the troubled solvent is also interesting. It reads"

Z(S) = A
1 (y')[1 —9vrh +4z'(h /y') "A4(y')

+1 '2h —3/11 ~ —8/11A2( ~)]4 y

where A, (y') is a regular function ofy',

A, (y') = 1+ —,', my'+

(5.22)

The specific heat of a single polymer chain exhibits a log-
arithmic peak at the usual 8 point. ' ' Here again a
similar phenomenon occurs. The two-body parameter b
usually depends on the temperature T of the solvent.
Hence here z' (5.14) will be considered as depending phe-

Such a reduction factor has been observed" (-0.62) in
light-scattering data of polystyrene in cyclohexane at
the 8 temperature. It would be most interesting to test
the (p lnS) " dependence (5.19) in an experiinental
realization of a troubled solvent.

The virial expansion of the osmotic pressure near the
cloud 8 point reads explicitly"

P II=C[1 +'gC(2nR /3) + ,'hC (2nR—/3) +. ],
(5.20)

(whereas usually d z'/dpB=0). However, it is easy to
compare the dependence on h /y

' ~0 of the two terms,
the second one being divergent in the long-chain limit
(5.15). Hence we find, using (5.14), a singular specific
heat

C/k =T (4417) " ' "A ( ')B dT 24 3
~ y 4y

XS(lnS) /" . (5.26)

One also expects tricritical laws in the semidilute re-
gime. Let us simply mention that the are S of a single
chain is replaced by the monomer concentration

(5.27)

in such a way that " the dimensionless third virial
coefficient becomes

h~h(C)= 1

44m. ln(1/Cl sp)
(5.28)

One has still 8 sp ((1, h ((1, and the solution is never
dense. We predicted some years ago the universal equa-
tion of the phase separation curve in the ( C, T) plane, in
the infinite-chain limit. The osmotic pressure in the
simedilute regime is given by

pBII= —,'h (C )C [2m Ap(y')]

+ ,'b'C [h (C—)/y'] /" A4(y')[Ap(y')]'

(5.29)

This osmotic pressure depends only on the monomer con-
centration C and is valid in the limit S/sp~~ C sp

Usually the variation of I and z with T is taken as linear
near the Flory 8F temperature, where z =0. Here the
disorder-induced 8D point (5.14) z'=0 is shifted towards
b & 0 at a temperature 8D ~ 8~. Hence the variation of
b with the temperature can no longer be linear around
8D. So we find

2

C/kB=pB2, 4(h/y') /" A4(y')
dPB

2

h
—3/11 ~ —8/11A2( i)+3 dp y 4y
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fixed. In the infinite ch-ain limit, the coexistence curve
separates two phases, one is infinitely dilute, the other
semidilute. Both phases thus have H~O when S~~.
Hence the semidilute branch is obtained from II=0 in
(5.29),

h*= +0(» ) . (6.5)

g measures the departure from the 6 point (b'=0, z'=0,
g'=0). It reads"

b'= b —p(P"s)

= ——'C [44~in(1/C s0)] "y' "(2m)

X [ A0(y')]'"[ A &(y')] (5.30)

zI( ~)(P —2 +d /2) /eA (»)4
E'

[A4(») being a calculable amplitude] or, using (6.2),

g'=(2n )
/ b'Sd'A 4(c'),

(6.6)

(6.7)

Note that the classical Flory theory would give simply

b' = ——', Cy'(2m )

where P is the tricritical crossover exponent

+0(» ) .
2 22

(6.8)

So we observe a new logarithmic equation
b'- —C(lnC ') /" predicted by the tricritical theory.
Note that p=0 in (5.30) gives the usual coexistence
curve. ' Hence the presence of annealed impurities
shi fts the coexistence curve along the temperature axis b

by p(P"s), towards higher temperatures

VI. TRANSITION BELOW THREE DIMENSIONS

A. e-asymptotic expansion

d =3—e, @~0 (6.1)

(see Ref. 11 and references therein), and lead to asymptot-
ic expansions in e. Let us briefly recall some results"
which apply as such to our disorder model.

The relevant parameters are as in Eq. (5.6) and (5.7},

For 2 &d & 3, one has 3 &d/(d —2) & 0() in Eq. (4.13)
when d y 2 (Refs. 38 and 39) and more and more n in-
teractions, higher than three-body, become relevant.
However, for d &2, they are all strictly ordered [Eq.
(4.12)] and n =3 is still dominant. Hence three-body
effects become fully relevant and dominate the physics of
the 8 point by leading to nontrivial scaling behavior.
The analytical calculations can be performed for

The squared end-to-end distance R (5.9) and the squared
radius of gyration Ro (5.10) scale like"

R =dS A()(»}y (1+—g + ' ' '
)

R2 dS A (»)y'(2v —1)/&(1+ )34gi+
(6.9)

where A0 and AG are calculable critical amplitudes and
where v is the usual tricritical exponent

1 2v= —+— +0(» )
3 (11)

(6.10)

R=6RG/R =1+—,'mh —
—,', g' . (6.11)

At the 8 point g'=0, and at the fixed point (6.5), the
universal amplitude ratio is

R=6AG(»)/AD(»)=1+ +0(»') .
4 (11)

(6.12)

Finally, the tricritical partition function of a single chain
reads"

obtained from field theory or directly in ploymer
theory. "

There exists a universal ratio (Ref. 11,corrected in Ref.
12)

(2~) d/2b'S2 —d/—2

y'=(2m. ) c'S
(6.2) Z(S)= A, (»)y'r " ' 1+4g'+ g'

2(t) —1
(6.13)

The tricritical regime corresponds to the limit y ~+ (x).
These two parameters disappear from the universal phys-
ical laws which are expressed in terms of renormalized
two- and three-body parameters g' and h. More precise-
ly, the osmotic pressure calculated in naive first-order
perturbation theory is

p&II
~ „,=C+ —,'( —8y'+z')C (2mS)

where A ) (») is a calculable amplitude, and where y is the
"magnetic susceptibility" exponent

2

y= 1+5 +0(» )
(22)

obtained from field theory or directly in polymer
theory. " Note that in terms of bare parameters (6.2) and
(6.7), this partition function becomes explicitly

+ —,'y'C (2mS) + .

while its actual universal virial expansion is"

p II=C+-,'( —8h+g')C (27rR /d)

+ ,'hC (2nR /d) —+. . .

(6.3}

(6.4)

Z(S) = A ', (c')Sr ' 1+4(2m )
/ b'S~A ' (c')

(2m) b' S ~[A4(c')]
2(}I)—1

where R is the physical effective size of the chain (5.9),
and the renormalized third virial coefficient reaches a
fixed point value (in the infinite-chain limit)

(6.15)

(where A ', and A 4 are some amplitudes). Hence the
specific heat (5.24) scales like
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S2tIt}

C/ks ——T 2(2n )' [ A 4(c')] (6.16)
dT 2P —1

at the 8 point, and diverges when S~~.
Let us stress again that all of these universal tricritical

laws apply as such to the annealed-disorder 8D transi-
tion. One knows, however, that the e expansion is

highly asymptotic for a tricritical point below 3D. Hence
analytical results like those given in this section are exact,
but of rather academic value. They cannot in particular
be extended towards d =2, a case which we briefly study
now.

B. Two-dimensional case

When d ~2, new phenomena occur in the annealed-
disorder model (2.18) and (5.1). First, we see that the pa-
rameter yo (4.2),

$0
] 61/2

yo =P(2n. )
1 —d/2

which appeared in the resummation of short-range ultra-
violet divergences in Sec. IV becomes singular when
d ~2 and takes the form

(yo)d 2= +p(2~) lnso .1 —1 (6.17)

Hence new logarithmic divergence occur. Moreover, as
is well known, all n-body interactions become equally
relevant in d =2, and this appears clearly in Eqs. (4.12)
and (4.13). So we can no longer predict the behavior of
the disorder model (5.1) in two dimensions, where the in-
teractions are all effective and with alternating signs (for
P&0, repulsive impurities). It is possible then that new
local details of the model become relevant in two dirnen-
sions, since we may interpret this blow up of multiple in-
teractions in our model (5.1) as a signal of instability in
two dimensions.

This brings us back to the discussion of the introduc-
tion. The two-dimensional annealed-disorder model, in-
troduced in Ref. 7, and describing a chain in the presence
of forbidden hexagons on the hexagonal lattice, does have
a nontrivial transition [Eq. (1.2)] at the percolation
threshold of the hexagons. Its universality class was
shown to be that of the geometric properties of the low-
temperature phase of the Ising model, or equivalently of
the q =1 critical q-state Potts model (percolation hulls).
The present study shows that the continuum limit of this
annealed polymer model with site-percolation has for
2&d &4 a transition which is just the usual tricritical 8
transition. Unfortunately, we cannot rigorously extend
this to d =2. Hence the order of the quite similar transi-
tion induced by disorder in the hard hexagon model of
Ref. 7 is still an open question: Is it tricritical, tetracriti-
cal, etc.? However, the striking fact that for d & 2 it is al-
ways tricritical may support the tantalizing suggestion of
Refs. 7 and 8 of its equivalence to the usual 0 point, even
ln d =2.

C. Below two dimensions

and all P interactions are more and more relevant when
P~ 00 for S large. So the disorder-induced model (4.10)
becomes "unstable" when the interactions alternate on
sign (P& 0), d =2 being the dimension where this "insta-
bility" occurs.

VII. CONCLUSION

Let us summarize briefly the findings of this article.
The continuum Edwards model modified by an impurity
statistical weight

exp —PI ds 5"(r(s)—R}
0

(7.1}

where r(s) is the configuration of the chain and R the lo-
cation of a single impurity, has been exactly solved for
the annealed case, for any number of polymer chains. An
effective generalized Edwards model results from the dis-
order, with coefficients of multiple point interactions
( —I)"+'pP", p being the density of impurities. After a
necessary regularization of the model, the real coefficients
are "renormalized" into

( —1)"+ 'pP" A „"s(x,yo ),
where A„"I' is a function of

x =ps, y =(2n. ) Ps' " /(1 —d/2),

(7.2)

where so is the ultraviolet short-range cutoff. We have
calculated exactly A„"'s(0,yo ) = ( 1 —yo ) ". This was

sufficient to establish the existence of a 8D-tricritical
transition at a certain (calculable) density p, and for any
dimension 2 & d & 4. This transition is in the same
universality class as the usual 8-point transition of poly-
mers, and we gave its universal tricritical scaling behav-
ior, nontrivial for 2&d &3.

Interestingly enough, the limit d ~2 of this continuum
disorder model exhibits a new kind of instability: all the
disorder-induced interactions become equally relevant,
and also the regularized disorder-induced interactions
(7.2) depend on a variable yo singular at d =2.

This instability at d =2 appearing in our analytical
continuum Edwards model is reminiscent of the direct
studies of the polymer 8 point in two dimensions. There
also, in a quite different formalism (conformal invariance,
Coulomb-gas methods) the collapse transition seems to be
sensitive to local details, and perhaps even presents
several different universality classes. More work is thus
needed to elucidate the two-dimensional case.

But in d & 2, the annealed-disorder site-impurity model

It is interesting to analytically continue the generalized
Edwards model (3.1) and (4.10) to dimensions below
d =2. Then all diagrammatic integrals of the perturba-
tion expansion are short-range ultraviolet convergent. So
no cutoff so is needed anymore. But the infrared behav-
ior of the theory is probably highly nontrivial. We re-
mark indeed that the dimensionless parameters z~ (3.1b}
have the form

(2~)—(P —) )d/2gP(1 —d/2)+d/2
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may be considered now as being solved, exhibiting a tri-
critical 0-like transition; in contradistinction to the trivi-
al annealed bond model, which has no transition. Also, a
by-product of our analysis of ultraviolet divergences in a
general continuum polymer model with (k +1)-body in-

teractions, was the analytical proof of the generally ac-
cepted idea that a k-tolerant walk is, in the asymptotic
limit, in the same universality class as a usual polymer
with excluded volume.

It would be interesting to search for experimental reali-
zations of the cloudy solvent and to try and observe the
disorder collapse transition. One could think of troubling
the solvant with little balls, but metastable aggregation
effects could occur, which have to be overcome to realize
an annealed system. Also, a further theoretical investiga-
tion of the quenched-disorder model (2.25) by direct re-
normalization methods would be quite interesting.
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n
n

codim A D; = g codimD; . (A3)

Substituting (A2) on both sides of (A3) gives immediately

d —dim A D, = g (d —dimD, ) (A4)

=nd —g dimD; .
i=1

This can be rewritten as

(A5)

(n —1)d = g dimD; —dim fl D; (A6)

For the intersection of the n objects not to be empty, we
must have
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ticritical dimension d, (n), which led to Appendix A, and
J. des Cloizeaux for a critical reading of the manuscript.

APPENDIX A: GEOMETRICAL DERIVATION
OF THE UPPER MULTICRITICAL DIMENSION d, (n )

n n

A D;&8 or dim A D; )0.
i=1 i=1

So Eq. (A6) implies
n

d & g dirnD; .
n —1.i=1

(A7)

We show that the upper multicritical dimension (3.lc)
and (4.13),

d, (n)= 2n

n —1
(Al)

below which n-point interactions are relevant
[d & d, ( n )], has a simple geometrical meaning. This di-

mension must clearly be related to the intersection prop-
erties of n random walks. In the case of n =2 walks, the
upper critical dimension of polymers (or of a y theory) is

d, (2)=4, and is often derived simply as d, (2)=2D,
where D =2 is the Hausdorff or fractal dimension of a
Brownian path. This is based on the seemingly obvious
additivity rule, according to which two objects of dimen-
sions D and D' intersect in dimension d if and only if
d &D+D'. But clearly the generalization of this argu-
ment would not lead to (Al), but to an incorrect
d, (n)=2n. Actually, the above rule d &D+D', even if
correct, must not be interpreted as an additivity rule for
dimensions, but is rather a degenerate case of another ad-
ditivity property, namely that of codirnensions, which we
derive now.

Let us consider n objects or subspaces D; of dimensions
dimD;, i = 1, . . . , n, embedded in Euclidean d-
dimensional space K . The dimD s are usual dimensions
(e.g., 1 for a straight line, 2 for a plane, etc.},but at the
end they will also be generalized to fractal dimensions.

In K", the number of equations necessary to define a
subspace D; of dimension dirnDi is the codirnension

So we see that for n objects, the condition of nonempty
intersection in K is not the (wrong) "additivity rule"
d &g," idimD;, but (A7) with a normalization factor
(n —1) '. A special case is that of two objects (n =2),
where d & dimD, +dimD2, which is often interpreted as
an "obvious" additivity rule for dimensions. According
to the general formula (A7}, it is rather a degenerate
misleading case. As obvious from the derivation given in
(A3), additivity holds for the codimensions (A2), not for
the dimensions.

Finally, the inequality (A7) is applied to a set of n ran-
dom walks, or Brownian paths, each having fractal di-
mension 2. Hence the condition of nonempty intersec-
tion (A7) becomes d & [1/(n —1)]2n, which is just (Al),
QED. This applies to several physical systems, all based
on a random walk underlying picture. d, (n ) is derived
here as the upper multicritical dimension of the intersec-
tions of n random walks, and is also that of the n-body
interactions in the generalized Edwards model (3.1) for
polymers, and of the (gr )" field theory.

( 1 )P+ i Pi

which led for n & 2 to (4.4),

(Bl)

APPENDIX B: DOMAIN OF PARAMETERS
p, P, ANDso

Let us first discuss the meaning of the first-order ex-
pansion (3.17) and (4.1) in all disorder-induced interac-
tions (2.19) and (2.20),

codimDi =d —dimD; . (A2)

The intersection A& 1D; of the n objects is then de-
scribed by the collection of all equations defining the D, 's,
hence their number is simply

b" =6 2b+B"
8„"s=(—1)"+'p[PA (O,yo)]",

A (O,yo) =(1—yo)

(B2)

(B3)
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(2 )
—d/2P 1 —d/21

1 —d/2
(84)

(note that yo & 0 for d & 2, and that the singularity of
(A3) at yo =1 is irrelevant). According to Eq. (3.23), the
next-order terms are power series of the dimensionless
cutoff contributions zp p's (3.22), associated with the
disorder-induced interactions (2.19) and (2.20), and read-
ing for P & 3

~ iP+1 nP 1+(P—1)(1—d/2) ta i —(P —1)d/2

This can be rearranged from (4.2) into

( 1)P+1 d/2[(1 d/2)y ]P

=( —1) +'(1 —d/2) xyo .

Now notice that

x =pso yo-~ o
d/2 1 —d/2

(85)

(86)

(87)

Hence for d & 2, the zero cutoff limit so~0, which we

are primarily interested in [see (3.26)], leads for p and P
fixed to

sp —+0, yp & oo, P-sp '~0 (d &2) .

Then, for

(88}

x~0, yo~~ .

In this case, for P large enough, zp p (86) will grow
indefinitely with yo, even if x~0. To prevent this, we
can keep yo finite, i.e., take the limit P~O, such that

p, o-bsp ~00 for d &2, (811)

i.e., the density of impurities must be very large. This
was expected since we required that their effective in-
teraction P with the polymer goes to zero (88), and that
they nevertheless induce a collapse transition (810).
Now, from (811)we calculate the equivalent of

x, o=Psp ~ -bso ~0 for d & 4, (812)

which is exactly the required condition (89), granted for
d &4.

So we have established for 2 & d &4 the existence of a
set of parameters (p, P, and so) scaling like p-bsp
P-so ', and so~0, such that the simple renormaliza-
tion equation (82) and the tricritical transition (810) are
simultaneously valid, QED.

Of course, by continuity, the existence of a tricritical
transition in the disorder model can be expected over a
larger set of parameters, where the real effective interac-
tions should be rather of the full form (4.6),

It remains to check that the limits (88) and (89) are
consistent with Eqs. (4.15) and (4.16) (exact in this range),
giving the location of the tricritical point (in dimensional
regularization),

(810)

b is a parameter given by the physics of the polymer in
the pure solvent, and is a fixed quantity. From (88) we

get pP (1—yp) -psp -b He. nce from (810) we find
that p must scale like

x =pso ~0,d/2 (89)

we have shown that (86) zo z-xyo ~0 for any P, which
justifies retaining in (3.23) only the linear terms O(zo z),
for any P. This leads then to the simple regularized
effective intractions (82}.

The argument presented here has the academic value of a
solvable model, and the physical interactions in a real
cloudy system would be quite complicated.
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