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An effective pair interionic potential for liquid lead has been found using the molecular-dynamics
(MD) simulation method. The assumed form of the potential includes long-range soft repulsion as
well as steep repulsive and oscillating "Friedel" components. An extensive simulation using 16384
particles has been carried out in order to fit the assumed parametrized form of the pair potential to
the static structure factor of liquid lead measured by neutron scattering close to the melting point.
The fit covers the first three peaks in S(Q), as well as the small-Q region, including the long-

wavelength limit. The use of a relatively large number of particles avoids the systematic errors typi-
cal of smaller-scale simulations and allows us to obtain a quantitatively reliable relationship be-
tween the pair potential and S(Q). The calculated diffusion coefficient is in good agreement with

the experimental value. Simulation of liquid lead at 1170 K and at the corresponding density using
the same pair potential also gave good agreement with the experimental data on S(Q) and the self-

diffusion at that temperature. This fact indicates that the interionic interaction in lead may be in-

dependent of temperature and density within the liquid domain. The potential for liquid lead de-
rived earlier from the fourth moment of S(Q, t0) was also tested in an MD simulation and proved to
be inadequate. A revised version of this potential obtained after removing constraints has a shape
similar to that reported in this paper. The self-diffusion coefhcient was found to be highly sensitive

to the potential's shape.

I. INTRODUCTION

During the last two decades the molecular dynamics
(MD) method of simulation of simple classical liquids has
been proven to provide a unique way for microscopic in-
terpretation of the experimental data obtained from neu-
tron scattering in terms of interparticle potentials. The
method has been especially widely and successfully ap-
plied to the studies of liquid metals. MD simulation is
very time consuming and requires a large memory
storage. In order to simplify the algorithm and to make
the calculations practically manageable the potential
function of the simulated system is usually reduced to a
sum of isotropic pair potentials. This assumption implies
that N-body contributions to the potential energy with
N )2 are either negligibly small or may be incorporated
in the eQectiue pair potential as an averaged contribution.
The pair potential concept has been proved to be very
successful for the description of the rare gases, simple
metals, and ionic systems. The validity and limitations of
this approximation have been discussed recently by Tay-
lor, ' who came to the conclusion that it is well justified
for transition metals.

Liquid metals have been the subject of extensive stud-
ies by neutron scattering, and there is still a vast amount
of experimental data to be analyzed. Another factor that
stimulated numerous attempts of MD simulation on
liquid metals was the progress of the fundamental theory
in calculations of the interionic potentials. The pseudo-
potential approach to the description of the electron-ion

interactions generated rather reliable effective pair poten-
tials for several simple metals, which were successfully
tested in MD simulations against neutron scattering data.
Since different measured properties of the studied liquid
might depend on, different details of the pair potential,
and their sensitivity to the latter may also greatly differ,
only a complete MD simulation of all the experimentally
available information is a stringent test of the assumed
potential. However, there are only a few examples of
complete MD simulations of liquid metals which have
provided a detailed comparison with the neutron data
both on structure and on dynamics. Failure of the fun-
damental theory to generate adequate ion-ion potentials
for nonsimple metals makes it highly desirable to try to
derive them from the experimental data available. Many
researchers have resorted to fitting to the experimental
data a functional form of pair potential chosen according
to certain physical assumptions. It is clear that success-
ful convergence of such a method to the correct result
greatly depends on the physical justification of the as-
sumptions since they impose constraints on the optimiza-
tion procedure.

Liquid lead has been extensively studied in neutron
scattering experiments. Very detailed data both on its
static and on its dynamic structure factors at 623 K as
well as at 1173 K have been reported. Accurate infor-
mation on S(Q) in the small-Q region at T =623 K, re-
ported by Olsson and Dahlborg, is particularly irnpor-
tant for comprehensive analysis of the structure of liquid
lead. To perform an MD simulation of liquid lead, a pair
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potential was required. However, because of the limita-
tions of the pseudopotential theory, there is no way to
calculate a reliable pair potential for lead from first prin-
ciples, ' and those derived by different methods from ex-
perimental data ' look strikingly different. An attempt
to extract information on the pair potential in liquid lead
from the fourth frequency moment of $(Q, co), measured
near the melting point, has been recently reported by
Larsson and Gudowski (LG)." The parametrized form
of the pair potential they used for fitting has been con-
structed according to some a priori assumptions, based on
the results of pseudopotential theory. ' The optimization
procedure was based on the method proposed by Jacobs
and Andersen. ' In this paper we first report about the
tests of the LG potential, which has been performed us-

ing MD simulation. Since the potential happened to be
inadequate according to these tests, the possible reasons
are analyzed. Some conclusions will be made about the
inhuence of different details of the potential on structure
and other properties of the liquid. The new pair potential
for liquid lead derived by fitting to the experimental S(Q )

using MD simulation will also be reported. It will be
compared with the new result of the fitting to the fourth
moment with some of the constraints removed.

For a long time the structure of simple liquids has been
considered as the main source of information about the
pair potential. Since the early works in that field, ' in-

tegral equations have been often used to extract the pair
potential from the structure data. Recently Dharma-
wardana and Aers' derived pair potentials for several
liquids using the modified hypernetter-chain equation
(MHNC). The optimization procedure they used is based
on calculation of S(Q ) for the probe potential rather then
on direct inversion of the structure. The method is re-
ported to have been successfully tested against MD data.
However, in order to calculate S(Q) from g(r), which
was generated in MD simulation, the g(r) was extrapo-
lated using the MHNC equation. Therefore, a correct
test of the method without any arbitrary assumption is
still needed.

The other recently reported optimization procedure,
also based on the MHNC equation, ' derives the pair po-
tential from g(r) using MD simulations. This method,
however, includes Verlet's extrapolation of the MD-
generated g(r) for calculation of S(Q), ' which makes
the results model dependent. The analysis indicates that
both of the methods as well as the self-consistent method
by Schommers' are still far from being quantitatively re-
liable.

It is a well-established fact that the liquid structure is
rather insensitive to the pair potential. Hence a very
high precision in both measurements and simulations is
required to ensure that the correspondence between the
pair potential and the structure data it has been derived
from is unique. All the methods, where the pair potential
is tested using the calculated g(r), compare the latter to
what is usually called an "experimental" g(r ) and which
is, in fact, a Fourier transformation of the measured
S(Q ). Since the region of Q, where reliable data on S(Q)
are available, is bounded for both large and small Q, the
transformation involves a considerable uncertainty. In

order to avoid it we suggest that S(Q) generated by MD
simulation using the trial potential should be directly
compared to the experimental data available.

It is common to refer to the tests of the pair potentials
using an MD simulation as "precise" ones. Usually only
statistical errors in calculations due to finite MD run time
are taken into account. ' The simulated structure, how-
ever, may also be systematically distorted due to interfer-
ence effects caused by imposed periodical boundary con-
ditions. It is also clear that the information on long-
range spatial correlations in the simulated liquid is limit-
ed by the size of the system. Meanwhile, the long-range
structure of liquid contains significant information on the
pair potential. Any attempt to neglect it or to obtain it
by extrapolation considerably invalidates the reliability of
such a test. Therefore, the proper choice of the size of an
MD system is of crucial importance if the simulation is
used for derivation of the pair potential from structure
data.

The organization of this paper is as follows. In Sec. II
we discuss the computational aspects of the simulation
method. The resulting pair potential derived from MD
fitting to the experimental S(Q) at 623 K is presented in
Sec. III as well as the results of MD calculation of S(Q)
at 1170 K using this potential. In the same section we
also consider results of a simulation using the LG poten-
tial and compare our potential with the results of uncon-
strained fitting to (co ).

II. COMPUTATIONAL PROCEDURE

p(Q}=N ' +exp(iQ. r },
J

(2)

r is the position of particle j, and summation is over all
the particles within the MD box. The Cartesian corn-
ponents of the vector Q are multiples of 2m/I. , where L is.
the length of the MD box. It is well known, that the
small-Q region data are particularly important when
$(Q) is used for the extraction of the pair potential.
However, for the smallest values of Q only a few direc-
tions of the vector are compatible with the periodic

In this section we describe the computational aspects
of the method we have chosen for fitting the pair poten-
tial to structure data as well as some details of the MD
simulation on which the method is based.

As it has been pointed out above, the test of a trial po-
tential against experimental data should be carried out by
comparison of the S(Q), obtained by MD simulation us-

ing the potential, with the measured one. Moreover, the
calculation of the S(Q) in the fitting procedure should be
precise enough to guarantee that the extracted potential
is unique. Therefore, it is worthwhile to consider the
practical ways of calculation of S(Q) in MD simulation
and to analyze the possible relevant errors involved.

The rigorous method of the calculation is based on the
definition

S(Q ) = (p(Q)p'(Q) ),
where p(Q) is the Fourier transform of the number densi-
ty of the system,
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boundary conditions imposed on the system. Therefore,
a very lengthy phase trajectory of the system has to be
calculated in order to provide a satisfactory statistical ac-
curacy in the simulated S(Q ) in that region of Q, and the
computational time required is prohibitively long to use
such a method in an optimization procedure.

In the MD simulation S(Q) may also be calculated by
direct Fourier transformation of the radial distribution
function (RDF)

S(Q)=1+4' J dr r[g(r) —1]sin(Qr)IQ .
0

(3)

The upper limit of integration in the case of the simulated
g(r ) can be no larger than half of the length of the MD
box, and for the system of less than 1000 particles this
direct integration would involve large truncation errors.
The conventional way to deal with this problem is the
analytical extension of g(r ) using certain theoretical as-
sumptions' ' which makes the calculated results in the
small-Q region model dependent.

The systematic errors related to the size of dependence
of the computer-simulated liquid structure must also be
taken into account. In an MD simulation the RDF is
calculated under the assumption that the structure of the
system is spherically symmetrical. There are results,
however, indicating that in a simulated system of several
hundred particles the interference effects due to periodic
boundary conditions may cause a considerable anisotrop-
ic distortion of the structure. If such an effect takes
place, the results of the calculations of S(Q) for the
smallest-Q values by Eqs. (1) and (3) may be different.
Structure distortions of this kind as well as "explicit" size
dependence effects ' cannot be neglected if a quantitative-
ly reliable test of a potential is required.

The considerations discussed above clearly suggest a
reasonable criterion for the choice of the MD system size:
the length of the MD box has to exceed the double static
correlation radius of the structure. The latter may be
defined as the distance beyond which structural correla-
tions become smaller than the statistical errors we accept
for the required precision of the calculations. If the mod-
el liquid satisfies this condition, S(Q) can be obtained
from the RDF directly by Eq. (3), without using any arbi-
trary assumptions for its extension. The proposed
method dramatically reduces the CPU time required to
obtain the desired statistical accuracy of the calculated
S(Q) in comparison with the method based on Eq. (1).
Therefore, the method can be used in an iterative pro-
cedure for fitting of the pair potential to the experimental
S(Q). Besides that, if the model system obeys the pro-
posed criterion, the distortions of its structure due to im-
posed boundary conditions as well as other size effects
would be negligible, and more detailed information about
the structure of the model liquid would be available.

Another argument in favor of using large-scale MD
simulations of classical Auids follows from the fact that,
in the most efficient MD algorithms developed in recent
years (for instance Ref. 22), the CPU time required for a
single time step depends linearly on the number of parti-
cles. On the other hand, the system of MN particles may
be considered as an ensemble of M independent systems,
each of them of N particles. Therefore, the number of

time steps in the MD run required to obtain the same sta-
tistical accuracy of the calculated value should be at least
M times smaller for the larger system, and the simulation
can be carried out in nearly the same CPU time. This
consideration is certainly applicable to the calculations of
S(Q) using Eq. (1), although the simulation of the RDF
for larger distance is considerably more time consuming.

We have found that for the MD simulation of liquid
lead close to the melting point the criterion stated above
was well satisfied when the system of 16 384 particles was
used, as will be clearly demonstrated later (Fig. 2). It is
also clear that for the higher-temperature liquid the
correlation radius must be considerably shorter.

The procedure of fitting the pair potential to the exper-
imental S(Q) has been arranged in the following way.
Tables of the pair potential and its derivative were calcu-
lated using an assumed functional form of the potential
with a trial set of parameters. After a temperature equili-
bration run the RDF of the model liquid was calculated,
and S(Q), obtained from it by Eq. (3), was compared
with the experimental data. The statistical uncertainty in
S(Q ) calculated this way for a single instantaneous
configuration of the system did not exceed 10—15% in
the small-Q region. This accuracy was sufficient for the
purpose of fitting. The discrepancies between the calcu-
lated and experimental S(Q) data were analyzed in order
to make a proper adjustment of the potential parameters.
The adjustment was made "manually" using the empiri-
cal information about the relationship between different
parts of the potential function and S(Q). We have found
that it is not practical to use a formal optimization pro-
cedure because its convergence is slower and the result
depends on the way one chooses the weighting factor
with respect to Q.

The MD program we have used comprised 16 384 par-
ticles (or 4)&16, the number consistent with an initial
configuration in the fcc lattice for solid lead). The simu-
lations have been carried out at temperatures of 623 and
1170 K and number densities p=0.03094 and 0.0289A, respectively, that correspond to the conditions at
which the experimental S(Q) data on liquid lead have
been measured. Because of requirements of the MD algo-
rithm, the reduced unit of length was chosen so that the
side of the MD cube would be 1200 reduced units. The
choice of units, therefore, provided the desired density.

0
The pair potential was truncated at a distance of 7 A.
The well-known Verlet algorithm was used to integrate
the equations of motion. The algorithm is very con-
venient for a large-scale simulation because of its relative-
ly small memory requirements. We have found that a
time step of 2 & 10 ' s provides excellent stability of the
full energy of the system even at higher temperature.

For simulation using so large a system of particles, the
efficiency of the MD algorithm is very important. The
number of possible pairs for the system of N particles is
N(N —1)/2, while the number of those within the radius
of interaction depends linearly on N. Therefore, the per-
formance of the MD program greatly depends on the
efficiency of the procedure of selection and sorting of the
interacting pairs. We have developed a new MD algo-
rithm, which, according to our experience, works consid-
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erably faster, than the one reported by Eastwood et al.
The detailed description of the algorithm will be pub-
lished elsewhere.

The most time-consuming part of the computations re-
ported in this paper was the procedure of fitting. It has
been carried out by one of us (M.D.) at the Computing
Centre of the Helsinki University of Technology in
Espoo, Finland, and required more than 100 h of CPU
time using an AS 8040 computer. The other calculations
reported here were carried out on the VAX 8200 and the
CYBER 180/785 at the Studsvik Neutron Research Lab-
oratory, Sweden.

III. RESULTS

A. The LG potential

Our first test simulation run of liquid lead was carried
out using the LG pair potential" (Fig. 1). The results on
S(Q) immediately showed the inadequacy of the poten-
tial: the amplitudes as well as positions of the first two
peaks of S(Q) were in large disagreement with the ones
in the experimental data, and the results in the small-Q
region were bigger than the measured values by a factor
of 4. Despite the obvious failure of the potential, the
simulated liquid provided us with some interesting re-
sults. The RDF generated with the LG potential at 640

K and number density p=0.03094 A is shown in Fig.
2. The curve clearly demonstrates some specific features
of the model liquid's structure not observable in other
simple liquids at normal conditions. The second peak is
split in two subpeaks. In terms of the effective diameter
of the ion, o., which we define as the position of the first
peak of the RDF, the subpeaks are located at r =&3rr
and r =20.. Besides that, an additional peak appears at a
distance 3o.. All these features have been observed ear-
lier in an MD simulated structure of supercooled liquid
Al. The assumption of a quasiamorphous character of
the model system agrees well with the fact that its
diffusion coefficient, calculated from the mean-square dis-
placement of the particles, is anomalously small:
D= 03X1 0 m /s, which is about six times smaller

than the experimental result D =1.93&&10 m /s.
In order to investigate what particular details of the

potential may be responsible for this behavior of the
model, we performed several test runs, "switching off"
different parts of the potential. When the interaction was
truncated beyond the first minimum of the potential, it
greatly changed the structure factor and improved its
agreement with the experiment, while all the described
anomalies of the RDF disappeared and the value of the
diffusion coefficient dramatically increased. This obser-
vation directly contradicts the suggestion made by Jacobs
and Andersen' that the behavior of S(Q) at its first peak
and for larger Q is mostly determined by the form of the
main repulsive part of the pair potential at distances
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FIG. 1. Pair potentials in liquid lead: dotted line, by Larsson
and Gudowski (LG) (Ref. 11); solid line, derived by fitting to
S(Q) data using MD simulation; dashed line, revised LG poten-
tial, obtained by fitting to the fourth rnornent with relaxed con-
straints.

FIG. 2. RDF in liquid lead, simulated using different pair po-
tentials: upper curve, LG potential (Ref. 11), T=640 K; second
from the top curve, with the new potential derived from the ex-
perimental S(Q), T =623 K; bottom curve, the same potential,
T= 1170 K.
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shorter than the position of the first neighbor. Further
simulation runs have shown that it is mainly the first
maximum of the potential that causes the described
quasiarnorphous behavior of the system. Separately
"switching off" first the repulsive and then the attractive
slope of this maximum, we have found that both of them
are equally responsible for the effect. A possible con-
clusion is that the position of the maximum which is
about &2o is important. This distance approximately
corresponds to the first minimum of g(r ). Hence the po-
tential maximum on that distance, though small, at the
melting point can block the creation of some class of lo-
cal configurations of particles which presumably provide
a topological connection between the first- and the
second-neighbor shells. A separate peak observed in the
RDF of a supercooled liquid at the same distance may
also indicate the existence of such configurations. The
truncation of the potential beyond its second minimum
had almost no inhuence on the structure.

B. Fitting the pair potential
to the S(Q ) at 623 K

V(r ) = V, (r )+ V2(r )+ V3(r ),
V, (r)=a, (b, Ir)' exp[(r —c, ) '], r & c,

V, (r)=0, r &ci

V2(r)=a&(bz/r —cz)exp[(r b2) '], r &b2-

V2(r)=0, r &b2

V3(r )=a3r cos(2KFr)

(4)

The value of the Fermi vector that defines the period of
Friedel oscillations in the third term at the melting point
density is KF ——1.5417 A '. The remaining seven pa-
rameters were varied during the fitting procedure. Each
time the S(Q ) for a new version of the potential was gen-
erated by MD simulation, its deviation from the experi-
mental data was estimated at the following points in
S(Q): the estimated value of S(0), the position and am-
plitude of the first maximum, and the same characteris-
tics of the second one. We have found that with proper

Before we could start the procedure of inversion of the
experimental S(Q), a decision had to be made about the
parametrized functional form of the potential. There is
admittedly no physical justification for the assumption
that the pair potential in liquid lead should have a
minimum at the first-neighbor shell distance. Theoreti-
cal estimations, ' supported by some inversion re-
sults, ' indicate that it must include, besides the terms
representing strong core repulsion and the usually pre-
dicted Friedel oscillation, a "soft" repulsive component.
The last component is supposed to represent the screened
Coulomb repulsion between the ions. This term is con-
siderably more long ranged than the strong core repul-
sion and makes the potential well positive beyond the
first-neighbor distance, which presumably plays an im-
portant role in all the liquids with a very small value of
S(0). Therefore, we adopted the following forin of the
potential:

variation of the potential any of these values can be
changed while keeping the others fixed. On the other
hand, with all of them fixed, the curve of S(Q) is unique-
ly defined. This makes it possible to suggest that when a
good agreement between the simulated S(Q) and the ex-
perimental one is achieved in the restricted region of Q,
the former may serve as a reliable extrapolation of the
latter to the Q values where the experimental data are not
available.

The observed constraints on the S(Q ) curve also imply
that the set of values of the parameters we obtained from
the fitting is conceivably nonunique, i.e., another set of
values might be found that would approximate the poten-
tial curve with required precision.

The final results of S(Q ) fitting are shown in Fig. 3 and
the corresponding RDF in Fig. 2. The parameters of the
derived potential are given in Table I and its final version
is shown in Fig. 1. The only region of Q, where notice-
able discrepancies between the simulated S(Q) and the
experimental data have been found, is around Q = 1 A
This disagreement is not yet fully understood and, in our
opinion, careful analysis of both the experimental data
and simulations is needed. The extrapolated value of the
calculated S(Q) at Q =0 comes out as 0.0105 compared
to the corresponding value 0.0091, obtained from the
neutron measurement. The latter agrees well with the
thermodynamic limit. '

If both the pair potential V(r ) and the g (r ) of the stud-
ied liquid are available, one can calculate its Einstein fre-
quency by the formula

cos ——Qo ——(4np/3m) J r dr g(r)[V"(r)+2V'(r)/r] .
0

(5)

We obtained the value coE ——6.98 meV, while the result
derived from the experimental S(Q, co) is 7.60 meV. "
Taking into account the lack of precision in the method
used to calculate the latter value, the agreement may be
considered as quite satisfactory.

The value of the diffusion coefficient for the derived po-
tential, obtained from the asymptotic behavior of the
mean square displacement curve is D = 1.82 X 10 m /s,
which agrees well with that obtained experimentally.
We monitored the value of D during the fitting runs and
found that near the melting point it is very sensitive to
minor changes in the potential, while the structure does
not react to such changes so much. The same has been
observed in MD simulations of liquid potassium. It is
our opinion that the diffusion coefficient can be used as a
good test of the pair potential for a liquid at these ther-
modynamic conditions.

For an independent test of the derived potential one of
us (I.E.) used it in an MD simulation with a system of 500
particles at the same temperature and density. The com-
putation has been done using a different MD algorithm
and on a different computer (CYBER 180/785). The re-
sults of the first two oscillations of the RDF agree well
within the limits of statistical uncertainty, which is large
for the smaller system. The value of the diffusion
coefficient for the smaller system, calculated from the ve-
locity correlation function, was D =2.0X 10 m /s.
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C. Results on liquid lead at 1170K

Having established a pair potential from tile structure
of liquid lead at the melting point, the question arises
about the temperature and density ranges over which this
result is valid. We performed an MD simulation of the
S(Q ) in liquid lead at 1170 K and corresponding density,
using the derived potential, and compared the result with
the experimental data available. The oscillations of
S(Q) are considerably smeared out at 1170 K, in contrast
to the pronounced structure at the melting point. Since
the pair potential in liquid metals is usually considered to
be density and temperature dependent, the MD simula-
tion had to demonstrate to what extent the observed
structural changes can be related to the change in the
pair potential.

It was initially our intention to repeat the above pro-
cedure to fit the pair potential to the experimental S(Q)
at 1170 K. However, the potential derived at 623 K,
which was used as the starting point, appeared to be the

best approximation. The comparison of the S(Q), ob-
tained from MD simulations with the experimental data,
is shown in Fig. 4. The self-diffusion coefficient value, es-
timated from the asymptotic behavior of the calculated
mean square displacement function is 5.45 && 10 9 m2/s,
while the one obtained from the velocity correlation func-
tion is 5.7X10 m /s. These results are in reasonable

agreement with the experimental value D=6.7X10
m /s. The long-wavelength limit of the simulated
S(Q) comes out as 0.025. Reliable experimental data on
S(Q) in the small-Q area are not available for this tem-
perature. The value of S(0), calculated from the mea-
sured compressibility, is 0.0235.

It should be noted that we have found both the struc-
ture factor and self-diffusion coefficient at 1170 K to be
much less sensitive to the details of pair potential than
they were when simulated at the conditions close to the
melting point. On the other hand, the experimental S(Q )

data at 1170 K are less accurate than at 623 K. These

TABLE I. The parameters for the pair potential given by Eq. (4).
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two facts prevented us from performing a more detailed
adjustment of the potential parameters which otherwise
could elucidate its possible fine dependence on tempera-
ture and density. Nevertheless, considering the described
results, we are led to the conclusion that within the limits
of precision of the experimental data the pair potential
for liquid lead we derived is valid from the melting point
to about 1200 K.

We also performed alternative calculations of S(g ) us-

ing Eq. (1) to check the method based on Fourier trans-
formation of the isotropic RDF by Eq. (3). The two sets
of results of the simulations, presented in Fig. 4, are in
good agreement, taking into account statistical uncertain-
ty. The absence of systematic errors, particularly in the
small-Q area, indicates that the RDF in our system is
spherically symmetrical and not distorted by periodic
boundary conditions.

D. Independent con6rmation of the potential form

from a fit to the experimental ( co )

We have shown earlier that the LG potential" failed to
describe the observed S(g). The potential was the result
of an attempt to fit a theoretical expression of the fourth

moment of S(g, co) to the experimental (co ) data. The
latter were constructed from about 50 Q-cuts in
the experimentally measured S(g, co) surface from Q=
1.8 A ' to Q=6. 8 A '. An important assumption
about the form of the pair potential was made: the latter
was supposed to have a minimum close to the position of
the first peak of RDF that is about 3.4 A. Therefore, the
minimization procedure was performed under a con-
straint: the position of the first potential minimum could
not exceed 4 A.

When the new pair potential we report in this paper
was derived from the experimental S(g ), its form, shown
in Fig. 1, suggested removal of the constraint on the posi-
tion of the potential minimum. We assumed that the
latter can occur at any distance. A new unconstrained
form of pair potential, minimizing the difference between
the theoretically calculated fourth moment and the one
obtained from experimental S(g, co) was immediately de-
rived. The revised LG potential, also presented in Fig. 1,
is in sharp contrast to the first LG potential. The first
minirnurn of the new potential occurs at 5.0 A and its
depth is only about 3.8 meV. The result clearly demon-
strates the fact that the pronounced structure of the LG
potential is related to the constraint on the position of its
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first minimum.
We also used the revised LG potential in an MD run,

performed with the system of 500 particles. The simulat-
ed RDF shows none of the structure anomalies observed
when using the old version of the LG potential. The
self-diffusion coefficient was D=1.2)&10 m /s when
calculated from the mean square displacement function,
and the integration over the velocity correlation function
gives D=1.4X10 m /s. Earlier we attributed the
quasiamorphous behavior of the system with the LG po-
tential to the pronounced first maximum of the potential.
The absence of this peak at the same distance in the re-
vised LG potential is an argument in favor of this sugges-
tion. The self-difFusion coefficient is still about 30%
smaller due to a rather minor difference in shape of the
two new potentials (Fig. 1}. This result also illustrates
the extreme sensitivity of the diffusion coefficient to the
shape of the potential as well as the role of its "soft"
repulsive component.

In spite of the described differences between the results
of MD simulations using the potential presented in this
paper and the revised LG potential, the potentials look
remarkably similar. Since no assumptions regarding the
form of the revised LG potential were made during the
fitting to the (co ), the similarity may be regarded as an
indicative of uniqueness of the potential we have found
from the structure data.

IV. CONCLUSIONS

be pair additive, it can be successfully derived by fitting
to the experimental S(Qj using MD simulation. Both
the experiment and the simulation have to be sufficiently
precise to provide a quantitatively reliable result. For
this reason we consider the use of an MD system of —10
particles to be necessary to avoid systematic errors. We
also found that the self-diffusion coefficient at this tem-
perature is very sensitive to rather small variations in the
pair potential and, therefore, comparison of the calculat-
ed value with the experimental one may be regarded as a
valuable test of the adequacy of the potential. The choice
of the functional form of the potential is supported by the
results of fitting the potential to the experimental (co ).
However, the latter method is not quantitatively reliable
because of imprecision in the (co ) data.

The fact that, using the potential derived at the melting
point, we obtained adequate results at 1170 K is rather
surprising. However, at the higher temperature both the
structure and self-diffusion appear to be much less sensi-
tive to the shape of the pair potential, and taking into ac-
count experimental errors, we have to assume that some
minor changes in the potential due to the temperature
and density differences might not be revealed in the
present study.

The potential we report here was also used for MD
simulation of the dynamics of liquid lead. The results are
in good agreement with experimental data and will be
published later.

This publication describes an effective pair potential in
liquid lead obtained by fitting to the experimental struc-
ture data using MD simulation. It is worthwhile to list
here some conclusions we arrived at during this study.

The structure of a simple liquid close to the melting
point appears to be a unique source of information on its
interparticle interaction potential. Assuming the latter to
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