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Modified Enskog theory for fluid mixtures
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We show how the modified Enskog theory for single-component fluids may be extended to the
case of mixtures. The extended theory uses the Enskog kinetic theory for hard-sphere mixtures and
equilibrium virial coefficient data to provide predictions of the transport coefficients of real mix-

tures. We show that the extended theory provides reasonable predictions of the ratio g/go in the
case of He-Ar and Ne-Ar mixtures, where g is the shear viscosity and go is the shear viscosity in the
low-density limit.

The modified Enskog theory' (MET) provides a useful
method for predicting the transport coefficients of pure
fluids. The method uses the transport-coefficient expres-
sions obtained by solving the Enskog kinetic equation for
the hard-sphere fluid. When the hard-sphere diameter o.
and the radial distribution function at contact X that ap-
pear in those expressions are replaced by quantities that
depend on the real-fluid virial coefficients, one obtains
good estimates of the real fluid's transport coefficients.
In this paper we show how the MET can be extended to
treat the case of multicomponent mixtures.

The MET, and the extension that we describe herein, is
an ad hoc method in the sense that it has not been derived
in any rigorous way from kinetic theory. However, the
recent series of papers by Kestin et al. , Sandier and
Fiszdon, and Di Pippo et al. demonstrate that trans-
port coefficients obtained from the Enskog equation have
a functional form that is similar to those of real fluids at a
fixed temperature; they showed that it is possible to
correlate the shear viscosity of simple binary mixtures us-
ing the shear viscosity of the Enskog kinetic theory of
hard-sphere mixtures. The Enskog shear viscosity g
of a mixture depends on the hard-sphere diameters o;,
and the equilibrium radial distribution functions at con-
tact, 7, , as well as the molecular masses I, , the tempera-
ture T, the mole fractions x;, and the number density n.
(Here subscripts i and j refer to species i and j, respec-
tively. ) They found that q closely matched the experi-
mental shear viscosity data for He-Ne, Ne Ar, and H2-
CH4 mixtures if the o; and 7;. were made functions of
state such that the g exactly fit pure component viscos-
ity data, as well as the dilute gas mixture viscosity data.

Since the values of o.;. and X;j used in the correlations
described above lie within physically realistic ranges, we
conclude that the functional form of the transport
coefficients of the Enskog theory of hard-sphere mixtures
is not too different from that of real systems. For this
reason we feel that an extension of the MET to the case
of mixtures might prove to be as useful as the MET has

been for pure fluids. Our initial application of the ex-
tended theory at a fixed temperature, which we give here,
is consistent with this expectation.

Our extension of the MET is not the first attempt to
predict the shear viscosity of dense fluid mixtures. The
very successful TRAPP program of Ely and Hanley has
been used for hydrocarbon mixtures. The TRAPP pro-
gram is based on a one-fluid correlation of equilibrium
properties and the one-component Enskog theory.
Wakeham et al. have used the Enskog theory of mix-
tures to predict the shear viscosity for several moderately
dense binary mixtures by setting the X,z

——1 and determin-

ing the remaining parameters from dilute gas viscosity
measurements. Although each of these methods has been
quite successful, each. has limitations that the extended
MET avoids. The TRAPP program cannot be used to cal-
culate mutual and thermal diffusion coefficients, and the
method of Wakeham et al. is limited to low densities by
setting g; =1. A third approach, the mean-field kinetic
theory of Karkheck et al. , has been used by Castillo
et al. ' to calculate the shear viscosity of Ne-Ar mix-
tures. These calculations are the only attempt we know
of to calculate the shear viscosity without using much ex-
perimental data. Although their results are encouraging,
the method does not (presently) work well at low densi-
ties.

The method developed in this paper is a direct exten-
sion to mixtures of the MET used by Hanley, McCarty,
and Cohen' for one-component systems. The extended
MET may be used to predict coefficients of viscosity, bulk
viscosity, thermal conductivity, diffusion, and thermal
diffusion. Using the extended MET, we show that it is
possible to predict the shear viscosity ratio g/go of He-
Ar and Ne-Ar mixtures to within a few percent, where go
is the dilute gas shear viscosity. Only equilibrium virial
coefficient data are needed to make these predictions. We
view our results as providing further confirmation that
the transport coefficients of the Enskog theory are closely
related to those of simple real fluids, and that it may be
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possible to devise a predictive theory of transport
coefficients of fluid mixtures that does not require exten-
sive transport-coefficient data.

We begin a detailed description of our results in Sec. I
by introducing the MET for single-component fluids and
its extension to multicomponent mixtures. Implementa-
tion of the MET requires knowledge of the virial
coefficients of the mixture, as well as their temperature
derivatives. In Sec. II we show how we obtained these
quantities for He-Ar and Ne-Ar mixtures. Finally, in
Sec. III we combine the experimental information with
the MET equations, showing how the generalized MET
predictions compare with the experimental data of
Iwasaki and Kestin" and Kestin et al. We conclude
that the MET can produce useful predictions of the shear
viscosity of these simple mixtures.

make that correspondence is to force agreement at low
densities and thus replace BHs by B" and nBHs&Hs by
[p/(nkvd T) 1—]", but this is not very satisfactory because
then nB X =[p/(nk~T) 1—] is independent of the
temperature [see Fig. 1(a)], so that at temperatures for
which B" is negative, this requires that 7 be replaced

8.0

I. MODIFIED ENSKOG THEORY

The MET, as first suggested by Enskog, provides an ad
hoc method for determining the transport coefficients of
simple, dense fluids. Since there is, at present, no fully
developed kinetic theory of such systems, the MET has
been used often as the only available substitute. '

Enskog was probably one of the first to recognize that
at fixed temperature the hard-sphere fluid was not radi-
cally different from real fluids, exhibiting much the same
local structure as real fluids. By taking advantage of the
simple dynamics of hard-sphere systems he was able to
improve upon the Boltzmann equation in ways that ex-
tended the usefulness of that equation to moderate and
even higher densities. He showed, by solving the Enskog
kinetic equation, that the transport coefficients of a dense
fluid of hard spheres depend on the corresponding
dilute-gas transport coefficients (obtained by solving the
Boltzmann equation) as well as on B" and X . Here
B is the hard-sphere second virial coefficient and 7 is
the hard-sphere radial distribution function for a particle
separation of 0., where 0 is the hard-sphere diameter.
For instance, the first Enskog approximation to the shear
viscosity g may be written
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where n is the number density and go is the (Boltzmann)
dilute-gas shear viscosity. '

Enskog's MET is based on the assumption that the
transport coefficient of a simple real fluid will have the
same functional form as the hard-sphere transport
coefficient. In the case of the shear viscosity, an estimate
for g" (we use a superscript r to denote properties of the
real fiuid) is obtained by using the analytically obtained
solution of the Enskog equation, replacing g by g', go
by go (the dilute-gas shear viscosity), and B and X by
the corresponding real-fluid properties obtained from
equilibrium experimental data. Since 8 is proportional
to o. , this makes o. depend on T. An obvious way to
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FIG. 1. (a) Compressibility factor pV/(Nk~T) vs density for
Ar and the hard-sphere fluid (HS). The curves for Ar (solid
curves) are labeled by the temperature in degrees Kelvin. The
hard-sphere compressibility factor (dotted curve) uses a hard-
sphere diameter of 3.41 A. (b) The thermal pressure
T(Bp/BT)v N for Ar (solid curves) and hard spheres (dotted
curves) vs density for four temperatures (T=140, 180, 220, and
300 K). For both Ar and hard spheres at a given density, the
thermal pressure decreases as T decreases. The hard-sphere di-

0
ameter was taken to be 3.41 A.
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by a negative number. (Here p is the pressure, kt) is
Boltzmann's constant, and T is the temperature. )

Instead, Enskog determined replacements for B and
by requiring that the "thermal pressure"

T(dpldT)v~ of the real fluid equal that of the hard-
sphere fluid:

BHSyHS BHS+ CHS +D HS 2+. . . (4)

dB' dC"Br+ T +2+ Cr+ T n 3+. . . Pl2BHsyHs
dT dT

(3)

For the hard-sphere fluid,

Bp Bp
BT BT

' HS

As shown in Fig. 1(b}, the thermal pressures of Ar and
the hard-sphere fluid are much more similar than the
compressibility factors. Since the thermal pressure is
positive for most fluids' the hard-sphere thermal pres-
sure [=k&T(n+n 8 X )] can be forced to match the
thermal pressure of the real system at low densities by
changing B slightly and at high densities by adjusting
the magnitude of X —without changing its sign.

Since

and thus substituting Eq. (4) into Eq. (3), we obtain

8+T. n+ C+T n+dB" 2 „dC"
T

8 Hsn 2+ CHs 3+

Therefore, Enskog's requirement, Eq. (2},leads to
dB"

B =B"+T
T '

CHs Cr+ TdC
T ' (6)

p"=k~T[n+8'(T)n +C"(T)n

+D "(T)n 4+ ],
where 8"(T), C "( T), . . . , are the second, third, etc., viri-
al coefficients of the real fluid, respectively, and

p =kt)T(n+n 8 X ), Eq. (2) requires that

which, using Eq. (3), implies
r

dB" dC"8 X = 8"+T + C"+T n+ . . (7)dT dT

In the first Enskog approximation, the MET expression
for the shear viscosity is, therefore,

dB'
rt"lrto nB "+T—— 8"+T n+ C"+T n2+

dB" „ dc"
dT

+—4
5

4 1
12 dC"8"+T n+ C'+T n +T

25 (8)

Hanley et al. ' have shown that Eq. (8) represents the
shear viscosity of simple fluids to within 10—15%%uo for
densities up to twice the critical density.

The generalization of the MET to mixtures is straight-
forward. The pressure of an s-component mixture of
hard spheres with diameters o, (i = 1, . . . , s) is given by

pHs=ksT y n, + yB,HSXHsn, n)

Equating the "thermal pressures" of the real and hard-
sphere fluids leads to

dB;"
8 j(T)+T n;n

l)J

dC;".k+ g C;".k(T)+T n;n nk+ .
I)J)k

where
HS HS= +8; n;n +g C;.kn;n nk.+

i,j,k

(12)

8 HsXHs 8Hs+ y CHsn
k=1

and that of the real fluid by

p"=k&T g n;+ QBJ.n;nj. + g Cjl, n;njnk+ .
i,j,k

and thus we require

dB'
B,Hs =8;"(T)+T.

dT

Cp, Cp, (T)+T-HS r dC;k
(13}
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or, using Eq. (10}, II. ANALYSIS OF EXPERIMENTAL VIRIAL
COEFFICIENT DATA

(14a)

dB"
BHsyHS Br(T)+T

+ g Cqk(T)+T nk+
k=1

(14b)

The extended MET is based upon Eqs. (14), which pro-
vide the means for mapping the equilibrium properties of
the real Quid into those of the hard-sphere fluid. We note
that if the total density n = g;, n, had been used as the
power-series expansion variable, we would have obtained
the MET result, Eq. (6), where 8, C, . . . are the total viri-
al coefficients of the mixture. Such a result would not
have been too useful because the Enskog theory depends
on IB;J,X; J, not 8 and g.

Equations (14) may be obtained by an alternative
method, which compares temperature derivatives of the
chemical potentials. To see how this comes about, note
that the chemical potential of a mixture may be expressed
as

The most difficult aspect of using the MET is the col-
lection of equilibrium data to determine the pure and in-
teraction virial coefficients of the mixture. We chose to
test our extension of the MET on He-Ar and Ne-Ar mix-
tures because (i) the shear viscosity measurements report-
ed in Refs. 3 and 11 for these systems were taken at
moderate densities so that only second and third virial
coefficients would be needed, and (ii) there appeared to be
adequate virial coefficient data available for these sys-
tems. Below we summarize how the virial coefficient data
for He-Ar (Sec. IIA) and Ne-Ar (Sec. II 8) were ob-
tained.

A. He-Ar mixtures

We determined the second and third virial coefficients,
and their temperature derivatives, for He-Ar mixtures us-

ing the measurements reported by Blancett et al. '

Those measurements were taken at temperatures of —50,
0, and 50'C, at He mole fractions of 0, 0.2199, 0.4105,
0 5935, 0 8, and 1.00. They reported total virial
coefficients B and C, where

p;( T n &, . . . , n, ) =ks T lnn;+ g, ( T)

+P, (T,n„. . . , n, ),
and

8 =B()(T)xf +28)2(T)x )(1—x ) )+Bqq( T)(1—x ) )

(15)

where the term g;(T) contains the thermal de Broglie
wavelength and the intramolecular contributions to the
partition function, and p contains the intermolecular
contributions to the partition function. (We assume that
the internal degrees of freedom of a molecule do not
afFect the intermolecular potential energy. ) If we define
the "thermal chemical potential" of species i to be
T(Bp; IBT)(„~—Tdg; IdT, then Eqs. (14) are obtained by

J
setting the thermal chemical potentials of the hard-
sphere fluid equal to those of the real Quid for each I,. In
fact, this is how we first obtained Eqs. (14}.

C =Ciii(T)x i+3C, i2(T)x f(1 —xi )

+3C,22(T)x )(1—x ) ) +C222(1 —x, ) (16)

where x, is the He mole fraction. Since the extended
MET requires values of dB;, /dT and dC,,„ldT, and the
shear viscosity data were taken at T=293.15 K, we chose
to model the temperature dependence of the virial
coefficients using a power-series expansion about
T=293.15 K. Thus we set

TABLE I. The virial coefficients of He-Ar mixtures. (These coefficients were obtained by a least-
squares fit of the data of Blancett et al. (Ref. 14) their use should be restricted to the interval

[ —50,50] 'C. Species 1 is He and species 2 is Ar. )

Second virial coefficients (liter/mol)
B

& &

= 1.1902X 10 —3 0909X 10 ( T —293. 15)—4.080X 10 ( T —293 ~ 15 )

B12——1.7924X 10 + 1.7850X 10 ( T —293. 15)—5.911X 10 ( T —293. 15)

B22 ———1.6165X10 +2 1464X10 (T—293. 15)—1.232X10 (T—293. 15)

Third virial coefficients (liter/mol)

CI] &
= 1 ~ 0905 X 10 —2. 1344X 10 ( T —293.15 ) —1.2038 X 10 ( T —293. 15 )

C)12 ——2.0786X 10 —9.0921 X 10 ( T —293.15)+3.3122X 10 ( T —293. 15)

Cl2 =6.4835 X 10 —2.0539X 10 ( T —293. 15)—5.6259 X 10 ( T —293. 15)

C222 ——9.6911X 10 —1.7466X 10 ( T —293.15)+6.3088 X 10 ( T —293. 15)
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matter to calculate g/go. We used the third Enskog ap-
proximation, although the first approximation (which is
normally used) is almost as accurate.

In Fig. 2 we compare the MET results to the data of
Iwasaki and Kestin for He-Ar tnixtures (T=293.15 K).
The MET calculations displayed in Fig. 2 were made us-

ing the virial coefficients given in Table I. For the He-Ar
mixture, 71/bio is very close to 1 for densities up to 2
mol/liter and the MET results lie consistently above the
experimental data. Although it is true that the MET re-
sults lie within 2% of the experimental measurements, ri"
is so close to rlo that the approximation riltio= 1 is al-
most as good as the MET.

The MET results for Ne-Ar mixtures (T=298.15 K)
are compared to the measurements of Kestin et al. in
Fig. 3 for densities up to 6 mol/liter. In this case q"/rlo
significantly deviates from unity at the high end of the
density range, providing a more stringent test of the
MET. The MET values of g/bio for the mixture are al-
ways within about 2% of the experimental data.

The predictions described above, although far from
conclusive, suggest that our extension of the MET to
mixtures may prove to be as useful as the MET. These
initial results certainly suggest that more extensive tests
of the extended MET, such as calculations of the thermal

conductivity and mutual and thermal diffusion
coefficients, are worth pursuing. In order to use the ex-
tended MET at higher densities, where there are fewer
experimental data and where higher-order virial
coefficients are needed, other methods must be developed
for determining the virial coefficients of the fiuid mix-
tures. As mentioned earlier, one possible method is to
determine the virial coefficients from an intermolecular
potential whose parameters are chosen such that an accu-
rate fit of equation of state data is obtained. Another
possible approach would be to use one of the many
varieties of thermodynamic perturbation theories' to
model the equilibrium equation of state and then extract
from that model the appropriate combination of virial
coefficients.
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