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Structure of nonlinear traveling-wave states in finite geometries
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Numerical simulation of coupled amplitude equations is used to investigate the effect of the wave

propagation on the one-dimensional spatial structure of nonlinear wave states in finite geometries.
The work is motivated by experiments on oscillatory convection in binary fluid convection. Predic-
tions of confined states, temporally modulated confined states, and other dynamic states are dis-
cussed and compared with experiment.

I. INTRODUCTION

Considerable progress has been made in the study of
pattern formation in driven dissipative systems which
have an instability to a stationary state with spatial
periodicity. Recently flow visualization experiments on
Rayleigh-Benard convection in binary fluid mixtures,
where the first instability is to an oscillatory spatially
periodic state, have stimulated the investigation of simi-
lar questions in a dynamic context. In this paper I will
discuss the effect of the propagation on the spatial struc-
ture expected in finite one-dimensional geometries, using
the amplitude equation formalism to describe the slow
space and time modulation of the basic pattern. This ap-
proach has some generality, but I will make particular
reference to experiments on binary fluid convection.

Nonlinear wave states may, depending on the system
parameters, develop side band instabilities to spatially in-
homogeneous states. This instability is known as the
Benjamin-Feir instability. Numerical simulations sug-
gest these unstable states may have complex spatial and
temporal behavior. It is tempting to ascribe any spatial
inhomogeneity or nonperiodic time dependence observed
in experiment to this mechanism. The present work
shows that in finite geometries with realistic boundary
conditions the simple fact that the waves propagate can
lead to spatial inhomogeneity and nonperiodic dynamics,
unexpected from our experience with the stationary case,
even when the Benjamin-Feir instability is completely ab-
sent. There is reason to believe that the nonlinear sa-
turated state in binary fluid convection, which usually
has a rather low frequency compared with the linear on-
set frequency, will show rather weak Benjamin-Feir ten-
dencies: such effects would be expected to scale with the
basic frequency. Thus the mechanisms proposed in the
present work may well be responsible for the behavior ob-
served. A comparison with experiment will be made in
Sec. V. Unfortunately, a detailed comparison cannot be
made since the nonlinear saturated state is not well un-
derstood in this system. Thus the predictions must be
taken only as indicative of the phenomena that may
occur. There may well be other important physics that
serves to reinforce or nullify the effects predicted by the
simple description. In particular the very long relaxation
times due to the small concentration diffusion coeScient

in typica1 binary fluid systems may have important conse-
quences.

The basic question addressed in this paper can be
thought of as asking for the implications of the
phenomenon known as convective instability when finite
but large geometries with realistic boundary conditions
are considered. Deissler has recently studied convective
instabilities in Ginzburg-Landau equations like the ones
used below: due to the propagation of the waves an ini-
tial perturbation of an unstable quiescent state may prop-
agate away sufficiently fast that at the position of the ini-
tial perturbation the perturbation dies away although at a
position x =ut with U some velocity the perturbation
grows. For the Ginzburg-Landau equations this
phenomenon occurs when the dimensionless propagation
velocity s exceeds 2. In finite geometries I do indeed find
a change of behavior around this value.

In a previous paper I predicted that for s ~2 the na-
ture of the steady solution in finite geometries changed to
one in which the waves reached their saturated value
only in some fraction of the box, leaving the other por-
tion in the "unstable" quiescent state. (A small ampli-
tude disturbance in the quiescent region grows, but also
travels to the saturated region, leaving the small ampli-
tude region unaffected. ) Such states were observed in
experiments on binary fluid convection, and called
"confined states" —although there is no firm proof that
the observations are related to the mechanism I pro-
posed.

In the present paper I discuss the prediction of the
confined states in more detail, and then describe addition-
al possibilities. In particular I also discuss defect states,
temporally modulated confined states, quasiperiodic
states in which the system oscillates between states of
large amplitude right-moving waves in the right half of
the cell to large amplitude left-moving waves in the left
half of the cell, and symmetric nonlinear peridoic states
reminiscent of the symmetric linear transients accounted
for in Ref. 5.

The plan of the paper is as follows. In Sec. II I discuss
the amplitude equation formalism used, and the restric-
tions of its applicability to small propagation speeds.
Section III describes defect states and confined states
found in the numerical solution for stationary solutions
to the amplitude equations. In Sec. IV dynamic solutions
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are discussed. Comparison with experiment on binary
fiuid convection is made in Sec. V.

II. AMPLITUDE EQUATIONS

Near the instability to an oscillatory, spatially periodic
state with symmetry x ~—x the system can be described
in terms of complex equations for the amplitudes A„and
AL of right- and left-moving waves, i.e.,

V(x, z, t)=Vo(z)[ As(x, t)e

+ AL (x, t)e ' ]e ' +c.c. , (1)

where V is the vector of variables defining the state at the
point (x,z) (e.g. , fluid velocity, temperature, and concen-
tration in binary fluid convection), and the coordinate z
represents the fast transverse coordinates (e.g. , the verti-
cal coordinate spanning the distance between the plates
in Rayleigh-Benard convection). The vector Vo(z) is the
eigenvector of the linear instability problem at threshold
with zero growth rate, k, is the threshold wave number
minimizing the onset driving, and 0, is the frequency of
the oscillations here.

In general, the equations for the slow one-dimensional
space and time modulations of the basic waves takes the
form'

T (r) +st) )A

(el+i c)A„+(1+i c)ga„'A„

—g)(1+«z)
I

A~ I A~ —g2(1+«3)
I AL, I A)l

(2)

w (t), —st)„)AL

= e(1+ico)AL +(1+ict g'ot)„AL

gl(1+«2)
I

AL I AL g2(1+«—3) I Az I
'AL

This transformation to a moving coordinate system is
not useful in studying the state in a stationary fixed
geometry, or a mixed state of both right- and left-moving
waves. In these situations, a direct solution of Eqs. (1)
and (2) can lead to results with spatial variations on a
length scale 0(1), not the long length scale assumed in the
derivation of the equations. A simple balance of the
terms in Eqs. (1) and (2) leads to the characteristic
lengths gL -(s/e)ro and gs ——(s ')go/ro T. he short
length scale gs is typically involved for waves approach
ing a rigid boundary or each other (Fig. 1). Such solu-
tions are inconsistent with the derivation of Eqs. (1) and
(2) and cannot be truested as accurately describing the
real fiuid behavior.

We are familiar with the fact that the original micro-
scopic equations may have a different, rapid spatial varia-
tion near sidewalls in stationary Rayleigh-Benard convec-
tion. " However, the rapid variation occurs in the region
near the sidewall where the amplitudes are small, and can
easily be treated exactly in a linear theory. The solution
is matched to a slowing varying amplitude function,
which then connects to the nonlinear regions according
to the amplitude equation. In the situation we are dis-
cussing here, the rapid spatial variation and nonlinear re-
gions overlap, and the simple matching procedure, de-
pending on the separation of these regions, will no longer
work.

In the absence of suitable schemes to solve this prob-
lem I have chosen instead to consider a particular regime
where these effects disappear. Since the short length
scale comes from the compression due to the propaga-
tion, I consider situations where propagation effects are
small compared with the usual saturation and diffusion
effects, which essentially corresponds to the frequency of

s-'

with E the control parameter [e.g., (R —R, )/R, with R
the Rayleigh number and R, its threshold value] and
ip S E' g ~ g 2 Cp C

~ C2 C 3 real parameters to be determined
from the basic equations.

Notice that due to the first spatial derivative the small
parameter e cannot be entirely eliminated from Eqs. (1)
and (2) by scale changes of A, x, and t: the expansion is
not uniform in the parameter e. In the standard deriva-
tion' of a single amplitude equation, for example for
right-moving waves, a coordinate moving with the group
speed s is introduced

(a)

S/c

x=x —st .

The equation can then be rescaled to give

r)T A„= (1+ico)A~ +(1+ic,)8» A„
—(1+tc, )

I A, I'AR

—g(1+ic3)
I AI

I A)t

with X =e' x /go, etc. , with no small parameters
remaining.

(c)

FIG. 1. Schematic diagrams of the healing of the amplitude
for group speed s of order unity: (a) waves approaching a
sidewall, (b) waves approaching each other (a shock); (c) waves
moving away from a sidewall, (d) waves leaving a source (tar-
get). In (a) and (b) the short healing length gs-s ' is involved,
and an amplitude equation calculation will not be accurate for
s =O(1).
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the waves being small. In this case s becomes small, and
the other dispersive parameters co,c&,cz, c3 may be set to
zero. Formally, we perform the rescaling X =a' x/go,
T =e&/ro s =~~ ro/ko AR, L 6 g 1 Az I, and—1/2 —1/2 1/2

g =g2/g, to give

Sl o wl

(t) + t) )A„=A +t) A —(~ A
( +g~ A

( )A„,
(5)

(a,—.-a )A = A +8 A —(
~

A
~

+g
~

A„~ )A

(6)

and consider s to be O(1) [i.e., s is O(e' ) and small in
the original units].

There is additional motivation for studying Eqs. (5)
and (6) at this stage. The full behavior of Eqs. (1) and (2)
is in general very complicated, with Benjamin-Feir insta-
bilities leading to complex time dependence. It seems
advisable to first isolate the effect of the translation of the
basic patterns by the group velocity s, and to see if exper-
iment may be accounted for on this basis, before invoking
the full complexity of Eqs. (1) and (2).

There is also more physical motivation from the exper-
iments on binary fluid convection. The Hopf bifurcation
there is apparently inverted (subcritical) for most values
of the fluid parameters, and Eqs. (1) and (2) are not
directly useful. However, empirically the system often
saturates in a nonlinear state with properties rather well
characterized by the stationary state expected for pure
fluid convection, except for a slow translation of the rolls.
Phenomenologically we might attempt to describe such a
state by Eqs. (5) and (6). The parameters go To would be'
given by results for pure, stationary convection, and e
would be taken to be (R —R, )/R, with R, the critical
Rayleigh number for pure stationary convection (Fig. 2).
Clearly Eqs. (5) and (6) are an oversimplification. The ac-
tual structure of the solution will involve boundary layers
coming from the concentration diffusion and depending
on the strength of the flow, so that the parameters such
as s will probably be amplitude dependent, and the whole
structure will change for very small amplitudes. Using
the equations with fixed parameters everywhere, even
where the amplitudes become small, may be too naive.
Nevertheless, studying the equations may well give a use-
ful indication of the type of phenomena to be expected.
A full description must clearly depend on a better under-
standing of the nonlinear saturated state.

A second region where propagation effects become
weaker is approaching the codimension-2 point where the
oscillatory instability collides with the stationary instabil-
ity, and the frequency 0, goes to zero. In binary fluid
convection this point is reached by tuning the separation
ratio g. Again the phenomenon is complicated by the
small value of the Lewis number L (the ratio of concen-
tration to thermal diffusivities), typically 10 to 10
In the region P-L a degenerate amp—litude equation
must be used. For 1&&—g&&L the frequency becomes
small, but the expansion about the codimen-
sion-2 point is no longer valid. Equations (5) and (6)
should be a useful description in this region, providing

I
/

/
I

I
I

Rcp

scillatory Convection
nverted Bifurcation)

Rco

Rayleigh Number

FIG. 2. Schematic diagram of possible behavior of binary
fluid convection suggested by the experiments of Ref. 3. The
amplitude of the slowly traveling rolls appears close to that ex-

pected for stationary convection in the corresponding pure fluid

given by putting P to zero. This breaks down for small ampli-
tudes R ~R,~ indicated by the dashed line, and the curve for
the finite amplitude traveling state presumably connects to the
inverted bifurcation point for oscillatory convection, but in a
way that has not yet been calculated.

the time scale of the motion is slow compared to 0, '.
Finally, it might be hoped that the results based on

Eqs. (5) and (6) give a qualitative indication of the eff'ect

of the translation on the solutions even in more general
situations such as spiral waves in Taylor-Couette flow, '

or binary fiuid convection away from the codimension-2
point.

In a finite geometry we must also consider boundary
conditions on Eqs. (1) and (2). If the amplitudes become
small near the boundaries we expect linear homogeneous
boundary conditions, which are restricted by symmetry
arguments to the form

AR —a~/„A~ —p+t)„AL —0,
A, —a'a„A, —p'a„AR =0

for x =(—,
'+

—,
' )l with a+ ———a* =a and p+ ———p" =p ex-

pected to be O(1). For the scaled equations the boundary
conditions at X = I =e'~ I will take the same form as (7)
wtth AR, L~ARL x~X, and a,P~a, P with
a =E ~ a/go and P=E' Pleo Note a. and P are both
small for small e: we will consider them as small num-
bers, but not necessarily scaling with e' . In this limit
the reflection coefficient of linear waves described by
Eqs. (5) and (6) is r = —P *s.

For convenience we bring together the scaled equa-
tions, we use

(B,+ t)„)A =A„+O'A —(
~

A„~'+g
~

A ~')A

(8)

(a, —.a„)A, =A, +a„'A, —(
)
A, )'+g

[
A„[')A, ,

(9)
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A, —a a„A, —P,a. A, =0,

A, —a'a„A, —P'a, A, =0,
(10)

1.0-

for x =(—,'+ —,')I with a+ ———a* =a and p+ ———p* =p.
All the bars, etc. have been dropped: the relevant scal-
ings with e are to be understood in going back to the
original variables.

The value s =2 is expected to play a special role divid-
ing different classes of behavior. This can be seen by con-
sidering the stability of the quiescent state ( A„=Ar ——0)
towards a single wave A2t&0 in an infinite region. In
this region we can transform to a frame moving with
speed s, when Eq. (8) reduces to the complex Fisher equa-
tion. It is known' that real, localized initial conditions
will lead to outwardly propagating fronts with asymptot-
ic speed 2, and Ben-Jacob et al. ' suggest the same result
is almost certainly true for localized complex initial con-
ditions. Transforming back to the original frame we see
that for s &2 a local perturbation at some x =xo will

eventually decay locally (i.e., at xo) although it will grow
to saturation at x =vt +xo, with s —2 g U & s +2. On the
other hand, for s g2 the perturbation will grow at xo.
The implications of this simple idea in a large but finite
region are the main focus of this paper.

In a finite geometry it is useful to consider the impor-
tant length scales. As we have seen Eqs. (8) and (9) lead
to characteristic healing lengths for the amplitudes

(L -s,gs-s '. In addition, we have the length of the
system I, and the characteristic length observed in the
linear regime A, '-I/~ ln(r) ~. We will assume I is al-
ways large compared to gs, so that the latter is not an im-

portant length. The important parameters are s and then
I/s In particular the linear onset is given by Ij. '/s —1

or I /s —
~

lnr ~, describing the balance between exponen-
tial growth during the propagation across the cell, and
the reduced amplitude due to reflection at the boun-
daries.

III. STATIONARY SOLUTIONS

Statinary solutions of Eqs. (8)—(10), corresponding to
simply periodic solutions o'f the original equations, were
constructed using a finite difference Newton-Raphson
procedure. Note that temporally unstable solutions may
well be produced by this method: the stability to small
perturbations is studied using the full dynamic solution
described below.

There are two main results: the transition between
solutions that fi11 the cell for s ~2, and solutions that are
large only in part of the cell for s ~ 2 (the confined states);
and the existence of defect solutions in large enough cells.
The former was described in a previous brief publica-
tion: the latter has also been investigated by Coullet
et aI. "

A. Con6ned states

The transition between filling and confined states is il-
lustrated in Fig. 3. For s &2 a typical solution is shown
in the top part of the figure. (Defect solutions may also

~ 0.8

~ 0.6
CLx: 0

0.2

1.2
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X

1.0-

0.8 .
Cl

I—0
Q
w 0 q

0.2-

0 2 1 6 8 10 12 16 16 18 20
X

FIG. 3. Comparison of the amplitudes A&(x) and Ai(x) in
stationary solutions of Eqs. (8)—(10) for s &2 (upper figure) and
s & 2 (lower figure). In both cases the right-moving wave Az is
dominant. The parameters used are I =20,g=4 with s =1.0,
a=P= —0.30 in the upper figure, and s =2.2, a=P = —0. 18 in
the lower figure.

be found, and are described below. ) Notice the predomi-
nance of one set of waves —here the ones moving to posi-
tive x —with a small reflected amplitude of the left mov-

ing waves at x =I that is suppressed in the bulk by the
nonlinearity. An alternative solution with the role of left-
and right-moving waves reversed may also be found. In
either case traveling waves are apparent over most of the
length, except for short healing lengths g+ near the ends
of the cell that are independent of l. If l is increased, the
fraction of the cell filled with saturated waves increased
as would be expected from the estimate 1 —(g++g )/I
(Fig. 4).

For s ~ 2 the situation is quite different as shown in the
lower part of Fig. 4. In large boxes stationary solutions
exist, but the reflected Az wave, exponentially
suppressed in the region of saturated A~ and then
reflected at x =0, is clearly needed to reexcite the A~
wave. (I describe the situation in Fig. 3; the inverse solu-
tion may also be found. ) The magnitude of AR 2 at x =0
decreases as l is increased, and the length over which AR
is small roughly scales with the size of the system (Fig. 4).
Balancing the exponential decay of Al over the region lz
where Az is saturated, with the exponential growth over
the region I —12' gives the estimate for large I (when the
reduction in amplitudes by reflection effects is negligible)

4 [s +4(g —1)]' —s

[s2+4(g 1 )]1/2+s 2[s2 4]1/2
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1.0—
FIG. 6. Steady-state solutions for targets (solid line) —waves

moving away from the central point —and shocks (dashed
line) —waves approaching the central point. Parameters used
were! =20, s =1.0, g =4, and a=P= —0.06. The target solu-

tion is unstable to small off-center perturbations.

x/8

FIG. 4. Contrasting behavior for s &2 (upper figure) and

s & 2 (lower figure) of the amplitudes A&(x) and AL(x) of right-
and left-moving waves as the length of the cell l is changed with

other parameters fixed. In all cases the right-moving waves A&

dominate. For the upper figure s =1.7, and for the lower figure

s =2.2. Other parameters were g =4,a=P= —0.06.

This tends to (g —1)/(g + 1) for large s. For the parame-
ters of Fig. 3 Eq. (11) gives la /! =0.4, consistent with the
numerical result. The filling to confined transition is not
sharp, as shown in Fig. 5. Note that the confined solu-
tions for s somewhat greater than 2 may become unstable
to periodic modulation: this is discussed below.

B. Defect solutions

Two types of defects are characteristic of one-
dimensional nonlinear waves: targets are patterns in

1.0—

0
0

I I

2 4 6 8 10 12 14 16 18 20
X

FIG. 5. Transition between steady-state solutions corre-
sponding to filling states for s &2 and confined states for s ~ 2.
The parameters used were! =20, g =4, and a =P= —0.06.

which waves emanate from a region of reduced ampli-
tudes and shocks are the reverse, where waves approach a
point from opposite directions. In the system where
states with wave vector k and —k are disconnected (in
the absence of strong perturbations such as amplitudes
changing to zero) these defects have a topological charac-
ter in an infinite region. Both types of defects may be
found as illustrated in Fig. 6, most easily at small s and
large I. The shock solution in Fig. 6 is shown to be stable
to small perturbations by the dynamic simulations, but
the target solution is unstable on a long time scale to
moving towards one end wall. For large I and s ~ 2 the
targets are more rapidly unstable to the region of right-
(left-) moving waves propagating away to the right (left),
initially leaving a growing quiescent region. In finite
boxes the confined states are ultimately reached.

IV. DYNAMIC EVOLUTION

Equations (8)—(10) were evolved in time using a finite
difference scheme and implicit evolution of the linear
terms with explicit treatment of the nonlinear terms, both
second order accurate in time. Typically 80 to 160 spa-
tial mesh points for each of Az and AL were used, with
time stepping of 0.01 to 0.1.

The main results to be described are the evolution of
the dynamics as s is increased for fixed l. The sequence of
behavior typically observed is as follows: stationary
filling~stationary confined~modulated confined
~asymmetric oscillations~ symmetric oscillations
~asymmetric oscillations ~asymmetric stationary.
However, the behavior does depend on l, with for exam-
ple the oscillatory behavior becoming less evident at
smaller l. Remembering that the zero-amplitude state
becomes stable for 1/s 8

~

lnr
~

with r the reflection
coefficient, we can identify the final spatially symmetric
stationary state with a weak nonlinear saturation of the
linear transient observed by Kolodner et al. , and in
these numerical solutions. For a fixed s, larger l is
equivalent to stronger nonlinearity.
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A. 1=10

An initial condition of a small Gaussian envelope of
right-moving waves with maximum amplitude 10 ' and
standard deviation 0.5 about x =5 was used, with values
of s =1, 2, 3, and 4. In these cases a steady state was al-

ways reached at long times. The transient initial evolu-
tion of the amplitude functions paralleled the observa-
tions of Kolodner et al. , reaching an exponentially
growing but nonoscillatory state with symmetric ampli-
tudes of right-moving waves large at x g0, and left-
moving waves large at x &0 with characteristic exponen-
tial spatial envelope, as discussed in Ref. 5. The final
steady-state solutions are shown in Fig. 7. The sequence
follows the general trend, except oscillatory final states
are absent, although oscillating transients corresponding

1.0—

0.5

1.0—

to small modulations of the confined state are clearly seen
for s =2. For s =4 the final symmetric state appears as a
nonlinear saturation of the symmetric growing transient.
This solution corresponds to the weak nonlinear solution
of Zaleski et al. ,

' although they did not realize that
their results are valid only for small s (group speed) as
discussed above.

B. 1=20

For small s both filling solutions and solutions with de-
fects (cf. Fig. 6) were found, depending on the initial con-
ditions. At s =2 a confined stationary state is seen. In-
creasing s slightly beyond this value (e.g. , 2.05) gave a
persistent oscillation with period about 41, rather greater
than the cell transit time 2l Is —19.5 [Fig. 8(a)]. The os-
cillation corresponds to a small to-and-fro oscillation of
the position where the amplitude rapidly grows, or
equivalently to a modulation of the amplitude of the pat-
tern concentrated in the middle portion of the cell. In
terms of the original variables this motion would be
quasiperiodic, and an amplitude modulation of the waves.
The amplitude of the modulation grows as s is increased,
and the period drops. For example, at s =2.5 a consider-
able amplitude of left moving waves is seen at the left end
of the cell for half the period [Fig. 8(b)]. The period is
about 28, so is dropping more rapidly than s '. Beyond
s =2.8 symmetric oscillations are seen, with large ampli-

0.5—

I
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E 1o s=3

Q
Q

0.5—
CL

E

0.5
0 10

X
20

1.0—

1.0 — s —4 0)

0.5
Cl
E

0.5—

0
0 10

X
20

'0 I I I I I

2 3 4 5 8
X

I

8 9 10

FIG. 7. Final steady states evolving from a small localized in-
itial condition for I = )0 and various values of s. Other parame-
ters are g =4 and a =P= —0.06.

FIG. 8. Periodic dynamic solutions for 1 =20 and (a) s =2.05
and (b) s =2.5. The amplitudes are plotted for a sequence of
equally spaced times. In both cases right-moving waves dom-
inate, but appreciable amplitudes of left-moving waves are seen
at times 6 and 7 in (b). Other parameters as in Fig. 7.
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amplitude states which theoretically are anticipated to
have rather complicated structure, the small amplitude
approach pursued here is not quantitatively applicable.
Nevertheless we may attempt to get some understanding
of the experiment. Qualitatively many features are repro-
duced. The important parameter in the theory of the
filling-to-confined transition is s-s/e' . Based on the
results of Ref. 3 (cf. Fig. 2), that the heat convected by
the slowly travelling nonlinear states is quite accurately
given by N (e ) with e =(R —R, )/R, and R, and N
the critical Rayleigh number and Nusselt number func-
tion for pure stationary convection, we may estimate e by
ez. The observed speed in Ref. 3 decreases with increas-
ing e: thus increasing s should correspond to decreasing
ez. From the results of the present work we would ex-
pect to see filling states for large e~, with a transition to
confined states as e~ decreases. This is indeed found ex-
perimentally. We can roughly estimate from the data the
value of $ at the transition, using

r

Q $0%0 —1/2

0, gp
(12)

0.5

0
0

I

10 20

FIG. 9. Dynamic solutions for l =20 and {a) s =6, (b) s =7,
and (c) s =8. For s =6, the motion is periodic and the ampli-
tudes were plotted at equally spaced time intervals. Left-
moving waves dominate in this run. For s =7 (b) shows a sta-
tionary solution with dominant right-moving waves. At s =8 a
stationary state with equal amplitude right-moving waves in the
right end and left-moving waves in the left end is seen.

V. COMPARISON WITH EXPERIMENT
ON BINARY FLUID CONVECTION

Confined states reminiscent of Fig. 3(b) have been ob-
served in experiments on binary fluid convection by
Moses et al. and Heinrichs et al. —flow visualization
was used, so that no quantitative information on the spa-
tial dependence of the flow is available. As discussed
above, since the transition to oscillatory convection in
these experiments is discontinuous, giving a jump to finite

tude right-moving waves concentrated at the right end of
the cell replaced half a period later by equal amplitude
left-moving waves at the left end of the cell. The period
increases considerably (period 51 at s =2.9}. As s in-
creases further the period decreases again, and the ampli-
tudes become asymmetric as gL becomes comparable to
the length of the system [Fig. 9(a}]. Further increase in s
yields a stationary asymmetric state [Fig. 9(b)] and by
s =8 a stationary symmetric state as above [Fig. 9(c)].

with 0 the observed frequency of the waves at the transi-
tion and 0, the frequency at the linear onset $0 the group
speed at onset, and gp 1 p the parameters of the amplitude
Eq. (2). In Eq. (12) the measured change in the phase
speed 0/0, is used to estimate the change in the group
speed s/sp, which was not measured. The data of Fig. 1

of Ref. (7) is for fluid parameters Prandtl number 18,
Lewis number 0.015, and separation ratio —0.12. For
these values theoretical calculations' give $0-2.3, and
we use the values for pure stationary convection at
Prandtl number 18: gp-0. 38,rp-. 053. Also, at the
transition ez may be estimated from Fig. 1 of Ref. 3 to be
about 0.04, and 0/0, is about 0.5 in the confined state at
a somewhat different value of e . These values give
$ -0.8, perhaps in reasonable agreement with the expect-
ed value of 2 considering the crudeness of the estimate.

In addition Heinrichs et al. observe confined states
that have a slow periodic amplitude modulation. These
states may be associated with the modulated confined
states predicted here, although Heinrichs et al. discuss
an alternative explanation due to Knobloch. '

Other qualitative features of the experiments ' require
further consideration. It is not clear if the reduced
Nusselt number observed in the confined states is simply
due to the reduced region of convection, or if the heat
current in the saturated region is also suppressed. The
observed transition to the filling state is apparently
discontinuous, whereas the transitions in the amplitude
equations are continuous, although they occur over quite
small changes in the parameters. It would be interesting
to look for the more dramatically oscillating states pre-
dicted here for increasing $ and system size; there are
some preliminary results along these lines. ' There is also
numerical evidence for such states in simultations of the
fluid equations between free-slip pervious top and bottom
plates but rigid end walls. '
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Thus there is considerable qualitative success of the
simple theory presented here. A more complete compar-
ison with experiment clearly requires a better understand-

ing of the nonlinear states. It is clear, however, that quite
complicated spatial and temporal effects may arise simply
from the combination of propagation and the finite

geometry, even before we allow for the possibility of exot-
ic instabilities.

Note added in proof Si.nce the submission of this pa-

per, oscillating states similar to the ones predicted Sec.
IV B have been described by Fineberg, Moses, and Stein-
berg and Kolodner and Surko. ' Also Croquette and
Williams have observed the transition from a symmetric
stationary state to an asymmetric stationary state similar
to the one shown in the lower two panels of Fig. 7 near
the transition to the oscillatory instability for straight
rolls in pure fluid convection.
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