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We consider how the finite transmission of the output mirror of a laser operating well above
threshold affects laser phase diffusion in the quantum regime. In our traveling-wave analysis, the
cavity loses field energy discretely only once every round trip. For a low-Q cavity, the linewidth

that arises from phase diffusion can differ significantly from the Schawlow-Townes result derived us-

ing traditional theories based on a distributed-loss picture.

I. INTRODUCTION

Traditional quantum theories of the laser' have de-
scribed well the statistical properties of laser light like
photon statistics and the intrinsic linewidth. They are,
however, based on a few simplifying approximations that
are not applicable in situations where a careful quantum-
mechanical treatment is not only desirable but also im-
perative. Examples of contemporary relevance include
the analysis of maximum theoretically achievable sensi-
tivity of an interferometric measurement employing
lasers either in the active or in the passive configuration
and of micromasers driven by a few atoms and contain-
ing only tens of photons at any time.

In this article we analyze the problem of phase
diffusion in a stable laser due to spontaneous emission.
What distinguishes our approach from the previous ap-
proaches' is contained primarily in the way we treat
cavity losses. A consideration, such as ours, of the cou-
pling of the partially transparent output mirror is essen-
tial in determining how much of the phase diffusion re-
sults from vacuum fluctuations leaking in from the out-
side world ("universe") and how much of it would be
present even in a perfect, lossless cavity. We shall see
that even a perfect laser cavity would produce light with
a stable amplitude but with phase that degrades in time.

After the laser field builds up and settles down to a
steady value inside the cavity, the energy in the field is
lost primarily through scattering from the impurities in

the active medium of the walls and through the partially
reflecting output mirror (mirrors). One can eliminate
much of the scattering losses, but the partial transmit-
tance of the mirror (mirrors) is necessary in order to ex-
tract light from the cavity. Scattering losses may be
treated as a distributed-loss mechanism, but mirror losses
should not since they occur only at the cavity ends and
not inside the active medium.

In view of the complexity of including mirror losses as
a discrete, beam-splitter kind of loss mechanism, tradi-
tional theories have instead treated all losses as being dis-
tributed throughout the cavity. In theories based on a
Langevin equation formalism, losses are thus modeled
by a simple term —(v/2Q)a appended to the expression
for the time derivative d a ldt of the fluctuating field am-

plitude u. One then talks about the net small-signal gain
coefficient

A, =(A —vi2Q)

that differs from the small-signal gain A of the active
medium alone by vl2Q. This is a standard feature of oth-
er approaches as well, namely, those based on the
density-operator' and related Fokker-Planck equa-
tions. '

The picture we use here is a traveling-wave picture in
which cavity losses occur discretely, once every round
trip, a situation that is obtained with a perfectly reflecting
mirror at one end of the cavity and a partially transmit-
ting mirror at the other. Clearly a mode-locked laser
with its light pulse traveling back and forth in the cavity
fits this picture physically. What becomes immediately
clear is that true steady state for the amplitude distribu-
tion or for the photon statistics is not attainable. In fact,
light must amplify sufficiently during each trip through
the cavity to compensate for the "single-shot" energy
losses at the partially transmitting mirror. In other
words, only a quasisteady state can be obtained in such a
system in which the light field reproduces itself periodi-
cally, the period being the round-trip passage time of
light.

Alternatively, if one has a single-mode field then one
may say that a true steady state does indeed result, but
that the radiation field amplitude has a spatial depen-
dence on the propagation distance z. The two pictures
are completely equivalent for a single-mode laser, both
classically and quantum mechanically, transforming into
each other under the substitution t ~z jc „,c~h being the
phase velocity of light in the cavity.

The organization of this paper is as follows. In Sec. II
we discuss in greater detail the laser model that we em-

ploy and how one can implement a simple quantum
description of the beam splitter to address mirror losses
as well as phase changes. In Sec. III the model is first
used to derive the quasi-steady-state distribution for the
field amplitude. The shape of that distribution, we shall
show, is invariant although its width and height change
due to the process of amplification. Section IIIB con-
tains the most important results of this paper, namely,
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the phase-diffusion rate and the resulting linewidth and
their dependence on the mirror reflectivity for the laser
operating in the quasisteady state.

II. FOKKER-PLANCK DESCRIPTION OF THE LASER

The active medium of our laser consists of two-level
atoms in exact resonance (frequency v) with a single
mode of the laser cavity. We do not worry about the
subtleties concerning modes in a leaky cavity, assuming
that the single mode of interest is identical to the corre-
sponding mode of a loss-free cavity, except that the form-
er has a finite frequency width.

Atoms injected in the excited state at a constant rate
into the cavity are stimulated by the circulating radiation
field to emit in phase. In the traveling-wave picture that
we have adopted, we assume that there is no loss of the
field energy throughout a single round trip of the field
from the partially transmitting mirror back to it. Only at
the very end of each round trip does the field get partially
lost through that mirror.

Under a coarse-graining assumption, the time deriva-
tive of the density operator pF of the field may be easily
calculated. ' Since phase diffusion is best analyzed in the
Fokker-Planck picture, we look for the equivalent equa-
tion that the P distribution of the field expressed in
terms of coherent states

I

a ),

pF
——fP(a, a', t}

I
a) & a

I
d a, (2)

satisfies. This equation may be written in terms of scaled
variables as

mirror 1

I
a, 0) &a, O

I
~

I
O, ae ') &O, ae (6)

and

I&pe '»« ')&&pe '»«

The usual phase-diffusion analysis' assumes that the
amplitude 9 of the field is sharply defined at the classical
steady-state value of Qa „with A replaced by
(A —v/2Q), so that the intrinsic laser linewidth is just
the factor 1/a, that multiplies the (8 /BO )P term. As
we shall see, this is a good approximation only when the
cavity is nearly perfect.

Equation (5) governs the evolution of the quasiproba-
bility distribution P during a pass through the amplifying
medium. The field suffers an irreversible loss of energy at
the partially transmitting mirror as well as phase shifts at
both mirrors. We now address how one may use a previ-
ously obtained unitary description of the beam splitter to
treat both these effects.

In the traveling-wave picture, the laser field may be
looked upon as consisting of two traveling modes with
the same frequency v—one traveling from right to left
(mirror 2 to mirror 1) and the other from left to right
(mirror 1 to mirror 2}, as shown in Fig. 1. The two mir-
rors merely serve to mix the two modes, which we label 1

ip) ip&
and 2, respectively. Let e ' and pe ' be the complex
reflection coefficients of the two mirrors for reflection
from their inner surfaces. From our analysis of the beam
splitter of which the two mirrors may be considered as
special cases, the following transformations of two-mode
coherent states become evident:

P(a a' t)—=— [(a, —
I
a

I
)aP(a, a ', t)]+c.c.

Ba

(3)

in which gz is the phase shift of the field on transmission
though mirror 2. The combined discrete transformation
brought about by the mirrors acting in sequence is then

where the variables denoted by carets are related to the
ordinary, physical variables via scale factors:

AX „2g
t, a= a,

Ia 0)&a OI ~
I
ape ' ' a«

i (p)+tti~) i (p)+ f~)X &ape ' ',a« (8)

and

a& ——

1/2

(4) Having thus treated the effect of mirrors, we now go
back to the single-traveling-mode picture by dropping the
second mode from Eq. (8), since from the standpoint of

The quantities A and S are the coefficients of linear gain
(minus any distributed losses) and of gain saturation.
Writing a=Pe' and a*=Pe ', in which '8 and 0
represent the scaled intensity and phase variables of the
laser field, one finds that Eq. (3) transforms to the follow-
ing Fokker-Planck equation in variables 9, 8, and t:

M1 M2

P(r, O, t)+ ——[(a, 'P F P(9, 8,t)]-
Bt

(5)

FIG. 1. A schematic diagram of a laser cavity with the two
traveling-wave modes denoted by 1 and 2. Mirror M1 is as-
sumed to be perfectly reflecting, while the output mirror M2 is
partially transmitting. The complex reflection coefficients of

i tti~
their inner surfaces are e ' and pe, respectively.
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the cavity the second mode gets lost irreversibly at mirror
2:

~

a&&a
~

~
~

ape' '+ ' &&ape' (9)

Transformation (9) of the coherent state
~

a & & a
~

in-
duces a transformation of the P distribution in Eq. (2),
which follows from the scaling and shifting of the in-
tegration variables r and 8 by p and p, +$2 in that equa-
tion:

P( 8, 8, t')~ 2P(r/p, 8 p, $—2, t)—.p'
(10)

The evolution of the field during a round trip thus con-
sists of two stages: the amplification of the field in accor-
dance with (5) as the time t changes by a round trip time
1'and the loss of the field in accordance with (10). Under
these conditions, the distribution of the field amplitude
attains a quasisteady state in the long-time limit.

III. QUASISTEADY STATE AND PHASE DIFFUSION

As we mentioned earlier, in the traveling-wave picture
true steady state for the laser amplitude distribution is
not possible, and one must be content with a quasisteady
state. This is, of course, a formal artifact, and indeed if
one were to allow for a spatial variation of the field en-
velope inside the laser, a true steady state would be ob-
tained. What we wish to consider here first is the actual
quasi-steady-state amplitude distribution and then how a
sharp phase distribution imposed upon it diffuses in time
due to random spontaneous-emission events.

If we write the 8-periodic P(r, 8, t) in terms of its
Fourier decomposition

—(1 —a& ) /4
Pss(r) =Ne (17)

which for large a, is a rather sharply peaked function of
9 . For the quasi-steady-state problem at hand, one may
look for a similar solution that approximately satisfies (5).
Since the transformation (10) preserves the shape of the
distribution function, it is clear that one must try a
shaPe-invariant form for PQss(r, t ). We use the ansatz

PQss(r, t)=N(t )exP — ["r —a&(t)]
4o(t }

(18)

in which the time dependences of the center and width of
the distribution are expressed in terms of those of the
quantities g and b, defined by the relations

and

a, (t)—:a, +rt(t) (19)

A. Quasi-steady-state amplitude distribution

In quasisteady state the amplitude distribution Po(r, t }
must retrace itself precisely after each complete pass of
the active medium and reflection from the mirrors. Thus,
if PQss(r, O) represents the quasi-steady-state amplitude
distribution at the beginning of a pass starting at mirror
2, then in accordance with (10), we must have the relation

1

2 PQss(r/P, T) =PQss(r, O) .
p'

If one were to assume a true steady state, then Eq. (5)
could be solved exactly for such a distribution, say,
Pss(r) (Refs. 1 —3):

P(r, 8, t)= g P (r, t)e'
o(t ):—I+&(t ) . (20)

then

Po(r, t)= f P(r, 8, t)d8
2K 0

(12)
b, +4(a, +rt)b, +4rt(l+b, )=0 (21)

In the analysis that follows, we only consider operation
well above the threshold, a

&
&&1.

On substituting Eq. (18) into Eq. (5) and neglecting a
term proportional to (r —a& ) (I/o —1/o 2), we obtain
the following ordinary differential equations for 6 and g:

is proportional to the amplitude distribution, while
and

r)+2(a, +g)q —8b, =0 . (22)

P &(r, t)= f P(r, 8, t)e' d8
7T 0

(13)

&re' &=2m f P, (r, tp dF,
0

(14)

in which the usual normalization of the P distribution is
assumed:

describes the expectation value of the field at time t. In
other words, P

~
represents phase diffusion. (There is no

ambiguity here concerning the definition of the phase
operator, since it is Pe', and not 8 itself, for which the
expectation value is being considered. ) More precisely, at
time t

rt(t ) =a, /[(a, /go+ 1)e ' —1] (23)

[Neglecting such a term is a satisfactory procedure
sufficiently near the peak of the distribution (18), but one
that may not determine the width of (18) correctly. How-
ever, as we shall see later, for laser operation well above
threshold, this width is of no consequence in the phase-
diffusion problem. ]

We assume, and we shall see so a posteriori, that the
term —8h contributes negligibly in Eq. (22) and may be
neglected. The resulting nonlinear equations are straight-
forwardly integrated in terms of the initial conditions,
7)(0)=go, b,(0)= b,o..

fP (r, 8, t 9 dP d 8=2m. fPo(r, t p dP = 1 . (15) and
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&(t)=
b,o 2—poI(t}

7

( e ' +2Posinh a, t )

where Po=?)o/a, and

I(t)=(1+p, ')'(e ' —1)—6(1+p, ')'a, t

(24)
—(e &= — e
d ;g l ;g

Nfl
(27)

Once again, under the decorrelation approximation this
reduces to a simple equation for ( e '

& that may be easily
solved in an exponential form:

Jh.

+3(1+p )(1—e '
) ——,'(1—e '

) . (e"&, =&e"&,exp —J, d t ' (28)

One may now enforce the quasi-steady-state condition
(16}and determine ?10 and 5 by insisting that

p'[1+6(f')]=1+6,
and

pz[a, +?1(f')]=a,+rto .

(25)

In view of Eqs. (23) and (24}, these conditions imply that

20) 1
a&(1 —p )e

QQ

(e ' —1)
(26)

and a similar result for 60.
We have evaluated go, 60, g, and 6 for a variety of

values for the pump parameter a „the reflectivity p, and
the linear- ain parameter 2a, f'. For 0.85&p &1.0 and
0.05&2ai &0.2, the value of 8

~

b
~

is typically much
smaller than lgo and never exceeds 3% of the value of
2?1(a&+?)) for a& & 10.

There is a third consistency condition, in addition to
(25), involving the normalization N(t ) of relation (18) but
that is automatically satisfied since the total probability
2?rfPo(r, t P dP is conserved under the action of Eqs. (5}
and (10). This completes the evaluation of the quasi-
steady-state distribution of amplitude fluctuations in a
single-mode laser.

( i
e&8(eie&e' 1+ 2 (29)

On combining Eqs. (28) and (29), it becomes clear that
after N complete round trips, the expectation value of the
field phasor will have changed from its initially sharp

i 80
value of e ' to

(e' & =e 'ex —N dt' e (30)

in which the subscript of the angular brackets represents
the time at which the average of the enclosed quantity is
evaluated. Equation (28) describes the decay of the aver-
age value of the field phasor as a function of time during
each round trip. Thus, if one were to begin with an en-
semble of lasers in the quasisteady state with a precisely
determined phase 00 at the start of a pass so that

~

(e' &0
~

=1, then at the end of that pass the phase of
one laser relative to any other would have randomly
changed, and the average (e' & would be less than 1 by
the factor exp[ —f o ( 1/r &, dt ')

Reflection from the mirrors, on the other hand, given
by transformation (10), implies the following transforma-
tion for (e' &:

B. Phase fluctuations and the spectral linewidth

We now investigate how the phase information of a
laser operating well above threshold in the quasisteady
state degrades in time due to spontaneous emission. In
this paper we assume that the phase and amplitude fluc-
tuations are uncorrelated. This assumption is justified
only for laser operation well above threshold (large ai ),
but fails suSciently near threshold.

Under this assumption, one may write the expectation
value of the positive-frequency part of the field as

( ie&
' 0 —(5 ikey)?— (31)

with the following definitions of the phase-diffusion con-
stant 8 and the frequency shift b9:

5:——I ( )
dt' and d'P:— (32)

In terms of the elapsed time t, Eq. (30) may be written
suggestively as

(t) & =(r "&= &&&& "& .

However, since the amplitude distribution Poss(&, t) re-
traces itself once every round trip, one may suppress (r &

from the time dependence of ( a( t }& on time scales much
greater than the round-trip time f'. Since the laser phase
diffuses significantly only over many round trips, this is
not an unreasonable restriction. Thus (a ( t ) & —( e '

By multiplying Eq. (5) by re' and integrating over dP,
one obtains during a round trip through the amplifying
mediuIn the following exact evolution equation for the
laser field:

The quantity 8 measures the rate at which the phase
inforInation of a stable laser is lost in time. Since the va-
lidity of the quantum regression hypothesis for our
present problem implies that Eq. (31) also describes the
time dependence of the field autocorrelation as a function
of the delay t, 5 also represents the linewidth of the laser
spectrum. In particular it is the half width of the
Lorentzian line shape of this spectrum. The quantity A0
is the frequency shift of the laser center frequency 0 due
to mirror reflections.

From Eq. (18) it becomes clear that for a»&1 (opera-
tion well above threshold), during a round trip
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1 (1—p')(e ' —1)1—
2a, f'(1 —p e '

)

(34)

In terms of the ordinary, unscaled variables, the
linewidth D is

(
1 1 1

a, (h')

—2Q I f

1— (33)
a, (a, /go+ 1)

in which use has also been made of Eqs. (19) and (23). On
substituting this expression into (32), one obtains

Equation (37) differs little from the usual Schawlow-
Townes linewidth, ' A /4n, in the limit of a perfect cavi-
ty, Q~~ (or, equivalently, p~l). In fact, even for a
moderately leaky cavity, since the product of the square
brackets in (35) may be shown to differ from 1 only by
terms of order 0(1—p ), the Schawlow-Townes result is
quite valid.

However, if one relates the linewidth to the observed
laser power P,», which is the power that leaks out of the
cavity, then the result (37) and the Schawlow-Townes ex-
pression differ by terms of order 0(1—p~} and thus quite
significantly for a poor-quality cavity. In terms of P,b„
the Schawlow-Townes linewidth obtained by previous
workers may be written as

' 1/2
(1—p'}(e —1)

4 A T( 1 p2eA T)
. (35)

AA'v(1 —p )

4P T
(38)

A more familiar form of expression (35) is obtained when
n, the average number of photons inside the laser cavity,
is introduced. This number is defined by the relation

' 1/2

while our expression (35) for the linewidth for the same
observed power is

—f [a, +rh(h)]Ch
0

(1—p )D =DsT 1+
p'

1 1

AT (39)

and, in view of Eqs. (23) and (26}, may be shown to have
the value

A
1

lnp'
AT

Then from (35) it follows that

D= 1+A lnp2

4n

(1—p )(e —1)
AT(l p e+T}

(36)

(37)

in which the mirror-loss factor (1—p ) may be replaced
by a nominal quality factor Q of the cavity, v/Q
=(1 p)/T. —

To illustrate these differences, consider the following

example of a low-quality cavity oscillating well above
threshold: p =0.90, A T=0.2. For this cavity D exceeds

DsT by over 5% for a given output power level. On the

other hand, for a given average power inside this laser

cavity, expression (37) differs from the Schawlow-Townes
linewidth A /4n by less than 1%.
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