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We have calculated the spin-exchange shifts of the ground-state LmF ——0 transition of a gas of hy-
drogen atoms in zero magnetic field from zero temperature up to temperatures of 1000 K. Taking
into account the hyperfine interaction during spin-exchange collisions we find shifts nonlinear in the
atomic linewidth and not compensated for by the usual methods of tuning the microwave cavities of
oscillating hydrogen-maser frequency standards. At room temperatures these shifts affect the H-
maser stability at the level of 5co/m=10 ". At cryogenic temperatures these shifts are large com-
pared to the potential thermal instabilities of liquid-helium-lined hydrogen masers. A detailed
study of these nonlinear shifts reveals several ways to reduce these new sources of frequency insta-
bility.

I. INTRODUCTION

The unparalleled frequency stability of the hydrogen
maser gives rise to numerous interesting scientific experi-
ments and techniques. Important achievements such as
submillisecond-of-arc angular resolutions in radio astron-
omy' and the detection of drifts of the earth's tectonic
plates as small as a few centimeters per annum are
unthinkable without the very-long-baseline inter-
ferometry technique which is founded on the ultrahigh
frequency stability of hydrogen masers. Also for physi-
cists the hydrogen maser has developed into an important
research tool. State-of-the-art hydrogen-maser instabili-
ties as low as one part in 10' are essential in experiments
such as the determination of the Stark shift of the hydro-
gen hyperfine splitting, and accurate verifications of gen-
eral relativity theory.

Despite these impressive accomplishments, even more
stable frequency standards would be extremely welcome,
not only to improve upon the above-mentioned experi-
ments and techniques, but also to open up new horizons
in fields as diverse as metrology, physics, astronomy, and
geodesy. An illustrative example is the fact that the best
atomic clocks available are not sufficiently stable to deter-
mine any irregularities in the period of the fastest mil-
lisecond pulsar discovered.

As pointed out a decade ago, a cryogenic hydrogen
maser might improve considerably upon the frequency

stability of a conventional (room-temperature) hydrogen
maser, thanks to the reduced thermal noise and cavity
pulling at lower temperatures. In 1984 Cratnpton et al.
reported maser operation of a solid-¹ coated hydrogen
maser at 10 K. Two years ago Hess et al. , Hurlimann
et al. , and Walsworth et al. reported the first observa-
tions of maser oscillation with liquid- He-coated walls at
temperatures near 0.5 K. For this type of cryogenic hy-
drogen maser a frequency instability limit due to thermal
Auctuations as low as two parts in 10' was anticipated by
Berlinsky and Hardy, leading to the exciting possibility
for an improvement in the state of the art of frequency
stability with almost 3 orders of magnitude. However, as
we pointed out already briefly in a previous publication, '

one may cast doubt on the realization of that large stabil-
ity improvement because of frequency instabilities associ-
ated with hydrogen-atom spin-exchange collisions.

Spin-exchange collisions between the hydrogen atoms
radiating in a hydrogen-maser frequency standard affect
the maser frequency in two distinct ways. They directly
shift the transition frequency, and they broaden the
atomic linewidth, which increases the frequency pulling
due to cavity mistuning. The usual theoretical treatment
of hydrogen atom spin-exchange collisions, "which treats
the hyperfine energy levels during the collisions as degen-
erate, predicts that the direct spin-exchange frequency
shifts are proportional to the atomic linewidth, as are fre-
quency shifts due to cavity mistuning. ' Tuning the cavi-
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ty so that the oscillation frequency is independent of
atomic linewidth (spin-exchange tuning) is predicted by
that treatment to cancel the direct spin-exchange shift
against the cavity mistuning shift and hence to leave the
oscillation frequency independent of collision rate. ' As
the collision rate is one of the most difficult parameters to
stabilize, such "spin-exchange tuning" methods have
been important to the development of hydrogen-maser
standards.

Including the hyperfine energy-level splitting to first
order in a semiclassical spin-exchange collision calcula-
tion predicts additional direct frequency shifts not pro-
portional to the total atomic linewidth, but rather pro-
portional to the collision part of the linewidth. ' This
leaves the spin-exchange tuned oscillation frequency in-
dependent of collision rate but offset by an amount pro-
portional to that part of the atomic linewidth not caused
by collisions. ' Measurements of this offset in a room-
temperature hydrogen maser agreed within errors with
the semiclassical estimate of the effect. ' The offset pre-
dicted by that calculation does not adversely affect the
stability of hydrogen-maser standards unless something
happens to affect that part of the linewidth not due to
collisions, such as a change of relaxation by motion of the
atoms through magnetic field gradients or a change of re-
laxation due to interactions with the storage surface.

We have recently done a fully quantum-mechanical
calculation of the direct shifts for cryogenic temperatures
taking into account the nonzero hyperfine energy-level
splitting. ' We found new effects which are nonlinear in
the collision rate and so produce not only an offset of the
spin-exchange tuned oscillation frequency, but also a
variation of the osci11ation frequency with collision rate
even after spin-exchange tuning.

In this paper we present a more complete description
of the formalism. In addition, we extend the results for
the additional direct shifts to a much larger temperature
interval so that their implications for hydrogen-maser
frequency standards operating at room temperature can
be investigated. Near room temperature these additional
direct shifts are small, but in contrast to the semiclassical
result, are highly nonlinear in the collision rate. We
show that the semiclassical approximation used for the
calculation of the direct shifts breaks down when the
inhuence of the exchange interaction on the orbital de-
grees of freedom cannot be neglected. At collision ener-
gies large in comparison to the strength of the exchange
interaction we show that the quantum-mechanical and
semiclassical results agree, in which case both predict
direct shifts linear in the collision rate.

A third aim of the present paper is to investigate in de-
tail the variation of the spin-exchange tuned oscillation
frequency with collision rate at cryogenic and room tem-
peratures. Although near room temperature the addi-
tional direct shifts are small, the variations of the spin-
exchange tuned oscillation frequency are large enough to
affect the relative stability of the maser at the 10 ' level.
At cryogenic temperatures variations of the spin-
exchange tuned oscillation frequency are orders of magni-
tude larger than the potential thermal instabilities of
liquid-helium-temperature maser standards.

In examining the variation of the spin-exchange tuned
frequency with collision rate we are able to propose vari-
ous strategies to minimize these new sources of frequency
instabilities. Several modifications of cryogenic
hydrogen-maser designs potentially reduce the depen-
dence of the spin-exchange tuned oscillation frequency on
the atomic linewidth by some orders of magnitude, yield-
ing the possibility of cryogenic hydrogen-maser frequen-
cy standards with long-term frequency instabilities close
to the potential thermal instability limit of 2 parts in 10' .

II. SPIN-EXCHANGE FREQUENCY SHIFTS
IN OSCILLATING HYDROGEN MASKRS

In this equation p is the 4&(4 one-particle spin-density
matrix in which the Greek subscripts take the values a, b,
c, and d, the ground-state hyperfine levels in order of in-
creasing energy e (see Fig. 1). The first term on the
right-hand side of Eq. (1) is the radiation term resulting
from the interaction of the atomic magnetic moments
with the rf cavity magnetic field. The second term on the
right-hand side represents all time-independent one-atom
terms such as wall collisions, finite cavity residence time,
and interactions with magnetic field inhomogeneities.

The third term on the right-hand side of Eq. (1), the
collision term, may be derived as follows. We start with
a system of 1V ground-state hydrogen atoms mutually in-
teracting via a central spin-dependent (singlet or triplet)
interaction enclosed in a large but finite volume L . At
the end of this derivation we take the limit L ~ 00. The
time evolution for the single-particle distribution matrix
F"' can be expressed in terms of the pair-distribution
matrix F' ' via the first equation of the quan-
tum-mechanical Bogoliubov-Born-Green-Kirkwood-

E/limo

5mF-0

4

FIG. l. Atomic hydrogen ground-state energy levels.

Our starting point for the derivation of the direct fre-
quency shifts is the evolution equation for the spin-
density matrix

1

d
P«'+ ~ (4 e~')P«'=P«'

I rad+P«'10+P~Ic' I cdt
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Yvon (BBGKY) hierarchy, ' which in some suitable
single-particle basis can be written

at

( Vkp, mnFmn k p
—

Fkp, mn Vmn, k'p ) ' (2)
p, m, n

Here H represents the single-particle Hamiltonian and V
the pair interaction. This equation may be converted to a
closed equation for the single-particle distribution matrix
by expressing the pair matrix at the right-hand side in
terms of the single-particle distribution matrix. To first
order in the hydrogen-atom density and assuming at
times long before a binary collision the absence of any
correlation between the atoms not due to particle indis-
tinguishability (molecular chaos assumption), the pair
density matrix in Eq. (2) may be written

in which 0'+' is the causal two-body Mdller wave opera-
tor, ' while the statistics sign e =+1 for a gas of hydro-
gen atoms, being (composite) bosons (e= —1 applies to
the case of fermions). To be more definite we work in a
single-particle basis I ~

n ) j in which the single-particle
Hamiltonian is diagonal (H

~

n ) =E„~ n ) ). Further-
more, we restrict ourselves to spatially homogeneous sys-
tems so that these single-particle states are common
eigenstates of the momentum operator and the hyperfine
spin Hamiltonian, n ) =

~
k„,v). We have E„=R k„/

2mH+c, and the single-particle density matrix is diago-
nal in the momentum indices. Transforming to the in-
teraction representation,

F„„=F„'„"exp (E„' —E„')t—

Fk&, mn = Q Qkt pq(Fpr Fqs +~Fps Fqr )+rs, mn

p, q, r, s

(3) we find

a—
kk'

m, n, p, q, r, s, l
[ V„I „0'm+„' (F „F,+EF,F „)0'„,+k'

I 0'k& pq(F—p„F, +eF,F „)O'„,+'„V „„,]exp AEt—

(4)

The "energy inelasticity" hE—:Ek —Ek. +E„—E +E,
E in the —exponent on the right-hand side can only re-

ceive a contribution due to the hyperfine energy-level sep-
arations since F, being diagonal in momentum, does not
couple between different kinetic energies. Terms with
DE+0 average out on time scales long in comparison
with the hyperfine precession time scale A/b, E. So, in the
long-time limit, we may restrict the summations on the
right-hand side of Eq. (4) to values
Ek +E +E Ek +Ep +Eq and replace the exponent by
unity. Assuming a dominance of either thermalizing col-
lisions with the walls or elastic collisions between the
atoms relative to inelastic collisions, the translational de-
gr;es of freedom are Boltzmann distributed as

Fm„=F„„„„=NPm (km)5„„p»,

y exp[i ( c,„—E, )t /R],

with the single-particle spin-density matrix p normalized
to unity, g p =1, and P (k) the Boltzmann distribu-
tion for free atoms with mass m also normalized to unity,
g„P (k„)= l. Using the identity

P (k)P (k')=P2 (k~k')P i~( —,'(k —k'))

and center-of-mass momentum conservation we may car-
ry out the summation over the center-of-mass momenta.
Taking the limit N~ ~, L ~ ~, N/L =nH ——const, and
after performing the angular integrations, we finally ar-
rive at

p, I, =&H g' p„„p..[(i+fan.k)(1+~.k)(i+~„.)(1+&„.)]'"

(6)

In this equation the prime on the summation sign indi-
cates the subsidiary condition c. +c.„+E =c„+c„+c.,
while Greek subscripts between curly brackets are a
short-hand notation for normalized (anti)symmetric two-
body spin states,

u13+ E( —I )'Pa
(7)

+2(1+5 p)

which for a gas of hydrogen atoms (@=+1) leads to
(anti)symmetric spin states for (odd) even angular

momentum numbers I. The s-matrix elements, defined
for the various angular momentum numbers so as to form
a unitary matrix in spin space, are to be evaluated for a
common kinetic energy Ek ——A k /mH in the entrance
channels jpvI and [p'v'), and the brackets ( )
denote thermal averaging over the wave number k. The
final result, i.e., the collision contribution to the spin evo-
lution [Eq. (6)], has already been presented in Ref. 10.

We study situations in which the atoms are stimulated
to radiate at one specific transition a~P. In that case the
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only nonvanishing off-diagonal elements of the spin-
density matrix are p &

and p&
——p*&. The one-particle

and collision terms in Eq. (1) contributing to the time de-
velopment of p &

are of the form

XG:~ ~, (9)

in which the complex coeScient I o
—i5coo generally de-

pends in a complicated way on the values of the diagonal
spin-density matrix elements p, but is independent of
p &. The complex coefficients G„~ & describe the contri-
bution of collisions in which a v-state atom makes a tran-
sition to the ~, state in colliding with an atom which is in
a coherent superposition of the a and P states. These
ratelike coefficients may be expressed in terms of complex
effective "cross-sections" cr „~ z using

G„~——&uo„z(E&)&,

with u =2k'k/ mHbeing the relative collision velocity. In
turn these "cross sections" are given in terms of S-matrix
elements via

o'„p g(Ek) = g(2l+1)
k

X[S(..ll.,l(Ek)S(p~ll p„l(Ek) —5.„] .

Upon substituting

p p(t)=p p(0)exp[i( p sE.)/"+—i5cu I ]t—(12)

together with Eqs. (8) and (9) in Eq. (1) for az'=aP and
neglecting for a moment the radiation term, we find for
the direct frequency shift 5' and the atomic linewidth I

5' =5No+5co~

r=r, +r, ,

(13)

(14)

in which the direct frequency shift 5', and line broaden-
ing I, due to spin-exchange collisions are related to the
"cross sections" cr„~ z via

i 5', —I,=nH& v & g p„„g[(1+5 ~)(1+5p~)
v A.

P pl o= ('o '5~o)P p

P.pl,
=nH p pg p„g Q(1+5 ~)(1+5p~)(1+5 „)(1+5p„)

G'„' ~ =5„~G~' ~ (no contribution from inelastic process-
es) and Gb' b =Gd' d, yielding

5', =nH& v &[(p„—p„)Ao+(p„+p„)A&+X2],

(16)

I,=nH &u &[(p„—p, )oo+(p„+p„)o'&+o2], (17)

with the real spin-exchange shift and broadening "cross
sections" A.; and o; defined in terms of the o.",
coefficients by

ac aci~0 +0=+c c O.
a a

ac ac ac&i =ac c+Oa a &d

ac'~2 ~2=0 d~d

(18)

(19)

(20)

with Vo (V, ) being the single (triplet) potential and Ps
standing for the projection operator on the subspace with
total electron spin S. Since these projection operators are
nondiagonal in the

I [aPI & basis we have to deal with
sets of coupled radial equations describing the H+ H
scattering wave function in the various channels. Calcu-
lations of this kind are easily carried out' at the low tern-
perature of 0.5 K, where the liquid- He-covered cryogen-
ic hydrogen maser is to operate: S-matrix elements need
to be calculated only at a relatively small number of ener-

gy values. For calculations at higher temperatures, such
as those necessary to obtain thermally averaged
frequency-shift cross sections for room temperature hy-
drogen masers, however, a coupled-channel approach be-
comes a tedious task. Fortunately, in this regime it is
possible to circumvent this task by means of the
degenerate-internal-states (DIS} approximation which
neglects the internal energy-level separation and replaces
the various internal energy levels c. by a common con-
stant e.p, in which case the equations can be decoupled in
transforming to a basis in which the total electron spin S
is a good quantum number. Splitting off factors contain-
ing the low-energy behavior leads to the result' '

The elastic S-matrix elements occurring in the expres-
sions for 0'„' follow from the Schrodinger equation
describing H+ H scattering with an effective central
two-body interaction consisting of singlet and triplet po-
tentials,

&Ial3}
I
V'«)II~5]&= r, &[a&I IP I [75I&V «)

S=0, 1

(21)

X(1+5 „)(I+5p„)]'i

Xo- (15)
l sII~P)( - P} l sl(-Pl

(QE s, s,+E —s.——sp)'—+'"
Here we have introduced the modified thermal averaging
o—:&uo &/& v &, with the thermally averaged collision ve-
locity & v & =(16k' T/nmH)'

In a hydrogen maser oscillating at low magnetic field
on the hmF ——0 transition with unperturbed atomic fre-
quency coo=(s, —s, )/~' there is only coherence between
the a and c states. Substituting ag=ac in the preceding
expressions we find at zero magnetic field

2i~s(E —2co)

, „,&[r5I IP IIa~I&.
s=o, i (E —2so}'+'"

(22}

Notice that we have some freedom in choosing a value
for cp. When dealing with elastic S-matrix elements

S» &I» &I
a suitable choice is to set 2cp equal to the inter-



38 SPIN-EXCHANGE FREQUENCY SHIFTS IN CRYOGENIC AND. . . 3539

nal energy in the specific channel under consideration
(2eo ——s +s&), which leads to the evaluation of singlet or
triplet phase shifts at an energy equal to the kinetic ener-

gy in the elastic channel considered. Substituting expres-
sion (22) with this choice of so for the elastic S-matrix ele-
ments in the o. ' coefficients on the right-hand side of
Eqs. (18)—(20}yields

ing. ' In view of the previous paragraph the direct shift
due to spin-exchange collisions is calculated using expres-
sion (16) with the result (29) substituted and Eq. (17) with
p„—p„=p substituted. For later use it is convenient to
split the oscillation frequency shift b,co as a sum of a shift
heep independent of collision rate and a shift hem, vanish-

ing at zero-collision rate,

(21 + 1 )sin(25) —25t),
2k I eye„

(23) boo =b coo+ hen, = (5coo+ QI"())+ (Q —Q )I, ,

with the dimensionless parameters 0 and 0 defined as

(30)

g(DIS) g(DIS) p
1

—2

(DIs)
O0'p

o' '= g ( —1) (21+ 1)sin (5O —5) ),

(24)

(25)

(26)

)7.)(p„+p„)+X2

rr)(pcc+Paa )+(72

Q:b, +y ( u—)A,o( 1+b, ) .

(31)

(32)

o(DIS) g (21+1}sin2(5! 5l )
I odd

(27)

5 (DIS) ( )X (DIS)(
p ) (28)

rendering the more complicated Eq. (16) of less interest.
However, as pointed out previously, ' although A,

&
and A, 2

are indeed small compared to A,p, in a H-maser
A, )(p„+p„) and A2 may be large compared to
Ao(p„—p„). The reason for this is that in having self-
sustained maser oscillation p„—p„ is strongly reduced
by transfer of energy to the cavity electromagnetic field,
yielding a strongly suppressed DIS direct frequency shift.
Moreover, retaining the radiation term in Eq. (1) for
KK =ac shows nH(p« —p„) to be proportional to the to-
tal atomic linewidth'

in which the phase shifts 5s are to be evaluated at a col-
lision energy E& fi k ImH. ——These equations are in
agreement with the results obtained by Balling et al.

On the basis of previous experience' ' one might ex-
pect that treating the hyperfine energy levels during col-
lisions as degenerate yields a very accurate description of
hydrogen atom spin-exchange collision processes down to
zero collision energy, so that the direct frequency shift
due to spin-exchange collisions is accurately described by
the well-known DIS result

Here 5coo is the direct frequency shift due to one atom
processes which in most cases is dominated by the shift
due to wall collisions. The combined effect of the shift
due to cavity pulling and the direct shift due to almost-
pure spin-exchange collisions on the H-maser frequency
is described by the parameter Q. The parameter 0 is a
measure for the additional effects of hyperfine-induced
spin-exchange shifts on the H-maser frequency. The DIS
value for Q vanishes (A, )

——A, z
——0), in which case spin-

exchange tuning the cavity, i.e., setting 6 so as to make
he@ independent of collisional linewidth, yields the fre-
quency shift purely determined by the shifts due to one-
atom processes such as wall collisions, hen=5(oo. Taking
into account the hyperfine level separation in a semiclas-
sical picture'" yields 0 to be nonzero but independent of
pcc+p„(1(,)

——o, =0). In this case the spin-exchange
tuning procedure leads to an oscillation frequency shift
being the sum of a shift due to one-atom processes and a
shift proportional to the contribution of one-atom pro-
cesses to the linewidth b,co=5coo+QI o. According to the
preceding analysis 0 is nonzero and depends in a compli-
cated way on collision rate via the collision-rate depen-
dence of the level population sum p„+p„, yielding the
oscillation frequency shift to depend on the collision rate
even after spin-exchange tuning.

nH(p„—p„)=y(1+6, )I (29) III. HYPERFINE-LEVEL POPULATION DYNAMICS

in which y is a constant dependent on cavity parameters
and 6 is twice the ratio of cavity mistuning to cavity res-
onance linewidth. This yields the possibility to compen-
sate the DIS direct shifts against shifts due to cavity mis-
tuning. ' These considerations make it necessary to take
into account hyperfine-induced effects in the calculation
of the direct frequency shifts. On the other hand, in the
equation describing spin-exchange line broadening [Eq.
(17)], only the terms having a nonvanishing DIS contri-
bution have to be retained. This is because even when
the hyperfine-induced cross section op is comparable in
magnitude to o), the quantity (p„—p„)oo can still be
neglected compared to (p„+p„)o, because

l
p„—p„ l

The shift b,co in the maser frequency is the sum of the
direct shift 5m and the shift I 6 due to cavity mistun-

As is evident from Eqs. (30)—(32), the evaluation of the
frequency shift hem requires knowledge of the value of
p„+p„. We determine this parameter starting from Eq.
(1), but now for the time evolution of the diagonal spin-
density matrix elements. We start by investigating the
rate of change of p„+p„. Using Eq. (6) we find for the
collision term on the right-hand side of Eq. (1) at zero
magnetic field

(p„+p..} l, «H=2[(Gbd o +Gbd +Gbd „)pbbpdd
2 2

~cc~bdpcc ~aa ~bdPaa

Gac bd(PaaPcc+ I P c l

')f

Using the unitarity property of the S matrix, the down-
ward spin-exchange relaxation rates are given by'
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6 II b
—— g (21 + 1)

2~%

mHk

I 2
Irbl)aP) k Irb)(aP) ~

(34)

(p«+p..)
l c«H 2(Gbd G bd)(p«+p. .)

+ Gbd [ 1 2(P +Po

(Pdd Pbb ) 1 ~

with

(36)

Gbd~ = bd~ac+ Gbd~aa + bd~cc

bd =Gac bd +Gaa bd +Gcc bd

(37)

(38)

We now turn to the remaining terms in Eq. (1) contrib-
uting to the rate of change of the level population sum

p„+p„. No contribution comes from the radiation
term. The one-body term, however, does contribute. An
important contribution to this term arises from atom flow
in and out of the maser bulb. Of the many possible other
one-body processes that may affect the level populations,
we include transitions due to motion through magnetic
field gradients both as an example of the complications
introduced by additional hyperfine transition processes
and as an example of the opportunities to use these pro-
cesses to diagnose or even "tune out" frequency instabili-
ties. We thus have'

Again using the dominance of thermalizing elastic col-
lisions over inelastic collisions, the upward relaxation
rates Gz& &

are related to the corresponding downward
relaxation rates 6 & & via a Boltzmann factor

=e
—(c +c&—c —c&j/k& T

6y5 ap e Gap y5

The level populations p„on the right-hand side of Eq.
(33) may be expressed in terms of p„—p„,p„+p„, and

pdd
—pbb. Furthermore, we use the fact that in oscillat-

ing H masers yI /nH is a small parameter (typically

y = 10 cm s) yielding
~
p„—p„~ && 1 and

~ p„~
«1, so that Eq. (33) can be approximated by

(Gbd ~bd )(Pcc+Paa )

+Gbd [1 '2(—pcc +Paa ) (p—dd Pbb )']

2nH—'rb[(P +P o ) (P +P )1

—2nH 'I [2(p„+p„)—1]=0 . (43)

Using the fact that the difference between the d- and b
level populations is only affected by relaxation due to
atom flow and Inagnetic gradients (not by the interaction
with the rf cavity magnetic field nor by spin-exchange
collisions), we have

p „—p =(p —p )r /(r„+r ) . (44)

Using this result, Eq. (43) reduces to a quadratic equation
in the single unknown p„+p„. Eliminating nH' in
favor of I, using Eq. (17) with (p„—p„)op-0 leaves
this equation quadratic in p„+p„with the partial relax-
ation widths entering the coefficients only in the form of
their ratios. We conclude that p„+p„(and hence 0)
depends on I b, I, and I, only in the form of a depen-
dence on two of their ratios, for instance, I, /I b and
r /r, .

The various spin-exchange relaxation rates contribut-
ing to 6 bd and Gbd may be calculated using the DIS
expression (22) in Eq. (34). A somewhat cruder approxi-
mation, " a high-energy version of the DIS approxima-
tion, consists of a complete neglect of the difference be-
tween the channel energies c +cp, cz+c&, and 2co in Eq.
(22) which, when substituted in Eq. (34), yields

Gbd-ac = Gac-bd = ~" ~(T 2

Gbd ~aa Gaa ~bd

(45)

in which I b and I are the contributions of atom flow
and magnetic field gradients to the atomic linewidth I
and p are the fractional hyperfine level populations of
atoms entering the maser bulb.

For stationary oscillation the total rate of change of
p„+p„must be zero, which again using

~
p„—p„~

«1 leads to

p ~o= —r (p —p ) —r (p„—p„),
p„~,= —r, (p„—p„)—I (p„—p„)

(39)

and

Gbd ~cc

G ( U )(—(DIS)+—(DIS))/2 (46)

(P Pdd )

p ~
o= —r (p —p„)—r (p„„—p„),

Paa I
P= rb(Paa Paa ) &

(40)

(41)

(42)

I

Gbd G bd (")(+ I +2~ 2 (47)

leading to a vanishing quadratic term in Eq. (43), with the
corresponding simple solution

1 Gbd [1 (pdd pbb)']+—2nH '—rb(p'„+p'. .)+2nH 'r
pcc paa+ —1 —1

Gbd +nH I b+2nH I
(48)

This high-energy approximation is valid only at collision energies which are large in comparison with the internal
energy-level splittings. Since at the operating temperatures of liquid-helium-lined hydrogen masers ( T =0.5 K) typical
collision energies are comparable in magnitude to the internal energy-level split tings [(sb +Ed

—E, —8, ) /kI)
=2Aicpp/kI) 0. 14 K], the solution of the more complicated Eq. (43) rather than Eq. (48) must in general be used as a
closed formula for p„+p„.
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IV. METHODS OF CALCULATION

As is clear from Secs. II and III, to determine the H-maser frequency shift (Eq. 30) we have to calculate several spin-
exchange collision cross sections and relaxation rates. We start with the inelastic processes. Substituting the DIS ex-
pression (22) in Eq. (34) we find'

' 21+12~ +E„i(/'E„+ s~+ c.p
—sr —ss

G p s
——g(2l +1) sin [5 (IE t) 60(E—„')])

1 mHk E

(49)

1 (1(DIS) 1S
t ~pI I ~pI

——S
I ~pI I ~pI +hS

I ~pI I ~pI (50)

When choosing 2so=e +ep in Eq. (22) the DIS elastic S-
matrix elements reduce to

with gl', =Ek+e +sp —2eo. As in Eq. (22}, we have

some freedom in choosing the value of 2Ep. The evalua-

tion of the relaxation rates amounts to a standard phase-
shift calculation for singlet- and triplet-potential scatter-
ing. In these and all further calculations we use "state-
of-the-art" singlet and triplet potentials, including adia-

batic, relativistic, and radiative corrections. Nonadiabat-
ic corrections are taken into account simply by replacing
the nuclear mass occurring in the adiabatic equations by
the atomic mass mH. " Choosing 2eo in Eq. (49) half-

way between the initial and final channel energies, i.e.,
2eo=(e +sp+s +as)/2, yields good agreement with

coupled-channel results (typical deviations below 1%).
The calculation of elastic processes is somewhat more

involved. In particular, the hyperfine-induced spin-
exchange frequency shift and broadening "cross sections"
(A, „A2, and 00) require the evaluation of elastic S-matrix
elements taking into account the hyperfine energy-level
separation. This can be done by taking the hyperfine
energy-level separation into account as a first-order
correction to the DIS approximation,

(55)

g (21 +1)1m[a,'*(S', —S' )/2
2k

+( —I)'&"(3Si+St)/2], (56)

g (2l +1)[1+(—1)'+']
2k2

X 1m[a'"(Si +So )/2],

g (21+1)[1+(—I)']Re(b "S'i ),
2k

(57)

(5&)

I

Here W(, ) is a Wronskian, 0' a Hankel-like free outgo-
ing wave with asymptotic behavior e' " ' ', and the
radial singlet (triplet) wave functions u 0 (u i ) are normal-
ized so as to have the outgoing part —S+O'. In a classi-
cal picture the first-order correction b S

I pI I pI arises due
to the finite separation of other hyperfine energy levels
(sr+as) from the total hyperfine energy s +op associat-
ed with the particular elastic channel under considera-
tion, which is felt when making back and forth transi-
tions to other hyperfine levels during the time that the ex-
change interaction is active.

Using Eqs. (50}—(53) we find for the hyperfine-induced
frequency shift and broadening cross sections

pI( p)(~k) y Ss(+k)( t+PI I ~s I [+PI )
S=0, 1

with

(51)
( DIS) ——&o

(DIS)02=02

(59)

(60)
2IS'(E)Sl(E):— ' s

and the first-order correction takes the form

~Si p)i p)(Ek}

=~'(& } 2 I &[ &I IP, —~, I Ix&J& I'
Ir ~I

X
E +Eg —E~ —Ep

2&~o

with the dimensionless quantity 4' defined by

P'p

4 haik o

l' =Pp

(52)

(53)

(54)

Classically speaking, this first-order treatment breaks
down when the collision time becomes large compared to
the precession frequency associated with the internal
energy-level splitting. The collision duration is large at
low collision energies and at narrow resonances, occur-
ring in the singlet channel at certain collision energies.
We were able to find out about the range of applicability
of the first-order approach under various circumstances
in comparing the first-order results with results obtained
with the coupled-channel analysis. This comparison fully
confirmed the preceding classical expectation: the agree-
ment of the first-order approach with the coupled-
channel method turned out to be excellent except for the
dominating I =0 partial wave at the low energies relevant
for the cryogenic H maser and at energies and I values at
which narrow resonances for singlet scattering occur.

The low-energy deviation for I =0 is most prominent
at collision energies below 2%coo, due to the fact that the
path in the complex plane which is followed by the elastic
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S-matrix element S,',=,, when varying the energy shows a
90' kink at E =2c, +2%cop originating from the threshold
in the cc channel felt in the aa channel at this energy.
This behavior is absent in the first-order calculation
which leads to S-matrix elements which all follow smooth
paths in the complex plane.

The deviation at singlet resonances turned out to be
most prominent for resonance widths roughly compara-
ble to or smaller than the hyperfine energy-level splitting
2ficoo T.he quantity 5'(E) characterizing the hyperfine-
induced correction to the elastic S-matrix elements is
then no longer small compared to unity, yielding a large
overestimation of hyperfine-induced effects. Fortunately,
we were able to avoid a time-consuming coupled-channel
calculation at narrow resonances by devising a modified
zeroth-order approach. This approach is based on the
fact that we have some freedom in choosing a value for cp
in Eq. (22) so as to make the first-order contribution to
the elastic S-matrix elements as small as possible. As is
clear intuitively, a good choice for cp at narrow singlet
resonances appears to be one which gives the first-order
correction to the two-body Hamiltonian

[cf. Eq. (51)]. The first-order corrections to the elastic S-
matrix elements take the form of Eq. (53) with 6'(E) re-
placed by

g(b E) ~ (G(+ ~, )) G(+ ~, ))
)—00

x(G" "'—G" ")dr, (64)

leading to the semiclassical expression for the hyperfine-
induced frequency-shift cross section A2(E),

)(s2C(E) =—,
' f Imt b, '(b, E)

X [ G')"' "'(b,E)

+Go("' ")(b,E)]]2~b db

with b the impact parameter, and neglecting hyperfine-
induced effects we find for the semiclassical (SC) elastic
S-matrix elements

~(Dts, sc) (b, E)= g G'+"' "'(b,E)( IaP]
~
Ps

~
IaP] )

s=p, 1

(63)

V'= g ~ ty5I )(e +e —2e )( Iy5I
~

Ir &I

(61) (65)

Gs
+' (b, E)—=exp I Vz(b, t)dt (62)

a vanishing expectation value in singlet spin space. The
calculation of the elastic S-matrix elements occurring in
the expression for o", „in zeroth order using this choice
for cp leads to the evaluation of singlet or triplet phase
shifts at energies shifted from the kinetic energy in the
particular elastic channel under consideration [Eq. (22)].
In view of the result that all narrow resonances occur at
energies which are large in comparison with the internal
energy-level splitting (a typical narrow resonance being
the v =11, 1=13 resonance at E=276 K), we may
neglect the energy difference F +Ep—2Ep compared to
typical kinetic energies in the denominators of Eq. (22).
This leads to an expression for the elastic S-matrix ele-
ments of the form of Eq. (51) but with the energy argu-
ment of the singlet or triplet S matrix on the right-hand
side replaced by Ek + c. + c&—2cp. Using this expression
for the elastic S-matrix elements in the o z' z coefficients
on the right-hand sides of Eq. (18)—(20) gives rise to non-
vanishing hyperfine-induced frequency shift and broaden-
ing cross sections. Comparison with coupled-channel re-
sults reveals that at narrow resonances these modified
zeroth-order results are almost indistinguishable from the
exact results.

It is of interest to compare the semiclassical results for
the hyperfine-induced frequency-shift cross sections of
Ref. 14 in some detail with our quantum-mechanical re-
sults. In the semiclassical straight-line calculation spin-
exchange collisions are modeled as spin evolutions under
the influence of time-dependent spin interactions origi-
nating from the triplet and singlet potentials as the parti-
cles move along the undeflected classical trajectories.
Defining the singlet (triplet) spin propagators Go (G) ) as

[cf. Eq. (57)]. The analogous expression for A, ,c(E) is
identical to the right-hand side of Eq. (65) except for the
replacement of the plus sign by a minus sign. However, it
can be shown that the imaginary part of A*G'&"' "' is
just equal to the imaginary part of A*Gp"' "', so that

vanishes. The origin of this cancellation can be
traced back to the neglect of the influence of the ex-
change interaction on the orbital degrees of freedom:
generalizing the preceding calculation scheme so as to
take into account the difference between the classical
singlet and triplet scattering trajectories would yield non-
vanishing values for A,

' This picture is confirmed by
the numerical results presented in Sec. V.

V. NUMERICAL RESULTS

We first consider the spin-exchange frequency shift and
broadening cross sections. Although the cross sections
kp, o &, and az have already been calculated by several au-
thors, ' we include them here because these previous
values for o.

&
differ quantitatively and qualitatively from

our values due to the neglect of hyperfine-induced effects
at low collision energies. Also due to the use of improved
potentials, our results for A,p, o, and o2 differ at low col-
lision energies from previous results.

In Fig. 2 the frequency and broadening cross sections
are given as functions of relative collision energy. A
prominent feature of Fig. 2 is the occurrence of cusps in
the A, &,

o.p, and o, cross sections at E =2Acop ——0. 14 K.
As discussed in Sec. IV, the origin of this behavior can be
traced back to threshold effects in the I =0 partial wave.
The corresponding cusp in the A,p cross section is invisible
at the scale of this figure since the main contribution to
this cross section comes from the DIS term which
behaves smoothly as a function of energy. The A,2 and o.

2

cross sections vanish at zero collision energy and show no
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FIG. 2. Spin-exchange frequency shift and broadening cross
sections for low collision energies.

cusp behavior as they have no 1=0 contribution. All
other cross sections diverge as E ' at low collision en-
ergy. For the 0.

&
cross section this is in contrast to the

finite value at zero collision energy, expected on the
basis of DIS considerations.

In Fig. 3 the thermally averaged frequency-shift cross
sections are shown as functions of temperature. The
low-temperature behavior in this figure corresponds to

the low-energy behavior in Fig. 2. The cross section 0., is
strongly reduced at high temperatures due to a cancella-
tion of contributions from subsequent I values [see Eq.
(19)]. Although a semiclassical theory predicts A, , to van-

ish, ' we find k, to be comparable in magnitude to A,2,
even at temperatures as high as 1000 K. This in contrast
to o.

&, which is negligible compared to P2 at T =1000 K,
which by itself would suggest that the semiclassical
theory predicting cr, to vanish is applicable at this tem-
perature. Calculating A,

&
and A, 2 fully quantum mechani-

cally as well as A,2 semiclassically assuming straight-line
trajectories, we find that A.

&
as well as the difference be-

tween the semiclassical and quantum-mechanical values
for A, 2 both become small in comparison with A, 2 (Fig. 4)
when collision energies become large in comparison with
the typical strength of the exchange interaction (a few
eV), as may be expected from the picture described
above. In this way we arrive at the conclusion that the
applicability of the semiclassical straight-line calculation
scheme is restricted to collision energies above a few eV
(corresponding to temperatures = 10 K).

To determine the effective spin-exchange relaxation
rates Gb& and G b& playing a role in the dependence of
p„+p„on H-atom density, we have to calculate the DIS
values of several spin-exchange relaxation rates 6~&
In Fig. 5 the rate constants corresponding to the allowed
downward spin-exchange transitions at B =0 are present-
ed as functions of temperature. Also, the effective rates
Gb& and G &z are shown. The figure clearly shows
that the rate constants involving odd I values only are
completely negligible at sub-Kelvin temperatures, but be-
come increasingly important at temperatures above 1 K.
Note that the difference Gbz —6 b„, which vanishes in
the high-energy approximation, is negligible compared to
Gb& only at temperatures well above 1 K.

Using the values of X, , A, ~, o, and o.
2 displayed in Fig.

3, we are able to determine the dimensionless frequency-
offset parameter 0 [Eq. (31)]. Figure 6 shows 0 for two
different values of p„+p„as a function of temperature.

1019

E 1020

O

4J

10
21

1022

-23

10

I I I I I I I I I I I ( I

23

-24
10

10 2 10-1 10

T(K)

101 10 10'

FIG. 3. Thermally averaged values of the frequency shift and
broadening cross sections.

10-25

104 10'
E(K j

10

FIG. 4. Values of A, l and A, & resulting from the quantum-
mechanical calculation and the deviation of the semiclassical
value for A, 2 with the quantum-mechanical value as functions of
energy.
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tuning, which leads to an decrease in the accuracy of the
cavity-tuning procedure. In the following we neverthe-
less make use of the nonlinearity parameter = since it
provides a fundamental lower bound to instabilities in the
oscillation frequency due to variations in the collision
rate.

We have only the temperature as a single adjustable
parameter available to reduce the nonlinear direct shifts

by the second strategy; reducing the dependence of 0 on

p„+p„. As is already clear from Fig. 9, higher cryogen-
ic temperatures of about 10 K reduce the nonlinearity pa-
rameter roughly by a factor of 10. In this respect neon-
surface hydrogen masers operating near 10 K hold some
promise although solid neon surfaces are harder to repro-
duce and maintain than superfluid helium surfaces. The
dependence of 0 on p„+p„can be completely eliminat-
ed at temperatures at which A, &@2—o &A,2 vanishes. This
occurs at very low and very high temperatures, as well as
at T=7.6 K and T =77 K (Fig. 6). From these, the
low-temperature limit and the 7.6 K temperature would
in principle hold some promise for achieving an ultra-
stable hydrogen-maser standard because at these temper-
atures spin-exchange relaxation cross sections are low
enough that collisions are not likely to limit the radiated
power at achievable hydrogen-atom fluxes. However, the
operation temperature of 7.6 K is unsuitable for
hydrogen-maser standards as it seems unlikely that any
wall coating suitable for operation at this particular tem-
perature exists. Also, the T~O limit is unsuitable not
only because of the problem of confining ultracold atoms
without disturbing the hyperfine frequency, but also be-
cause in this limit the magnitude of 0 exceeds unity,
yielding for the cavity mistuning parameter required by
the spin-exchange tuning condition 0=0 a value of or-
der 1, which is unrealistic since the cavity mistuning 5 is
limited to values

~

b,
~

&& l.
There are several ways to reduce the dependence of the

maser frequency on collision rate using the third strategy;
reducing the dependence of p„+p„on collision rate.
For instance, when working at high atom densities so
that nHGb„» I b+I, Eq. (43) yields a strongly re-
duced dependence of p„+p„on collision rate. This can
be seen clearly in Fig. 10, which shows the nonlinearity
parameter for various values of I, /(I „+I ) as func-
tions of I b/(I b+ I ): for fixed values of I b/(I b+I )

the nonlinearity parameter decreases sharply with in-
creasing I, /(I b+I }. Another important feature of
Fig. 10 is the large dip in the nonlinearity parameter for
I b/(I „+I ) =0.35. This dip results from the fact that
at this value for I b/(I b+ I ) for pdd —pbb

———,
' the level

population difference 2(pdd —
pbb ) =0.35 [Eq. (44)], which

is just equal to the value of

bd~ G~bd )/Gbd~

at T =0.5 K. Substituting

(Pdd Pbb) +(Gbd~ G~bd)/ bd~

10 =

r/(rb r )

10

10"

105
0 02 0.4 0 6

l b/(I b+ I ~)
0.8 1.0

FIG. 10. Nonlinearity parameter = with varying
I b/(1 b+I ) for various values of I, /(I b+I ) at T =0.5 K.

together with p„+p„=—,
' in Eq. (43) yields the level pop-

ulation sum p„+p„=—,
' independent of collision rate.

This gives rise to a modified tuning procedure which in
principle annihilates the collision-rate-dependent oscilla-
tion frequency shift A~, completely. The essence of this
tuning procedure is first to set the magnetic field inhomo-
geneities so as to make 0—0 [Eq. (30)] independent of
collision rate before applying the usual spin-exchange
tuning procedure. The dependence of 0—Q on I, can
be monitored by determining the oscillation frequency
and the total linewidth [which can be determined experi-
mentally from variations hen of oscillation frequency with
cavity mistuning b„as shown by Eqs. (30) and (32)] at
three different collision rates: if the oscillation frequency
depends nonlinearly on total linewidth at these three
points, 0—0 still has some dependence on collision rate.
For 0—0 independent of collision rate the usual spin-
exchange tuning procedure yields 0=0 and hence a van-
ishing collision rate dependent shift, Aco, =0.

Even when Leo, is completely removed, we still have to
deal with the collision-rate-independent shift
a~, =5~,+or, =6~,+nr, . For a He-lined hydrogen
maser operating at a temperature T =0.5 K Berlinsky
and Hardy predicted that the shift 5coo could be kept
constant against thermal instabilities to within 1 part in
10' . The second term contributing to hcoo seems more
critical. For p„+p„=—,

' and T =0.5 K we have
0=0.07 (Fig. 6}. This value implies a maximum allowed
instability in the linewidth not due to collisions as low as
5I 0

——3. 10 s ' in order to achieve a frequency instabil-
ity of 2 parts in 10' . lt seems unlikely that all line-
broadening processes contributing to I 0 (atom flow,
motion through magnetic field gradients, wall collisions,
Doppler broadening, etc.) can be kept stable within this
limit.

At room temperature 0=0.0002, more than two or-
ders of magnitude smaller than at T =0.5 K. In order to
achieve a frequency instability of 1 part in 10' the
linewidth not due to collisions must be kept stable within
approximately 0.05 s
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