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Bremsstrahlung from hot, dense, partially ionized plasmas
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In hot, dense, and partially ionized plasmas, both the electronic shielding and the ion-ion correla-
tion modify the emission and absorption coefFicients of the bremsstrahlung. Based on the Thomas-
Fermi model and the hypernetted-chain equation, it has been shown that the emission and absorp-
tion coefficients are significantly reduced by these effects.

I. INTRODUCTION

The energy transport by radiation is one of the most
important problems in laser fusion plasmas. Since the pa-
rameters of laser plasmas such as density and tempera-
ture cover very wide domains, the radiative transport
coefficients for various plasma parameters are needed in
order to describe the hydrodynamics of matter and radia-
tion in laser plasmas. In these parameter domains, we
have the cases where the electronic shielding and/or the
ion-ion correlation significantly modify the x-ray emis-
sion and absorption coefficients of the free-state —free-
state and bound-state —free-state transitions.

The typical x-ray radiation intensity emitted from
high-Z plasmas is —10' —10' W/cm or —100—180 eV
in terms of the radiation temperature. When a solid tar-
get is irradiated by the x ray, the hot dense plasma is pro-
duced on the surface. An example of the temperature,
density, and pressure profiles at 1 ns after irradiation of
the aluminum foil of thickness 20 pm is shown in Fig. 1.
The density and temperature of these plasmas are
—10 —10 cm and —30—100 eV, respectively, and
the average charge state of Al ion Z' is -4—8. For
these plasmas, the coupling parameter of the ion is es-
timated as I =(Z'e) /acket T=2 10 and the deg—enera-

cy parameter EF/kttT=0. 1 —1. Here ao is the average
ion radius (3/4am; )'r, EF is the Fermi energy at zero
temperature fi (3n. n, )

r /2m, n; and n, are the number
density of electron and ion, respectively, and m is the
electron mass. The purpose of this paper is to discuss
high density effects on the x-ray interaction with those
plasmas.

The previous paper' by one of the authors showed that
the ion-ion correlation reduces the free-state —free-state
emission and absorption cross sections in fully ionized
low-Z plasmas (Z & 5). In this paper we extend this work
to such partially ionized medium or high-Z plasmas
(Z ~ 5) as shown in Fig. l. Both free and bound electrons
screen the ionic Coulomb field to reduce the electron-ion
collision cross section in those plasmas. Therefore the
electronic shielding together with the ion-ion correlation
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FIG. 1. Density, temperature, and pressure profiles at 1 ns
after irradiation of the Al foil of thickness 20 pm. The radia-
tion is Planckian and its temperature is 140 eV. The solid line
shows density, the dotted line shows temperature, and the
dashed line is the pressure.

reduce the x-ray emission and absorption cross section.
The bremsstrahlung is proportional to Z*, when ions

are assumed to be point charges of Z* and not correlated
with each other. The reduction factor (Z'/Z) describes
the bound electronic shielding effect. However the real
ion has the finite size ab which corresponds to the outer-
most radius of the bound electron orbit. Therefore, when
the impact parameter for the electron-ion collision b is
smaller than ab, the effective ion charge for collision Z, ff

will be greater than Z'. Actually, when b is much small-
er than ab, the colliding electron feels the bear ion charge
Z. Since the average frequency of the emitted or ab-
sorbed radiation is roughly estimated to be ttt'/(2mb ) as
will be discussed in Sec. VI, Z,~ of the free-state —free-
state transition increases with the frequency. The details
of this dependence is closely related to the electronic
shielding and the ion-ion correlation.

We determine the shielded electrostatic potential
around the ion by the finite temperature Thomas-Fermi
model. In this model, the other ions are considered as
the uniform positive charge background of which charge
state is Z*. The effect of the ion-ion correlation is taken
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into account as in Ref. 1. Note here that the average ion
model (or the average charge state Z') is applicable only
when Z is sufficiently larger than unity. Otherwise, the
charge state fluctuation is comparable to Z* and the
Thomas-Fermi potential (the average ion potential) is not
valid. 4

In Sec. II we derive the emission and absorption
coefficients absorption cross section. Section III de-
scribes the case where the electron-ion correlation is
weak and the linear response theory is applicable. Sec-
tion IV is devoted to the evaluation of the Thomas-Fermi
potential. In Sec. V we describe the numerical analysis of
the hypernetted-chain (HNC) equation for the screened
ion-ion interaction. Finally the discussions and summary
are given in Sec. VI.

II. FORMULATION

2

s(q)=( x exp(iq R, ) )/N;,
j=1

and P(q) is the shielding factor,

P(q)=
2

U(r)e 'q'dr
4+Ze

E(r(2)dc@=f f fico dok f(p)[1—f(p')] dp,
m ' (2ir)'

where f (p) is the distribution function of free electrons
with momentum Ap,

The emission coefficient E(io)de (energy emitted per unit
time, volume, solid angle, and polarization) is given by

The cross section for dipole emission of photon is givenb' f(p) =1 (Pip) /2m —p1+exp
B

(24r) m „d d
"~ks '

X
dk dp'

(2ir) (2ir)

2

5(E; EI fico—)— and p is the chemical potential. Carrying out the integra-
tion with respect to p and p' in Eq. (7) we get

2Z2e6 1
E(co)dc@=

3n.ic3iii3co exp(ficolkz T) 1—
Here e and k are the polarization and the wave number
of the emitted photon, respectively, m = ( c k +co )

'

co~ =4nn, e Im. , and (d d/dt )I; is the matrix element of
the time derivative of the electronic dipole moment d be-
tween the initial state [energy E; =(irip ) /2m and asymp-
totic wave number p] and the final state [energy
EI ——(Rp') /2m and asymptotic wave number p'] of the
electron. When the electron position is r(t),

=e = y VU(~r —RJ~),
j=1

where

F(q) =ln

x(co —co~ )' n;kii T d~

x f "S(q)P(q)F(q) dq, —
0 q

1+exp
mao

kB T 2mkB T 2 Aq

1+exp p, A' ~ mes

kB T 2mkB T 2 Aq

2

and the matrix element is given as follows:

d

dt

2
Q

i

f ili&(r) g U(
~

r —R
~

) %, (r)dr . (3)
m / ar,

&(5(E, E& —iiico)dc' dp', — (4)

where Aq =Ap —Ap' is the change of the electronic
momentum in the collision, S(q) is the structure factor of
the ion defined by

Here U(r) is the ion potential shielded by free and bound
electrons which is determined later by the Thomas-Fermi
analysis, R (j=1,2, . . . , N, ) is ion position, and N, is

the number of ions.
In the Born approximation, the cross section averaged

over the ion distribution, the polarization, and the propa-
gation direction of photon is calculated as

Z2 6

do„=, (co' —co~ )' 'n, S(q)P(q)
3& mc Aped q

g(~)d~= f fx~ Nkdokz,
Ap

X [f(p')[1—f(p)]

—f(p)[1—f(p')]I,dp,2

(2ir )'

where Nk is the photon number. We then obtain the ab-
sorption coefficient A(co) by the same procedure as Eq.
(9),

~ ( )
Q(co)den

R~Nk(~2 ~P2)du/'g~3C2

16Z e
n, kBT

3ciii4~2(~2 ~2 )1/2
P

&& f S(q)P(q)F(q) dq . —
0

(12)

As in Ref. 1, we introduce the ratio R (co) by

From the emission cross section, the absorbed power den-
sity (absorbed energy per unit time, volume, solid angle
and polarization) is given by
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E(co)[S(q), P(q)]
E(co)[S(q) =P ( q) = 1]

A (co }[S(q), P (q)]
A(co)[S(q)=P(q) =1]

f S (q)P (q)F (q) dq—
0 q

f F(q) dq—
0 q

Furthermore, the following ratios:

E(co)[S(q),P(q) = 1]
E(co)[S(q)=P(q) = 1 j

A (co)[S(q),P(q}= 1]
3 (co)[S(q)= P(q) = 1 j

f S (q)F (q) dq—
0 q

(13)

E(co)[S(q)= 1,e, (q) j
R, (co) =

E(co)[S(q)=e, (q) =1]
A(co}[S(q)= l, e, (q)]

A (co)[S(q) =e, (q) = 1]
(17)

tions are reduced by this screening. For an example,
F(q} and F(q)/e, (q) are compared for k+T/Ez 1——in

Fig. 2. Since the static screening is more effective for a
smaller q, the low energy photon absorption and emission
cross sections are significantly reduced.

On the other hand, the electronic screening reduces the
efFective coupling between ions and increase S(q) for
small q in comparison with case of no screening. This in-
crease of S(q) partially cancels the reduction due to the
factor 1/e, (q ).

In order to see the above two effects separately, we in-
troduce

f F(q) dq—
0 q

E(a))[S(q)=1,P(q))
E(co)[S(q) =P(q) = 1]

A (co)[S(q) = 1,P(q)]
A (co)[S(q)=P(q) = 1]

f P (q)F(q) dq—
0

f F(q) dq—
0 q

(15)

are introduced to express the ion-ion correlation effect
and the electronic shielding effect separately.

III. EFFECTS OF THE ELECTRON SHIELDING
ON THE FREE-FEEE TRANSITION

FOR WEAK ELECTRON-ION CORRELATION
(WEAK SCREENING)

%hen the electron-ion correlation is not strong, the
response of electrons to the ionic Coulomb field may be
described by the linear response theory. (The condition
for weak electron-ion correlation will be discussed in Sec.
VI.) The Fourier component of the ionic Coulomb po-
tential 4mZe/q is then replaced by 4vrZe/q «, (q), where

e, (q) is the dielectric function of electrons. The value of

f S(q)P(q)F(q) dq—
0 q

in Eqs. (9), (12), and (13) is thus evaluated as

f S(q)F(q) dq,
0 q«, (q)

(16)

where S(q) is structure factor for ions which interact via
the screened Coulomb potential 4mZe /q e, (q).

For a given photon energy Ace, the dominant contribu-
tion to the integration of Eq. (16) comes from

q,„—(2m'/fi)'~, namely, q,„/kz —(Ace/Ez)'
where F(q) becomes maximum. When the screening
function 1/«, (q) is sufficiently smaller than unity at

q =q,„, the photon emission and absorption cross sec-

E(co)[S(q),e, (q) ]
Rz(co) =

E(co)[S(q) = 1,«, (q) ]
A (co)[S(q),e, (q)]

A (co)[S(q)= 1,e, (q) ]
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FIG. 2. Values of the factor F(q) and F(q)/e,'(q) with

k& T=E+ are plotted by solid and dotted lines, respectively, for
Ace/kz T=0.2 (top), 1 (middle), and 5 (bottom). kz ——(3m. ne)'
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The ratio R &(co) is the measure of the electronic screen-

ing effects without the ion-ion correlation and the ratio
R~(co) is the ion correlation effects. When we increase
r, =(3/4mn, )' /oz (where az is the Bohr radius) with
the other parameters k~T/EF and I kept constant, the
electronic screening becomes strong and we can see how
strongly the emission and absorption cross sections are
modified by the screening.

We have evaluated the ratios R, (co) and R~(co) adopt-
ing the random-phase approximation (RPA) for the
dielectric response function of electrons: RPA may be
used as the first approximation at least for smaller values
of r, . The values of S(q) have been evaluated by linear
interpolation between the results of numerical experi-
ments of one-component plasma (OCP) (r, =0) and the
screened OCP (Ref. 6) for r, =1: Almost the same values
for R, (co) and Rz(co) are obtained also when we use the
solution of the HNC equation for screened OCP as S(q).

Figures 3(a) —3(c) show R s(sv), R&(co), and
R(sv)=R, (co)Rz(co) for various values of r, . In Fig. 3(a)
we see that R, (co) decreases when r, increases from 0.1 to
1, k~T/E~= 1 and I =2 being fixed. The electron densi-

ty and temperature and the ion charge are related to r, as
shown in Table I. On the other hand, the ion correlation
effect is reduced when r, increases as in Fig. 3(b). Figure
3(c) shows that R(co)=R, (co)Rz(co) is almost indepen-
dent of r, . Namely, the decrease of R, (co) is almost can-
celed by the increase of Rz(sv). Therefore we may con-
clude that the electronic shielding effects are not
significant as far as the weak screening approximation is
valid.

Figures 4(a) and 4(b) show the case for I =10. Since
the electronic screening effect does not depend on I,
R&(co) is the same as Fig. 3(a). Again, the product of
R, (co) and Rz(co) does not depend on r, as shown in Fig.
4(b). The modifications of the cross section are much
more sensitive to the electron temperature as shown in
Figs. 5(a) —5(c) where I =2 and r, =0.5 are fixed and

k~T/EF changes from 0.5 to 2.
Finally, let us discuss the validity of the static screen-

ing. The frequency dependence of the dielectric function
e, (q, co) may become important when co & qv, for
k~T & EF or qvF for EF & kz T, where v, and vF are the
electron thermal velocity and the Fermi velocity. Since
the important region of q is around (2mso/A')'~, the
above condition is rewritten as Rco & 3k& T or 3EF.
Namely, the static screening approximation may not be
valid when Ace&3k~T or Ace&3EI;. As it is shown by
Fig. 3(a), however, the effect of the electron screening be-
comes significant for Ace g 2 —3EI; irrespective of the
value of EF /k&T. Therefore, the static screening approx-
imation will be acceptable as the first stage approxima-
tion.

IV. THE FINITE TEMPERATURE THOMAS-FERMI
MODEL (STRONG SCREENING)
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TABLE I. Electron density, temperature, and atomic number
for I =2, kz T=EF, and several values of r, .

1 S S / I I I I I ~ ( I I Isl

0.1

0.2
0.5
1.0

n, (cm ')

1.6g 10"
2.0x 10"
1.3 F1025
1.6X 10'4

T (eV)

5000
1250
200

50

Z

15
9
4.5
2.7

1.0

rs=0. 5
(a)

the average ion potential gives a good approximation for
the real ion potential in plasmas.

We assume that a test ion is placed in the electron gas
of density Z*n;. The density and average charge of ions
in the uniform positive charge background are n; and
Z *e, respectively. Then the Thomas-Fermi potential
U(r) satisfies the following equations:
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and QO

NBE —— 4mr nBE(r}dr,
0

(24)

(Tip) /2m e—U(r) @-,
]+exp

B
(2l) wherefT(J }=I

2n-(r}=f, fT(J }
p /2m —eU(r) (0 (2~)

and we obtain

We have numerically solved these equations under the
boundary conditions,

(25)

d U(r) Ze (r~O), U(r)= —e " (r~~) .
dr r2 r Z*=Z —NqE- (26)

(22}

Here C is an unknown constant which is determined after
integrating Eq. (19) with the conditions and (22), and A, is
the Thomas-Fermi shielding distance given by

3/2 2 y —p, /k~ T
4 2m e

k T' ~ e
dy . (23}

(1+e )
y —p/k~ T 2

When kB T~~, k is reduced to the Debye shielding dis-
tance.

In order to determine the average ion charge state Z*
self-consistently with the Thomas-Fermi model, we re-
gard the electron with negative energies as the bound
electron of the test ion at r =0. Then the number of the
bound electrons, NBE, is given by

Since Z*n, is equal to the average free-electron density,

Z'n, = ff(p), dp.2

(2~}
(27)

Equation (27) relates the average ion charge state Z' to
the chemical potential p.

In order to define Z' by Eq. (26), the spatial spread of
the bound electron around the test ion ab must be smaller
than the ion sphere radius a0, which is one half of the
average distance between ions; otherwise, the bound state
wave functions of neighboring ions overlap and the nega-
tive energy electrons can move from one ion to another.
The bound electron profiles given in Figs. 6(a) and 6(b)
show that the bound electron radius a& defined by
naE(ab) =Z*n, is sufficiently smaller than a0, and justify
the definition of Z* by Eq. (26).

2
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FIG. 6. (a) Profiles of some quantities of the Thomas-Fermi model for case {a). In (l), the solid line shows the Thomas-Fermi po-
tential e U(r) Irk& T, the dotted line shows Ze /rk T, and the dashed-dotted line shows Z*e /rk~ T. In (2), the solid and dotted lines
show, respectively, the total electron density and the bound electron density normalized by the average electron density Z*n, . (b)
same as (a) for the case (b).
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V. THE HYPERNETTED-CHAIN EQUATION
FOR THE SCREENED ION-ION INTERACTION

When the Coulomb coupling between ions becomes
comparable with the kinetic energy of the ion, or I"-1,
the Debye-Huckel model is no longer applicable. The ion
correlations in such high density plasmas are described
by some integral equations. Since we are interested in the
parameter region of 1 & I & 10, we may employ the
hypernetted-chain (HNC) equation which is known to
work as a good approximation when the ionic coupling
parameter is not so large. The HNC equation is given
by

+,, (r)1+h(r)=exp — +h (r) c(r)—
kqT

(28)

supplemented by the Ornstein-Zernike relation

h(r)=c(r)+n; f c(
~

r' —r
~

)h(r')dr', (29)

where c(r) is the direct correlation function. The radial
distribution function of the ion g (r) and the structure
factor S(q) are related to h (r) as

g(r)=1+h(r),

S(q) = 1+n; I h ( r)e'q'd r .

(30)

(31)

We note that the binary interaction potential 4;;(r) is

not well defined, because both bound and free electrons
shield the ion potential and modify 4;;(r) which is given

by Z e /r without electronic shielding. Two limiting
cases may be as follows. In the first case, the ion of
charge state Z* feels the Thomas-Fermi potential U(r)
given in Sec. IU, namely, 4;;(r)=Z'U(r) In the . second
case, 4;;(r)=ZU(r). When r/ab »1, the bound elec-
tron orbits do not overlap between the interacting ions
and each ion is assumed to be a point charge of Z'e.
Therefore the interaction potential is well approximated
by the first case. When r/ab « 1, on the other hand, the
bound electron orbits overlap significantly and the in-
teracting ion charge can be approximated by the nuclear
charge Ze. Therefore 4;;(r) may be given by the second
case. Since a& is suSciently smaller than ao, we employ
4,, (r) =Z' U(r) to calculate absorption coefficients.

close to the Debye-Huckel potential: The condition of
weak electron-ion correlation may be satisfied if either
Ze /a, «k&T or Ze /a, «EF. On the other hand,
there is significant amount of bound electrons in case (b)
shown by Fig. 6(b) and the ion charge is strongly shield-
ed: In this case, Ze /a, » kii T.

Note here that the present Thomas-Fermi model has a
uniform positive charge background since we have to
treat the electron-ion and ion-ion correlations separately
in order to evaluate the bremsstrahlung. Therefore the
average charge state Z' for Figs. 6(a) and 6(b) are
dift'erent from the ion charge which is obtained from the
Thomas-Fermi equations based on the ion sphere model
(average ion model). In Fig. 7 the relation between Z*
and the ion density of our model are compared with that
of the average ion model.

The radial distribution functions of the ion g(r) ob-
tained by the HNC equation are shown in Figs. 8(a) and
8(b), where the results for two assumptions for the binary
interaction potentials described in Sec. V and also the
case of bare potential for comparison. We see that the
ion correlation becomes stronger for larger binary in-
teractions. Hence the ion-ion correlation is significantly
reduced when electrons shield the potential.

In order to evaluate the emission coefficient E(co) and
the absorption coefficient A (co), we have to calculate the
structure factor S(q), the shielding factor P(q), and the
factor F(q). The wave-number dependence of these
quantities are shown in Fig. 9(a) and 9(b). If ions do not
correlate with each other and there is no electronic
shielding, then g(r)=1 and U(r)=Ze/r, or S(q)=P(q)
=1. When ion correlations and electronic screening are
taken into account, the values of S(q) and P(q) become
smaller than unity. From Eqs. (9) and (12), we obtain
E(co) and A(co), shown in Figs. 10(a) and 10(b) in com-
parison with the case of S(q)=P(q)=1. We see that
these coeScients are significantly reduced. It should be
noted that the degeneracy of electron leads to reduced
coefficients by itself' and the modification of S(q) and
P (q) gives further reduction.

VI. DISCUSSIONS AND SUMMARY 10

We here discuss the results of foregoing analyses in the
following two cases. In case (a), the parameters are
Z= 13, n; =8)& 10 ' cm ', and ka T= 1 keU. In case (b),
Z = 13, n, =8 ~ 10 cm, and k~ T= 100 eV.

The profiles of the potential, total electron density, and
bound electron density obtained by the Thomas-Fermi
equations are shown in Figs. 6(a) and 6(b). In case (a)
shown by Fig. 6(a), the aluminum ion is almost fully ion-
ized and the ion charge is shielded only by free electrons.
In this case the average interaction energy between elec-
tron and ion Ze /a„where a, =(3/4mZ*n, )'~, satisfies.
the condition Ze /a, «kii T, and the potential U(r) is

0
10

22
10

29
10

24
10

Density (cm 3}

FIG. 7. Average charge state for ion density and tempera-
ture. The solid line shows the result of our model and the dot-
ted line is that of the average ion model.
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FIG. 8. Radial distribution function of ions for case (a). The
solid line shows the result when 4„(r)=Z*eU(r), the dotted
line shows ZeU(r), the dashed-dotted line shows Z e /r. (b)
Same as (a) for case (b).

To analyze the effects of the electron shielding and the
ion-ion correlation on the bremsstrahlung quantitatively,
we have introduced R (co), R;(co), and R, (co) by Eqs. (13),
(14}, and (15), respectively. Their values are shown in
Figs. 11(a}and 11(b). When we can assume an ion to be a
point charge of Z'e and not correlated with each other,
the value of R(co) is constant and equals to (Z'/Z) be-
cause the bremsstrahlung is proportional to the square of
the ion charge state. Comparing R;(co) and R, (co) for
case (b), we see that R, (co) indicating the electron shield-
ing effect is very close to R(co). Therefore the reduction
of the bremsstrahlung is dominated by the electron
shielding in Fig. 11(b). But when kiiT and/or EF are
large enough, ions are almost fully ionized. In this case,
both the bound and free electrons have weak screening
effects on the charge and the ion-ion correlation effect is
dominant in the bremsstrahlung. This situation may be
seen in Fig. 11(a) for case (a).

We may interpret the difference of R (co) from the
value (Z*IZ) in Figs. 11(a) and 11(b) for iiico/kii T ~ 1 as
follows. High energy photons (fico & ks T ) from the
bremsstrahlung are emitted from the electron-ion col-
lisions with a small impact parameter. The effect impact
parameter for the emission of the photon of Au can be

S(q)

P(q)
I

o
0 2Q 57 8B 1 16 143

qao

0
0

.01

(b) (2)
I t

I- t~ikRT=too

I

I

I

67 Se 1«
qao

FIG. 9. (a) Structure factor S(q), the shielding factor P(q),
and F(q) for case (a). In (1), the solid lines shows S(q) and the
dotted line shows P (q). In (2), we show F(q) for
Ace/kz T=0.01, 1, and 100. The value of F(q) is normalized by
its maximum for each parameter. (b) Same as (a) for case (b).



3626 R. KAWAKAMI, K. MIMA, H. TOTSUJI, AND Y. YOKOYAMA 38

7
'10

10

E
Q I

10
Q)
LI

1P
3

Lll

10

2
10

10 10 1 10 10

10
E
V

0

s
10
10
~o' .'— g

1

10
10
10
10
10 r

-7
10

10 10 1

'' 1

(~) (2)

10 10

0

K

I \ I I ~ ~ ~

I
~ I I I I Ill( I ~ ~ 1 I I I I ~ ~ ~ 1 ~

0 s s ~ I ~ ssl ~ s i a g iiil I s ~ ~ ssl s s ~ ~ s I

10 Co $0 10

hi i/ kgT fic )/'keT Scca/kg T

10

10

S
10

10

7
10

10 F

10

10
Q

10
2

10
0

~~
(Q

K

~ ~ I ~ I F I ~
(

~ ~ ~ ~ ~ ~ ~ I
(

~ ~ ~ ~ ~ ~ I ~ I I I ~ ~ ~ IT'

(b)

3
10

10 10

e

10 $0
10

10 10 1

5(.i/ke T

10 10

0
~O 30

. . I ~ I ~ s ~ ~ I ~ I ~ I ~ ~ L ~

10 10

Cur/kE1T

FIG. 10. (a) Emission and absorption coefficients for case (a).
The solid line represents the results obtained by calculating S(q)
and P(q), while the dotted line gives the values when there is no
electron shielding and ions do not correlate with each other,
namely, S(q) =P ( q) = 1. (b) Same as (a) for the case (b).

FIG. 11. (a) Ratios R(co), R, (co), and R, (co) for case (a).
, R(co);, R, (co); and ———,R, (co). (Z /Z)' is

shown by -"-. (b) Same as (a) for case (b).

determined by 1/q, „, where q .,„ is the maximum point
of the integrand S(q)P(q)F(q)/q in Eq. (3). The value of
q,„ is approximately equal to the maximum of F(q),
which is indicated by arrows in Figs. 9(a) and 9(b) and
scaled by q,„-(2m co/)ii'i. When the impact parame-
ter is small, the electron which interacts with the radia-
tion feels almost bare Coulomb potential Ze/r (larger
than Z "e/r) and therefore S(q)=P(q)=1 effectively.
Therefore when iiico is larger than k&T, R(co) is larger
than (Z, /Z) and approaches unity for iiico~ &n. In the
case of the large impact parameter, the colliding electron
feels the modified Coulomb potential which is determined
by the effects of the ion-ion correlation and the bound
and free electron shieldings. As for the effects of the
bound electron shielding, we can take it into account by
using the potential Z*e/r effectively. So when Ace is
small and the bound electron shielding effects are dom-
inant, R(co) approaches to (Z*/Z) in Fig. 11(b). When
the plasma approaches to the fully ionized state, namely,
Z' is nearly equal to Z, the effects of the ion-ion correla-
tion and the free-electron shielding are large and R(co)
becomes smaller than (Z*/Z) at small fico as shown in
Fig. 11(a).

In this work we have studied the effects of the ion-ion
correlation and the electronic screening on the brems-
strahlung. The inhuence of these effects may be observed
in the numerical simulation of laser plasmas. The dom-
inant contribution of the radiation to the energy trans-
port is determined by the absorption coefficient at
Ace-k~ T. In the typical laser plasma parameter, Z = 13,
n, =8&(10 cm, and k&T=100 eV, corresponding to
case (b), the ratio R(co) largely changes at %co-ks T by
the effects of the ion-ion correlation and the electronic
screening as shown in Fig. 11(b), indicating that the radi-
ation transport in the laser plasmas is sensitive for these
effects.
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