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Signal and idler waves produced by a nondegenerate parametric amplifier feature strong positive

correlation between their photon numbers, or in-phase amplitudes. They feature equally strong

negative correlation between their phases, or quadrature-phase amplitudes. These photon twins can

produce arbitrarily squeezed states via state reduction by appropriate measurements of an idler

wave. When the quadrature amplitude of an idler wave is measured, the signal wave is collapsed to
a quadrature-amplitude squeezed state. When the two-quadrature amplitudes of an idler wave are

measured simultaneously, the signal wave becomes a coherent state.

I. INTRODUCTION

Nonclassical light is usually generated by one of two
schemes. The first is a phase-sensitive arnplification-
deamplification in a four-wave mixer' or a degenerate
parametric amplifier. The second is amplitude satura-
tion and phase diffusion in a pump-noise-suppressed
laser. This paper discusses a completely different ap-
proach using nonunitarity state reduction by quantum
measurement.

Arthurs and Kelly demonstrated that the system wave
function can be reduced to a new state after the simul-
taneous measurement of two conjugate observables. This
reduction realizes the arbitrary distribution of quantum
noise determined by the measurement resolution of the
two observables. However, these authors have not
shown any physically realizable Hamiltonian for such
measurement. At optical frequencies, the photon number
8, the quadrature amplitude & &, and the two-quadrature
amplitudes 8, and &2 are physically measured by a pho-
ton counter, homodyne detector, and heterodyne detec-
tor, respectively. Von Neumann's projection postulate
has been generalized to characterize these measurements
quantum mechanically. ' The generalized projectors, or
operation-valued measures for these measurements, are
given by

I

n &&n
I I ai&&ai

I
and

I
a&&a ~. However,

the measurements themselves are not considered as pro-
cesses for generating number states

~

n &, quadrature-
amplitude eigenstates

~
a, &, and coherent states

~

a &, be-
cause the electromagnetic fields are completely absorbed
after these measurements are made.

To produce quantum light via state reduction by quan-
tum measuremen'. , quantum correlation between a signal
and probe waves must first be established. Destructive
measurement can be then performed on the probe wave.
An example is the quantum nondemolition measurement
of photon number, in which the signal waves is collapsed
into a number-phase squeezed state after the signal pho-
ton number is nondestructively measured via destructive
measurement of the probe phase.

When a signal and idler waves are amplified in a non-

degenerate parametric amplifier, the outputs are correlat-
ed both in photon number and phase. " Measurement
of the idler output wave provides information on the sig-
nal output. This suggests the generation of quantum
light is possible via nonlinear parametric amplification of
idler and signal waves, and subsequent measurement of
the idler output.

This paper is organized as follows. In Sec. II we briefly
review the evolution of a combined signal-and-idler densi-

ty operator in a nondegenerate parametric amplifier. The
reduced density operator of a signal wave is discussed,
which corresponds to the signal quantum state without
measurement. State reduction resulting from measure-
ment of idler quadrature amplitude is treated in Sec. III.
State reduction resulting from simultaneous measurement
of the two idler quadrature amplitudes is studied in Sec.
IV. A projection operator that maps a coherent state
onto a number-phase squeezed state, quadrature-
amplitude squeezed state, and coherent state is derived in
Sec. V using the results of Secs. III and IV. In Sec. VI
feedfoward manipulation of a signal wave according to
the measurement results to continuously generate non-
classical light with a fixed eigenvalue is determined. Fi-
nally, in Sec. VII, quantum correlations of signal and
idler waves are studied using a Heisenberg picture. We
present a physical interpretation of the results in Secs. III
and IV.

II. STATE EVOLUTION IN A

NONDEGENERATE PARAMETRIC AMPLIFIER

In this section we briefly review the evolution operator
0 and the density operator p„ for signal and idler waves
for the nondegenerate parametric amplifier. ' The in-
teraction Hamiltonian is

and thus the differential equation for U is

i~o[e' & t&—
, +e ' a, &; ]U,
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where K=Koe', Kp is a real constant, K is a Parametric in-

teraction coefficient, and Q', and 8; are signal and idler an-

nihilation operators.
From Refs. 12 and 13, we obtain the evolution opera-

I

tor, the output density operator with number state
~

n p )
as the input-signal state and the output density operator
with coherent state

~
ap) as the input-signal state:

0=exp[ —ln cosh(Kpt) ]exp[ ie—' tanh(Kpt)8; &, ]exp {—in[cosh(Kpt }a,.&,. ] j

Xexp{—in[cosh(Kpt)8, 8, ] jexp[ i—e ' tanh(Kpt)8;& ],
—2(no+1

p„.„=N cosh ' (Kpt) g ( ie—' tanhKpt)'
I, h

X (ie ' tanhKpt)"

i /2

~ np+1 ),
~

1 );;(h ~, (n p+h
~no no

'k +1 'h +„' i/2 ( ie—' tanhKpt)'(ie ' tanhKpt)"

k

ao

coshKot

k h

~k+1), ~1);;(n ~, (h+n
~

where N and N' are normalization constants and

k!
(k —m }!m!

p'""=—Tr p

The quasiprobability density, (a
~

p',"„'
~
a), is schematically shown in Fig. 1 for n p Oand——np&0. The reduced densi-

ty operator for a coherent-state input signal is calculated by taking the trace of (5), '

21
k'

q
'h

'h+1' ' i/2tanh Kpt ap ap
~
@+1 ), , (h+I

~

.
cosh2Kpt coshKpt coshKpt V'k! V h!

L

—I~ I'~(red) Ni2e ~ +0 ~

s
k, l, h

When we simply want to know the signal state after parametric arnplification, the reduced density operator can be cal-

culated. No measurement process is involved. The reduced density operator for a number-state input signal is calculat-

ed by taking the trace of (4}with respect to idler variables, '

' 2(n+1)
n +I

g tanh 'Kpt np+I ), , (np+1
~

coshKpt 1
no

The quasiprobability density, (a
~ p,'" '

~

a ), is schematically shown in Fig. 2.

III. STATE REDUCI'ION BY MEASUREMENT OF IDLER QUADRATURE AMPLITUDE

In this section and Sec. IV and Appendix A, we discuss the effect of idler output measurement on signal output. The
conditional density operator is calculated by the well-defined generalized projection (operator-valued measure).

A measurement of idler quadrature amplitude with readout a& is described by

a&;; a',

Since a, is defined over all real values of a„~a, ), , (a,
~

means continuous projection. The operation-valued measure

is introduced and removes the difficulty in the continuous spectrum. ' The density operator of a signal wave after
readout a', is

(meas, al ) (read, al )

Ps:TriP i Pst

2
H (&2a', ) Ht(&2a', )

=N' g — exp( —2ai )
m !1!

(
~

)2) h+m k+1
k

L L

[ i tanh(Kp—t)e+' ] [+i tanh(Kpt)e ' ] a& a~&"

cosh Kot &k! &h!
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where a coherent-state input signal is assumed and

0 (v 2aI)
exp( —a', )

2m /2

1 2
&m

l
a', &=

V'm!

In deriving (9), we used the following equation:
' 1/4

(10)

Next the quasiprobability density of the conditional density operator is calculated. Without loss of generality, we as-
sume 8=m/2. Then the quasiprobability density is

(meas, aI) z, (meas, a~)

=N&exp[ —(1+tanh sot)(a, —(a, )) ]exp —
2 (az —(a2))2 2 1 2

cosh ~0t
(12)

where
' 1/2

1+tanh (loot)
' 1/2

n cosh (sot)

(15)

(meaS, al )

The quasiprobability density, (a
l p,

' '
l
a), is com-

pared with that of the reduced density operator in Fig. 3.

&txt) =

+0 1
2 tanh(aot)a', +

cosh Kpr

1+tanh (loot)

(ba2t& = & ba2t&g ——,
' ——

4 cosh(2irot)

cosh( 2irot )
& ha', ) = & b,u', ) g

——,
' ——

(13)

(14)

Here ( ha, ) & and ( b,az ) & are the variances of the
quasiprobability density (12) that are larger by —,

' than the
(meas, a'[)

intrinsic variances or p,
' ' . The output-signal wave

is reduced to a quadrature-amplitude squeezed state satis-
fying the minimum uncertainty product

„ag

(a2) =ac 2cosh(Kpr)

The quasiprobability density is Gaussian, centered at
(at) and (a2). The dispersion of the quadrature ampli-
tudes can be calculated by using (12) as

IV. STATE REDUCTION BY A MEASUREMENT
OF TWO IDLER QUADRATURE AMPLITUDES

A simultaneous measurement of two-quadrature ampli-
tudes is described by the operation-valued measure

(16)

This corresponds to approximate simultaneous measure-
ment. Following the idea of operation-valued measure,
measurement of a; by heterodynamic involves the prod-
uct spaces

l u; ),
l
0)2, where 1 stands for the idler band

and 2 stands for the image band that is in a vacuum state.
Measurement of

l
a, ) couples unavoidingly to the zero-

point fluctuations of the image band. Thus a measure-
ment of

l
a, ) must be interpreted as taking a trace of the

product density matrix

i.e., forming the expression

Trt(p(10&pp&0 l
~&) i&a'

l
)

The conditional density operator after the readout a' is

Cal p{"')Ia&

&a I p, (0) I a&
and
(alp (0) (a&

vacuum-state signaI

(a)

/a l
p««&~ a&

a,

(al p (0) la&
&aI p (0)l a&

number-state signal
(b)

"a

(alp {Q)la)

l p(red) l a&
S S

FIG. l. (a) Quasiprobability densities of the initial density
operators p, (0)=

l
0), , (0 l

and p, (0)=
l
0), , (0 l

and the re-
duced density operator p,'" . (b) Quasiprobability densities of
the initial density operators p, (0)=

l
no), , (no l, p, (0)

=
l
0);,(0

l
and the reduced density operator p ',

" '.

FIG. 2. Quasiprobability densities of the initial density
operators p, (0)=

l
ao), , (ao

l
and p, (0)=

l
0), ;(0

l
and the re-

duced density operator p,(" '.
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~(meas, a') Tr {read, a') ~
S Ysi

2 2
a'" a' 'h +„' k +I

' (&& [ —i tanh(Kpt)e' ]'[i tanh(Kpt)e ' ]"
=N' g exp( —

~

a'
~

)exp( —
~

a
~

)
k, h, !, cosh (Kpt)

k eh

X
~
k+l), , (h+n

~&k! t/h!
(18)

Here

=1 (3
~

a'), , (a'
~

(19)

quantum-light-generation process based on state reduc-
tion resulting from measurement is characterized by a
projection operator '

The quasiprobability density is

g(mess, a')(
) (

~

(meas, a')
~

)

1=—exp —
~

a
7T

—[i tanh(Kpt)a'*e ' —a „]~

(20)

(21)

The quasiprobability density, (a
~ p,' "' '

~
a), is com-

pared with that of the reduced density operator in Fig. 4.

V. PRO JECTION OPERATORS GENERATING
A NUMBER-PHASE SQUEEZED STATE,

QUADRATURE-AMPLITUDE SQUEEZED STATE,
AND COHERENT STATE

If 8=m./2, the quasiprobability density is circular
centered at (a() =tanh(Kpt)a', +ap )/cosh(Kpr), (a2)
= —tanh(Kpt)a&+ ap 2/cosh(Kpt). If the difference be-
tween the real dispersion and the dispersion of the
quasiprobability density is taken into account, the output
signal is reduced to a coherent state,

&(s(,af & =-,'

and

(22)

Here
~ p)~ and

~
1(t)~ are the initial (prepared) state and

final (measured) state of the probe systetn and 0 is the
evolution operator.

The projection operator P ' ' that characterizes an
idler photon-number measurement scheme is written as

P(-)—=
, &

i
0

i
o&,

[—ie' tanh(Kpr)]
fm

cosh(Kpt) v'm !
(23)

P ' = , (a', C—~o),
r2

=N"e ' exP 2iaItan—h(Kpt)e' it,

XexP[ —In[c osh( Ktp)&, it, ]j .
This projection operator generates a number state

~ no+ m ), from a number state
~

n p & . It also generates
a number-phase squeezed state (41) in Appendix A from a
coherent state

~
ap), (Ref. 11) (see also Appendixes A, B,

and C).
~ (a))

The projection operator P ' that characterizes an
idler quadrature-amplitude measurement scheme is given
by

In Secs. III and IV we have shown that a nondegen-
erate parametric amplification process followed by a mea-
surement produces various quantum light. Such a

tanh (Kpt)e '

+

X exp[ In(coshKpt)—&,it, ] .

S

(24)

&a[p.'")'a& /%a
2

a[p(meaa, c')(a+
S S

Qaip(meaa. c;)Ia+ &a~ p'"")la&

0 q

FIG. 3. Quasiprobability densities of the reduced density
operator and conditional density operator for and idler wave
quadrature-amplitude measurement. p, (0)=

~
ap), , (ap

~

.

FIG. 4. Quasiprobability densities of the reduced density
operator and conditional density operator for a measurement of
the two idler wave quadrature amplitudes. p, (0)=

~
ap), , ( ap

~

.
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X exp I
—in[cosh(sot)8, 8, ]] . (25)

This projection operator generates a coherent state (18)
from a coherent state

l ao), .

VI. FEEDFORWARD

Even though an output signal wave is reduced to a
number-phase squeezed state or quadrature-amplitude
squeezed state for a specific readout m or a', as demon-
strated above, it is not considered to be a practical
quantum-light-generation scheme. This is because each
measurement produces a different readout and, if we
want to know the quantum-statistical properties of all
samples over all possible readouts, it is nothing but a
signal-reduced density operator, as shown in Fig. 5.

In this section, we propose a method to overcome the
preceding difficulty and produce a squeezed state con-
tinuously. Suppose a feedforward process operates on the
output signal such that all the conditional density opera-
tors are translated to the same mean values &a&) and
& a2) by using the measurement result as shown in Fig. 5.
If the readout a", is different from the most probable
value a], then a translation operator

8(a", ) =exp[(a', —a", )(8, +&, )] (26)

Here X"=[I/cosh(~ot)](2/n)' . This projection opera-
tor generates a quadrature-amplitude squeezed state (9)
from a coherent state

l ao), .
The projection operator P ' ' that characterizes a

simultaneous-measurement scheme of the two idler quad-
rature amplitude is written as

P~'&=, &a
l Olo),

—ja)~/2
exp[ —a'"tanh(Kpt)e' 8, ]cosh /cot

II

, &alD(aI')t', ' ' D'(a ) la),
' 1/2

1+tanh (rot) 1

~cosh (aot)

]/2

Xexp[ —[1+tanh (~ot)](a, —&a, ) ]

Xexp —,(a, —&a, &)
1 2

cosh (sot)
(27)

It is seen from (27) that a signal wave is always reduced
to the same quadrature-amplitude squeezed state ir-
respective of the readout a", . The translation operator
D (a&') is practically realized by a phase modulator. 'o

VII. QUANTUM CORRELATION OF PHOTON TWINS
EXPRESSED BY A HEISENBERG PICTURE

In this section we study the quantum correlation of
photon twins in a Heisenberg picture and will come to
the same conclusions we have previously obtained using a
Schrodinger picture. If phase angle is appropriately
selected, the input-output operators in a Heisenberg pic-
ture are described by

and

b, =cosh(ant)it, +sinh(Kot) &, , (28)

b; =sinh(act)&, +cosh(Kot)&; . (29)

From (28) and (29), and taking account of the commu-
tation relation [&„I;]=0,the difference between the sig-
nal photon number and probe photon number satisfies
the following Manley-Rowe operator relation:

m, —m =6;—6' (30)

Here m, =b, b„m; =b, b;, R', =a,&„and 8', =8 ~Q;. The
dispersion difference between the signal and probe pho-
ton number is

acts on the conditional density operator p,' "' '. Then
the result is

& ~(",—";)'&= &~(&, —&;)')

0 (number-state input)

l ao l
(coherent-state input) . (31)

„a,
(alP,'"'" "'ia&

( iP.'"'"&i'&

(alp&" d&lan

:Qg
translation

FIG. 5. Quasiprobability densities of the conditional density
operator for different readouts a' and a". Unitary translation

II I
(meas, al ) &meas, ai)

operator D(a") maps p, ' onto p,

Here we use the fact that the number dispersion of the in-
put idler wave in a vacuum state is zero.

The complete photon-number correlation for an input
signal in a number state corresponds to the result of (40).
When an input signal is in a coherent state, on the other
hand, the photon-number correlation is partly degraded
by the photon-number variance &An, ) = lao l of an in-

put signal. At first sight this result seems to contradict
the conclusion of (47) in Appendix A. But notice that
(47) represents a dispersion in photon number for a
readout m close to the most provable value

laol cosh sot and that (31) represents the ensemble
average of the photon-number correlation for all possible
m, values. In fact, the dispersion in photon number for a
readout m much smaller than

l
ao l

coshxot is reduced to
zero, and that for a readout m much greater than
laol coshaot is greater than laol . When these
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b, , =cosh(Kpt)8, , +sinh(Kpt)&

b;, =sinh(Kpt)&, , +cosh(Kpt)a'

(32)

(33)

different dispersions are integrated over all possible
readout values with a proper probability density, we find
a dispersion of not

~
ap

~

/2, but
~
ap

~

(see Appendix
D).

From (28) and (29), the output in-phase and phase-
quadrature operators are related to the input operators
by

idler photon number, the single-quadrature amplitude,
and the two-quadrature amplitudes are measured by a
photon counter, homodyne detector, and heterodyne
detector, the signal wave is reduced to a number-phase
squeezed state, quadrature-amplitude squeezed state, and
coherent state, respectively. The projection operators
characterizing these nonunitary processes are given.
With a feedforward technique, these can be used to gen-
erate various quantum lights.
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APPENDIX A

This result corresponds to the squeezed quadrature-
amplitude noise (13). On the other hand, the quadrature
component dispersion itself is

(bb, 2) = —,'[exp( —2Kpt)+exp(2Kpt)] . (36)

This corresponds to the enhanced quadrature-amplitude
noise (14).

The dispersion of the sum of quadrature phase opera-
tors is similarly calculated as

We discuss the effect of a photon-number measurement
of idler output on signal output. A measurement of idler
photon number with count m is described by the projec-
tion operator

)m&, , &m
/

. (38)

(meas, m) Tr (read, m)
Ps = riPi Psi ~ (39)

The density operator of a signal wave after the readout is
calculated by

( b ( b, 2+ b; 2) ) = —,'exp( —2Kpt) .

They feature equally strong negative correlation.

(37) where p,'"' ' '= l, cgj
~

m ), , (m
~

and 1, is an identity
operator for a single wave.

For a number state input case, we obtain

VIII. CONCLUSION '=
~

np+m ), , (np+m
~

(40)

From (4) the output signal wave is also in a number state
translated from the initial value no by the exact number
of readout m.

For coherent-state input, we get the following from
(5).12

k

Photon twins (signal and idler waves) produced by a
high-gain parametric amplifies feature strong positive
correlation for both their photon numbers and in-phase
amplitudes, and equally strong negative correlation for
their phases and quadrature-phase amplitudes. If the

I

&&2 tanh (Kpt)p(, l 2y „(
~

~2) +m +
cosh (Kpt)

'A '1/2
ao

cosh(Kpt )

ao

cosh(Kpt)

1

h!k! ~k+m&„(h+m
~

. (41)

The photon-number probability density function is cal-
culated as

I

tained using the probability P(n) as

Lm+, ( N„)—
(n ) = g jP(j)=(m+1) —1, (44)

L ( N„)—
1 ~n —m

F(1+m, 1;N„) .n —m . (42}
(n —m)!

I (1+a) I (1+a +j)c~
I (1+b),. I (1+b +j )j! (43)

The average photon number and its dispersion is ob-

where N„=
~
ap

~

/cosh (Kpt) and F(a, b;c) is Kummer
function given by

j&m

L +2( —N„)
=(m +2)(m +1)

L ( —N„)
L,( —N„)—(m+1)

L ( N„)—
+i(

L ( N„)—(45)
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Derivation of (45) used the relation &an')— I ao I

'
2

(47)

F(1+m, 1;N„)=L ( N—„)exp(N„),

&n &-m+
I a() I

', (46)

and

where L (x) is a Laggure polynomial. When the
parametric-amplifier gain is high enough, Kpt))I, and
the readout rn is in the vicinity of the most probable
value, m —

I ao I
cosh (~ot, the average photon number

and its dispersion derived in Appendix B are approxi-
mately given by

Note that the input signal has the photon-number disper-
sion &An(0) ) =

I ao I
. It is reduced by a factor of 2

after the parametric amplification and photon-counting

measurement. This result was first discovered by Yuen'
and was later confirmed numerically by Kitagawa and
Yamamoto. ' Since m is much greater than

I aoI in a
high-gain parametric amplifier, the signal wave features a
strong sub-Poissonian distribution.

Next the phase dispersion is calculated. The sine and
cosine probability density functions are calculated in a
manner similar to the photon-number probability density
function,

P(cosy)=, &cosy
I p,' '"' '

I
cosy),

= g —sin(k +m + 1)/sin(h +m +1)g2 h+n k+m
k, II

P(sing)—=, &sing
I p,' "' '

I
sing),

1/2
A A

&k! &h!
(48)

i(k+m +1)g —((k pm +1)(g—n )][ ((h+m + l)g —j(k+m + 1)(g—m )]
k, h

h+m k+m
h k

]/2 O.' aA A

&k! &h!
(49)

where a „=ao/cos()~ot). Straightforward calculation
leads to

& cosP):—f cosP P (cosg)d P

=N„'~~[F(1+m, 1;N„)] ')p) (N„)cosp,

(50)

where ((} =arctanao and cosp and sing are the aver-
0 0 0

age sine and cosine operator values of an input signal.
5; is Kronecker's 5,

1/2

+ (k+m)! k+m+1
k!m! k+1 k!v'k+1

(54)
&sing) —= f si n1(P(sing) df—n/2

=N„'~ [F(1+m, 1;N„)] '0, (N„)sing

(51)

and
' 1/2

(k+m)! (k +m +2)(k +m +1)
k!m! (k +2)(k +1)

&cos g) = f cos QP(cos1()dg
0

1

2

5 0

4
[F(1+m, 1;N„)]

+ [F(1+m, 1;N„)] '4~ (N„)

Xcos(2$ ),
& sin 1/r ) = f sin Q P (sing)d P—m/2

6 0 [F(1+m, 1;N„)]

(52)

~k
X

k!&(k +2)(k + 1)
(55)

Note that 0') o(N& )=%'((N„) and 0'z o(N& )= II&(N„),
where 0')(N„) and )pz(N„) are shown in Ref. 17.

When the parametric-amplifier gain is high enough,
Kpt ))1, and the readout m is in the vicinity of the most
provable value,

m —
I ao I

cosh (~ot),

the average sine and cosine operator values and the nor-
malized dispersion are approximately calculated (see Ap-
pendix C) as

[F(1+m, 1;N„)] '(pz (N„) (c2o$s),
(53)

& cosf ) — 1 — cosP
1

4I ao I' (56)



38 QUANTUM CORRELATION AND STATE REDUCTION OF. . . 3563

&g!0""'lg)
(glp(red} lg)

( m e e e .m }Ig) (gg(meee. m}lg)

a&

number-state
input signal

(a)

coherent-state
input signal

(b)

&~n &=2(m+2)(m+1)z' +" )

F(m +1, l,z)

+( +2)( +1)z' F(m+3, 3,z)
2 F(m +1, l, z)

'2
1,2 2 F(m +2, 2, z)—m+1) z

F(m +1, l, z)

)z
F(m +2, 2,z)
F(m +1, l, z)

F( +2, 2, )
(62)

F(m +1, I,z)

where z =
I
ao

I
/cosh(~ot). Further applying the rela-

tions,
r

FIG. 6. Quasiprobability densities of the reduced density
operator and conditional density operator for an idler photon-
number measurement. (a) p, (0}=

I
n(} &, , & n(} I

and (b)
((},(0}=

I
ao), , (ao

I
.

F a, c;—~I (c)x" "~ I, ,(2& x) as a ~ ~'a

and

(63)

and

1
& sing & — 1 — sin(}(}

41ao I

' (57)

I, +,(x)=I, ((x)— I,(x),2c

and taking the limit as z ~0 and zm ~zp we obtain

I}(2v'z )
&an'& z, 1—

I(}(2 z )

(64)

(65)

& b sin 1(}&

& cosg& 2 a(}1'
(58)

Note that the normalized sine operator dispersion of an
input-signal wave is I/41 ao I

. It is enhanced by a factor
of 2 after parametric amplification. This doubling of
quantum noise is a manifestation of a general quantum
limit of linear amplifiers and simultaneous measurement
of the two conjugate observables. '

From (47) and (58) we see that the signal wave after
rneasurernent of idler photon number is reduced to a
number-phase squeezed state, satisfying the minimum un-
certainty product of photon number and sine operators,

& t(},n '
& & b,sin'g &

&cos4&

The quasiprobability density, & a
I p,' "' '

I
a &, of thus

generated number states and number-phase squeezed
states are compared with those for the reduced density
operator in Fig. 6.

APPENDIX B

and

L ( —z) =e 'F(1+m, 1;z) (60)

We derive the approximate value of photon-number
dispersion (47). Suppose the readout m of the output
idler photon number is in the vicinity of the most prov-
able,

I
ao I

cosh }~ot. The relations

where I (x) is the y function and Ik(x) is the modified
Bessel function.

If the input average photon number is much greater
than one, zp gal,

Io(2+zo ) =e 'F ( —,', 1, —4+zo ) .

By using (66) and the expansion

F(a, b, —x)-x ' [I+a (1+a b)]x—1(b) —1

I'(b —a )

in (65), we obtain

I, (2v z )
1 1z01/2

Io(2v'z )

and

& an'& --,'z,'"--,'
I a, I

' .

(66)

(67)

(68)

(69)

APPENDIX C

We derive the normalized sine dispersion (58). Equa-
tion (54) can be rewritten as

' 1/2
1 (k+m)! k+1 z"

(k + 1)!(m n)! —m k!

(70)
Since m is sufficiently large, there is always an No such
that k+1/m for k &No. Since the terms for k &N do
not contribute to the sum, we can set

F(a +1, b;x) =F(a,b;x)+ F(a +1, b +1;x)—
from (45) give us

(61)
1 (k +m)! z"

(k +1)!(m —1)! k!
=m'~ F(1+m, 2;z) . (71)
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From (50), (51), and (63), we obtain

I, (2+zo)
( cosg ) — cosg — 1—

Io(2+zo)
1

cosg
4I ~o I

'

(sing)—

By a similar approximation, we get

(k +m)! z"
(k+2)!(m —1)! k!

F(1—+m, 3;z)
Pk

2

I, (2+z() )
sing — 1 — singI (2&z )

' 4
I
~o

I

I2(2+zo )
(sin g) —— 1 — cos2$

Io(2+zo)

(72) From (64) and (68), we get

(74)

1

2I ao I'

APPENDIX D

2

, -tan'g +-,'zo ' ' . (75)
cosg

Since
I
(sing)/(cosg)

I

2-tan )t), the normalized sine

uncertainty is given by

&b,sin g)
( cosg )

-mzo 'I2(2+zo) .

Here (63) was used. By (53), (63), and (73), we obtain

(73) We calculate (h(m, —m;) ) using the Schrodinger
picture. First we calculate (m, —m; ). From (2), we ob-
tain

[tanh'(~ot)]' .
'

J zj-'
(m, —m; ) =Tr, ;p„(&,1; —1,R';)=e ' g g (j —1)

cosh(sot) . .J —' . (j—i)!

z is defined below (62). By using

—
I &p I

'
=e

[tanh ()rot) ]' dF (1+; 1 z)
cosh(rot) dz

(77)

dF(a, b;x) a F(a+1, b—+1;x}, F(a, b;z)=e'F(b —a b, —z),

from (77) and

we obtain

I (b+1)f'(a+1)
I'(b +a +1) (78)

ap

&m, —m, )= g tanh '~otL ( —z}=
I
~o Icosh'Kot

In deriving last the equality of (79), we use

(79)

g L a(z)x k (1 x}—a —lexz/(x —))
k

(80)

Next we derive ( (m, —m; ) ) with a similar procedure,

((m, —m, ) ) =Tr, ;p„(R', I; —1,h';)

—
I &p I

'
=e [tanh (&ot)]'

2 d2F(1+i, 1;z} dF(1+i, 1;z)
cosh(~ot) dz 2

=
I ~o I

'+
I
ao

I

' . (81)

&n deriving of last equality of (81), we use (78) and (79). Therefore we obtain

(i!)(m, —m, )~) =
I
ao I

2 . (82)
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