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Emission spectra of an atom in a cavity in the presence of a squeezed vacuum
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We have investigated the interaction of a single atom with a single mode of the radiation field in
an ideal cavity when the field is initially in a squeezed-vacuum state. In particular, we present re-
sults for the spectrum of the emitted light and for the time evolution of the squeezing inside the cav-
ity. Our results contrast sharply with previous studies of single two-level atom interaction with a
continuum of squeezed-vacuum modes. In particular, the results are shown to be insensitive to the
initial phase of the atomic dipole relative to the squeezed field, and the squeezing is destroyed by the
coherent interaction, in a time essentially independent of the initial degree of squeezing. Most
features of the spectrum are very similar to those predicted for an initial thermal state, although the
two-peaked structure associated with vacuum-field Rabi splitting is more apparent for a squeezed
state with a small average number of photons than for a thermal state with the same number of pho-
tons.

I. INTRODUCTION

The interaction of an atom with an optical field in a
squeezed state was the subject of a large amount of
theoretical work in the past two years, coinciding with
the first experimental observations of squeezed light. '

Gardiner calculated the spontaneous decay of an atom
in a squeezed-field environment, and Carmichael, Lane,
and Walls have recently obtained the fluorescence spec-
trum of such an atom. Ritsch and Zoller have in turn
calculated the absorption spectrum of this system.

In all these studies the ordinary vacuum seen by the
atom is replaced by a multimode "squeezed vacuum:"
That is, every single mode of the field with which the
atom might interact (except for the driving and probe
fields in the fluorescence and absorption problems) is as-
sumed to squeezed. Alternatively, as pointed out by Gar-
diner, in the dipole approximation it is enough to as-
sume that the atom is interacting with a pure, squeezed,
dipole wave. Some very interesting deviations from the
ordinary decay and ordinary emission and absorption
spectra in a normal vacuum environment are obtained
under such conditions. In particular, the decay rate of
the atomic dipole is seen to depend on its phase relative
to the squeezed field, and the width of the absorption and
emission spectra also depends on the relative phase be-
tween the driving coherent field and the squeezed field.
Subnatural linewidths are possible for some cases.

However, the experimental realization of such a
squeezed-vacuum environment for an atom in free space
may prove diKcult. It seems natural to investigate, as an
alternative problem, what happens when the atom in-
teracts with a single-mode squeezed field in a cavity,
Changes in the characteristics of the spontaneous radia-
tion have recently been predicted for a collection of
atoms in a laser cavity into which squeezed light is inject-
ed to couple to the lasing mode. These atoms, of course,
still interact with a continuum of vacuum modes (in

directions other than that of the lasing mode). Instead,
what we propose to investigate here is the behavior of a
single atom in an ideal cavity which supports only a sin-
gle mode, i.e., the Jaynes-Cummings model with a
squeezed field.

The main difference between this system and the ones
investigated in Refs. 2 —4 is that it is a closed system,
where, if the cavity losses are negligible, the light radiat-
ed by the atom is eventually reabsorbed and reemitted.
As a result, the reaction of the atom back on the initially
squeezed field cannot be neglected. As we shall show
below, this leads to results substantially different from the
open (irreversible) systems. We should mention that
some work on this system already exists, although only
the time evolution of the atomic inversion has been previ-
ously reported. There is also related work on the genera-
tion of a squeezed field in a cavity by an atom initially ex-
cited, or in a coherent superposition of states. " Here
we concentrate on the emission spectrum of the atom in
the cavity, along the lines of the work by Narozhny,
Sanchez-Mondragon, and Eberly, ' ' who studied the
case when the cavity initially contains a coherent state.

The main difficulty with the assumption of a perfect
cavity is, of course, obvious: namely, that it is impossible
to observe the spectrum of the emitted light directly
without introducing some losses. We do not think, how-
ever, that this is a major problem, because some recent
work involving atoms in nonideal cavities' shows that
for small enough losses the spectrum of the transmitted
light is indeed very close to the one calculated for the
ideal cavity.

Our paper is organized as follows. In Sec. II we gen-
eralize some of the results of Ref. 13 to the case when the
single-mode field inside the cavity is in an arbitrary quan-
tum state. Then we specialize to the case of a "squeezed-
vacuum" state, which yields a somewhat unexpected re-
sult, namely, an insensitivity to the relative phase be-
tween the atomic dipole and the squeezed field, in marked
contrast to the results of Refs. 2 and 3. In Sec. III we
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show some of the calculated spectra and compare them
to those obtained for fields initially in a thermal or a
coherent state. The comparison is relevant because a
squeezed-vacuum field does have a nonzero average num-
ber of photons. We discuss the results in terms of the
spectra appropriate to initial pure-number states, present-
ed in Sec. II. In Sec. IV we illustrate the reaction of the
atom back on the field by showing how the degree of
squeezing of the field in the cavity evolves with time. Fi-
nally, Sec. V contains a discussion and conclusions.

II. SPECTRUM FOR AN ARBITRARY INITIAL
STATE

The system we consider here is essentially the Jaynes-
Cummings model: a single two-level atom interacting,
in the rotating-wave approximation, with a single mode
of the electromagnetic field. The well-known Hamiltoni-
an for this model is

H= ,'fico, oi—+%co,(a a+ ,')+A—A,(a o+o a),
where co, is the frequency of the atomic transition, co, the

I

&g, &Ia'(t)a(t')
I g, g) (2)

with the Fourier transform of the filter's spectral
transmission function taken at the times t and t'. In Eq.
(2)

I g) is the initial state of the radiation field, and
I g)

the initial state of the atom (which could be
I
a ), I

b ),
or a linear superposition of them).

The physical transient spectrum' is then given by the
expression

frequency of the cavity eigenmode,

a, =Ia&&a I-Ib&&bI

(
I
a ) and

I
b ) are the upper and lower atomic states, re-

spectively), o =
I

b ) & a I, and A, is the atom-field coupling
constant.

Exact solutions for the time evolution of the various
operators appearing in Eq. (1) (in the Heisenberg picture)
are available. ' ' We shall use them to compute the
spectrum of the radiation emitted by the atom, which we
take to be given by the convolution of the dipole-dipole
correlation function

S ((+~))= y p W+)(~)
n=0

(4a)

For an atom initially in the ground state, the result is in-
stead

S' '(co)= g P„+)T„'(co)
n=0

(4b)

with

&.*'(~)=—[ I
F'+'(p. p'. )+F.'*'( —p. ,p'. )

I

'

+ IF.'*'(p. —p'. )

+F.'*'( p. p'. )
I
'] . — —(5)

I

which can easily be shown to be equivalent to the time-
ordered expression used in Ref. 13. Here T is the time at
which the measurement takes place and 1/I is the filter's
response time.

We have used the expression for o(t) given in Ref. 12
to evaluate Eq. (3) for an arbitrary initial state

I g) of the
field (only the result for an initial coherent state was
given in Ref. 13). The details of the calculation may be
found in the Appendix. We find that the spectrum may
be expressed in terms of the photon number distribution
P„of the initial field state and of certain functions 9'„(co)
which are simply the spectrum for an initial pure number
state

I
n). For an atom initially in an excited state, the

result is

I

The functions F„'*'are given by

(3)

F„'+ '(p„,p'„)= 1+
2Pn

' 1/2

1+ ',
2Pn

i(q„+p, '„—~+~, )r zze —e
X I'+i(p„+p'„—, co+co, )

(6a)

' 1/2
( ), AV'n +1 , b,

Pn 2Pn

(p„+p„—+ )~ pz.
e —e

X
I +i(p„+p'„—co+co, )

(6b)

with the arguments

p„=[(6/2) + (n + 1 )A, ]'

p'„=[(b,/2) +nA, ]'~

(7a)

(7b)

Here 6=co, —co, is the detuning between the atomic and
the cavity frequencies. The arguments p„and p'„are
generalized Rabi frequencies for number states

I
n+1)

and In&.
As shown in the Appendix, if the atom is initially in a

coherent superposition of the states
I
a ) and

I
b ),

I P) =a
I
a ) +P I

b ), the spectrum is given by the gen-
eral result

oo

S(co)=—g I
a'& g I

n )[F„'+'(p„,p'„)+F„'+'(—p„,p'„)]+p'& g I
n+1) [F„' '(p„,p'„)+F„' '( —p„,p'„)] I

n=0

+(p„'~ —p„'),



3516 J. GEA-BANACLOCHE, R. R. SCHLICHER, AND M. S. ZUBAIRY 38

which is seen to reduce to Eqs. (4) in the special cases
when either a or P are zero, since the photon number dis-
tribution P„ is defined as

Equation (8) shows that in general the spectrum will

depend on the relative phase of the atomic wave func-
tions

~

a ) and
~

b ), because of the presence of interfer-
ence terms proportional to aP' and a'P. The phase of
aP' is the phase of the atomic dipole, and the interfer-
ence terms contain the difference between this phase and
that of the cavity field.

In the case of the initial cavity field being in a
squeezed-vacuum state, however, no such phase depen-
dence is obtained. This result follows immediately from
the expression of a squeezed-vacuum state in the basis of
photon number eigenstates:

1 )ne —in/

I k)sq. v~c. = g „'(tanhr)"
~
2n),

n —p cosh p 2"n!

(10)

where r is the squeezing parameter (r =0 for ordinary
vacuum).

Equation (10) shows that the only number states which
are found in a squeezed-vacuum state are those which
have an even number of photons (the alternative designa-
tion "two-photon coherent states" immediately comes to
mind at this point). This means that there is no value of
n for which both (n

~ g) and (n+1
~
g) in Eq. (8) are

nonzero, and thus there are no interference terms. The
spectrum (8) contains only terms proportional to

~

a
~

and P ~, the relative weights of
~

a ) and
~

b) in the in-
itial state. A statistical mixture of

~

a ) and
~

b) with to-
tally random phases would therefore yield the same spec-
trum as a phased coherent superposition.

This result is all the more surprising in view of the re-
sults reported in Refs. 2—4, where phase sensitivity plays
a major role. For instance, in Ref. 2 it was found that for
an atom excited into a coherent superposition and in-
teracting with a squeezed vacuum the decay rates of the
states I/&2( a)+e'~

~

b )) and 1/&2(
~

a) —e'~
~

b))
are different. Similarly Refs. 3 and 4 report different
linewidths for different relative phases between the field
which drives the atomic dipole and the squeeze field.

In contrast, the phase sensitivity is totally absent in the
problem at hand. This is obviously related to the two-
photon character of the squeezed state. The atomic tran-
sition is a single-photon transition, and our results sug-
gest that it cannot interact coherently with a single-mode
squeezed vacuum. All that matters is the number of pho-
tons in the field, which are absorbed or emitted one at a
time. Indeed, when the interference terms in Eq. (8) van-
ish, the result depends only on the photon number distri-
bution P„, that is, on the magnitudes of the coefficients
( n

~
g), and not on their phases.

It should be mentioned at this point as well, that the
insensitivity to the initial relative phase in this problem
extends also to the correlation functions of the form
( o cr ) and ( aa ) associated with the quadrature com-
ponents of the field: They also turn out to depend only

on
~

a
~

and
~ P

~

when the initial state of the field is
the squeezed vacuum (10).

For the remainder of this paper we shall concentrate
on the emission spectrum, with the atom initially excited.
The results for an atom initially in the ground state turn
out not to be very different qualitatively (except, of
course, when the initial field in the cavity is taken to be
the vacuum state, in which case nothing happens, since
the atom cannot absorb energy from the vacuum).

The spectrum (4a) is seen to be a weighted average of
the spectra 7„+' for pure-number states, with the weight
function being the photon number distribution. Many of
its features may, therefore, be understood from a con-
sideration of the spectra 7'„+'. These are plotted in Fig.
1.

The spectrum for the initial state
~

0) in Fig. 1 shows
the so-called vacuum-field Rabi splitting. The function
F„'+' in Eq. (6a} has a peak when co —co, =p, „+iu„'. In the
spectral function 9'„+' [Eq. (5)] the arguments p„and p'„
appear with all the possible sign combinations, which
suggests that in general the spectrum for an initial state

~

n ) will consist of four peaks. For the state 0), how-
ever, and in the absence of detuning (b, =O}, we have
p'„=0, so that p„—p„' =p„+JM'„and —p„—p„' = —p„
+p„', giving only two peaks at co —co, =+A..

For any other initial number state
~

n ), n&0, the
spectrum shows either three or four peaks. For n & 1, the
two peaks obtained for n =0 split into two separate peaks
each, one pair at co —co, =+(iu„+iM'„) moving away from
the cavity frequency co, as n increases, while the other
pair at co —cp, =k(iM„—iu'„) move closer together (to-
wards eo —co, =O) as n increases. The three-peak spec-
trum arises for large photon numbers when the latter two
peaks are eventually combined into what appears as a sin-

gle peak for a finite-resolution spectrometer [the width of
the peaks in Eq. (6) is equal to I', the spectrometer's reso-
lution]. The other two peaks are centered at what is
essentially the Rabi frequency 2A&n for ,a field of ampli-

FIG. 1. The functions 3"„+'(co) which appear in Eq. (4a), and
which correspond to the spectrum of the light emitted when the
initial state of the field is a pure number state

~
n ). The interac-

tion time T =20k, ', and the assumed resolution of the spec-
trometer I =0.02K,, so that I T=0.4. No detuning (5=0).
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tude )/n . In this way, for large photon numbers, one ob-
tains the basic shape of the (semiclassical) three-peaked
spectrum of resonance Auorescence.

We are especially interested in any nonclassical effects
that the system with an initially squeezed state might ex-
hibit. We turn to this in the next section.

III. EMISSION SPECTRA

Figure 2 shows the emission spectra, calculated from
the equations presented in the previous section, for a sin-
gle atom in a cavity which initially contains a squeezed
vacuum state, a thermal state, and a coherent state, re-
spectively. We have calculated the spectra, in each case,
for different values of the average photon number in the
initial state. This is because, from the discussion in Sec.
II, we expect the photon number distribution to play a

decisive role, so the spectra for the different states should
be compared for the same average number of photons.

For the squeezed vacuum, the photon number distribu-
tion is easily obtained from Eq. (10). The average num-
ber of photons increases with the squeezing parameter r:
it is given by (n ) =sinh r. In terms of this average
value, the photon number distribution may be written as

1 (2n}! (n )
&(n )+1 2'"(n)}' (it )+1

n

p thermal (it )
&n)+1 &n)+1

n

(12)

P2„+)——0 .

In this form, the photon distribution resembles very
much that of a thermal state,

1000

1000

01

l00

FIG. 2. Emission spectrum for the cavity field initially in a
squeezed-vacuum state (a), thermal field (b), and coherent state
(c), plotted in each case as a function of the frequency and the
average number of photons (n ) in the field. Squeezed-vaccum
state: (n) =sinh r; thermal field: (n) =[exp(fico/kT) —I]
coherent state: (n ) =

~

a
~

~. Interaction time T=20A. , resolu-
tion of spectrometer I =0.2A, ', so that I T=4. No detuning
(6=0). Note the scale for (n ) is different in (c).

except for the absence of all the odd terms, and the pre-
factor (2n)!/2 "(n!) in (11). This factor decays for in-

creasing n, although very slowly (from Stirling's formula
it may be seen to go as n '~ ). For n =0, 1,2, 3,4, . . . ,
its value is 1, 0.5, 0.38, 0.31, 0.27, . . . , respectively. This
gives the distribution (11)a rather sharp peak at n=0 (re-
gardless of the value of ( n ), P4 is already down by a fac-
tor of 1/e from Po ), but a long tail, very similar to that of
a thermal state.

This simple observation, together with the spectra for
the pure number states

~
n ) plotted in Fig. 1, allows one

to readily understand the main features of Fig. 2. In par-
ticular, one can see that the vacuum-field Rabi splitting
peaks in the spectrum for the squeezed-vacuum field per-
sist for larger values of the average photon number than
they do for the corresponding thermal state. This is due
to the larger relative weight of the vacuum state in the
distribution (11) than in the distribution (12}.

As the average number of photons increases, the distri-
butions (11) and (12) become broader [b,n increases as
2(n )((n )+1}for (11}and as (n )((n )+1) for (12)], so
more of the functions V„shown in Fig. 1 become impor-
tant in the calculation of the spectrum (4a). Thus eventu-
ally the double peak of the vacuum Rabi splitting is
washed out. Yet, because the photon distributions (11)
and (12) are very broad (and have no peaks, other than
the one at n =0), no coherent sidebands emerge for either
the squeezed or the thermal states.

The picture is different for a coherent state. Here the
photon number distribution does have a maximum,
around n = ( n ), and a much smaller average width b, n,
of the order of (vn ) (as opposed to —(n) for the
squeezed-vacuum and thermal states). The relative
weight of the vacuum state diminishes rapidly as the
average number of photons increases: Thus the double
peak in the spectrum associated with the vacuum disap-
pears much more rapidly (note the different scale used for
the coherent state in Fig. 2). Coherent sidebands do ap-
pear, centered, as Fig. 2 shows, near ni —ni, = A,2(vn ).
The width of the sidebands rejects the width of the pho-
ton number distribution: About v'( n ) states, around the
state having n =(n ), contribute to the final spectrum,
and their sidebands are all at slightly different values, as
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Fig. 1 shows. [We have

((.)*«.))'"=«.)+-,',
so the width of the sidebands in Fig. 2(c) should be of the
order of 2A, , independent of ( n ) .]

The width of the central peak, on the other hand, is, as
before, determined only by the resolution of the detector.
This means, of course, that even when the spectra in Fig.
2 look "classical" they really are not. The usual Mollow
spectrum for an atom in free space' has precise values
for the ratio of the heights of the peaks, which are
broadened by the level lifetime (i.e., spontaneous emis-
sion). The different ratios of heights and the subnatural
linewidths, which are obtained in the cavity case, arise
from the suppression of spontaneous emission in all of the
other field modes.

Yet, perhaps the most striking of the nonclassical
features is the vacuum-field Rabi splitting. Our con-
clusion is that, if the average number of photons in the
cavity is nonzero, this effect will be easiest to observe if
the initial field is in a squeezed-vacuum rather than a
thermal state, and least visible for an initial coherent
state (compare, for instance, in Fig. 2 the spectra corre-
sponding to (n ) =10 for the three kinds of states), but
that it is inevitably washed out for large average number
of photons (also for pure number states, as Fig. 1 shows).

Figure 2 was computed for zero detuning between the
cavity and the atomic frequencies. Figure 3 shows what
happens when the field and the atom are not in reso-
nance, for the case when the initial state is a squeezed
vacuum. The detuning has been chosen to be
cu, —co, =5k, . It is seen that when the number of photons
in the field is small, the spectrum is mostly centered
around co=co, +5k, =co„but that as (n) increases the
stimulated emission peak at co=co, becomes dominant.

This transition from mostly spontaneous to mostly
stimulated emission can also be seen when the calculation
is done with a coherent or a thermal state. When com-
pared with a thermal state, the squeezed-vacuum spec-
trum shows more structure around the fluorescence peak

IV. TIME EVOLUTION OF THE SQUEEZING IN
THE CAVITY

The dipole-dipole correlation function (3) provides the
spectrum of the light emitted by the atom. This is added
to the field originally present in the cavity and modifies it.
In this section we investigate how the properties of the
total field in the cavity change as a result of the interac-
tion with the atom. We find, in particular, that an initial-
ly squeezed field does not remain squeezed for very long.

The density operator of the field as a function of time is
given by

pf (t)=cos[A.t (aa )'~ ]pf (0)cos[A, t (aa t)'~2]

t sin[At(aa )'~ ]
t 1n(aa )

sin[At (aa )'~ ]X

(aalu)1/2

a . (13)

For a squeezed-vacuum state the uncertainty in the
quadratures a& and a2 is given by the expressions

(b,a, ) = —,'+ —,'((ata)+ —,'(a +a )), (14a)

(~a )'=-,'+-,'((a a) ——,'(a'+a ')) . (14b)

Using the form (13) for the density operator, and the ini-
tial condition p(0)=

~
g)(g~, where the state

~
g) is a

general state of the field, we find

(the oscillations in the high-frequency tail of this peak in

Fig. 3 do not show for a thermal field); also, this peak sur-
vives for larger values of (n ) in the squeezed vacuum
than in the thermal state. This is due again to the larger
weight of the states with low photon numbers in the
squeezed-state distribution (11). For a coherent state, on
the other hand, the fluorescence peak obtained for small
( n ) never quite disappears as ( n ) is increased, but,
rather it is shifted and eventually turns into a sideband at
a distance

2[(to, —to, ) /4+A, (n )]'~

away from co, .

(a a) =(n )+ g P„sin (Attn+1),
n=0

(isa)

(a )= g (n+2~$)(g~n)&n+2
n=0

X [&n +leos(kt&n +3)cos(it&n +1)
+&n +3sin(k. t &n +3)

Xsin(A, t+n+1)] . (15b)

1000

FIG. 3. The spectrum for an initial squeezed vacuum when
the detuning 6= 5A, (other parameters as in Fig. 2).

For a squeezed vacuum, the coefficients (n
~
g) are

given by Eq. (10). In the curves plotted in Fig. 4, we have
assumed that we start with a state squeezed along the a,
axis, which corresponds to taking /=0 in Eq. (10). Thus
at t=0 the quadrature a, has a (squared) uncertainty
below the vacuum value —,', and a2 a correspondingly
larger one. Note that for an initial real vacuum state,
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teracting with a squeezed field anymore, This is very
different from the situation envisioned in Refs. 2-4,
where the reaction of the atom on the field is essentially
negligible: The emitted photons escape the system and
do not modify the multimode squeezed vacuum substan-
tially. In our system, instead, the emitted photons are
trapped within the cavity, and they destroy the squeezing
very rapidly. A larger squeezing does not survive any
longer, essentially because the larger average number of
photons induces a larger emission rate.

V. DISCUSSION

0
0

1

10 20

FIG. 4. Evolution of the squeezing in the cavity as a function
of the interaction time. Atom initially in upper state, no detun-
ing. The average number of photons in the field initially is (a)
0.0, (b) 0.1, (c) 1.0, (d) 2.0. The quadrature a& is assumed to be
squeezed initially. The field in the cavity is squeezed when ei-
ther (ha&)' or (ha2) drops below the value 4, which corre-

sponds to the minima of curve (a) in both figures (initial vacuum
state).

(15b) is equal to zero and (15a) gives a purely sinusoidal
time dependence with frequency X, so that for that case
((n ) =0 in the figure) the noise in the quadratures, given
by Eq. (14), oscillates between the values —,

' and —', .
The field in the cavity is only squeezed when the noise

in one of the quadratures falls below the value —,'. The
curve for an initial vacuum state, therefore, never exhib-
its squeezing, but it may be used as reference. We see
that only for very low values of the average photon num-
ber in the initial state is the field squeezed at any times
beyond the first few instants. Since larger values of the
initial squeezing correspond to larger average photon
numbers, we can see that the larger the initial squeezing
is, the less squeezing is found at later times. In fact, for
(n ) )0.3 the field never exhibits squeezing again, after
the initial squeezing disappears. (In other words, we have
not observed any "revivals of the squeezing" for
(n) &0.3).

This is in contrast with the results obtained in Ref. 8,
where the initial state was taken to be a coherent state.
There the field was seen to develop spontaneously some
small amount of squeezing, which disappeared during the
"collapse" times but returned during the "revivals. "

We see that the coupled evolution of the atom and the
field substantially alters the properties of the latter, so
that after a time of the order of 1/k the atom is not in-

The main conclusion that can be drawn from the re-
sults presented here is that the evolution of the atom-field
system composed of a two-level atom in an initially
squeezed field is dramatically different when the system is

placed in a single-mode cavity than it is when the system
is open, and the squeezed field is broadband.

The main differences are two. First, there is the total
lack of sensitivity of this system to a possible phase
difference between the atomic dipole and the squeezed
field, due to the lack of coherent coupling between a
single-photon transition and the two-photon state of the
field that is a squeezed vacuum. Second, is the fact that
the squeezing of the field is destroyed by the coupling
very rapidly (in a time of the order of A, ') regardless of
the initial amount of squeezing present. This may be also
due to the mismatched nature of the coupling.

The question immediately arises of how different the
results would be with a two-photon transition: for in-
stance, the generalized Jaynes-Cummings model where
the transition is mediated by two photons of the cavity
field and the atom consists of either two' ' or three
levels. These two-photon atomic systems indeed exhibit
the phase sensitivity lacking in the present model. We
will present the properties of the light generated in such a
system in a future publication.

Concerning the spectrum of the emitted light, we have
shown that it is determined solely by the photon statistics
of the squeezed-vacuum state, and that it, therefore, has
many features in common with what would be obtained
for an initial thermal state (many more than for an initial
coherent state) due to the broad nature of the photon dis-
tribution. The fact that the vacuum state has a larger rel-
ative weight in the makeup of a squeezed vacuum, how-
ever, allows for certain features, such as vacuum Rabi
splitting, to be more prominent in the squeezed-vacuum
state than in a thermal state with a comparable photon
number.

We note that the similarity between the effects of a
squeezed state and of a thermal state has already been
realized in other physical systems. ' (The results of Ref.
21 do suggest that the differences between a squeezed
vacuum and a thermal field should be much more pro-
nounced for the generalized multiphotons Jaynes-
Cummings model than for the one-photon transition
model considered here. ) In the present system, the simi-

larity between squeezed and thermal field was already
pointed out by Milburn in his discussion of the popula-
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tion inversion (revivals). We have shown that this is due
to the similarity between the respective photon distribu-
tions, and we expect that because of the nature of the
coupling, a large number of effects in the interaction of
two-level atoms with single-mode squeezed vacuum will,
indeed, depend on the photon distribution only, with no
coherent (off-diagonal) contributions.

Note that this is not necessarily the case in another
type of system, the intermediate (and most common) case
of an atom which interacts with a single-mode squeezed
field, in a cavity perhaps, but which has also other decay
channels available (to nonsqueezed vacuum modes). All
the systems which are now used to generate squeezed
light are of this third type, as are those studied, for in-
stance, in Refs. 5, 9, and 11. In these systems the atom
and the field may strongly influence each other, while re-
taining squeezing and phase sensitivity.

( C2+ g2 )1/2 (A3)

e' =cosCt +i C,ict . sinCt
C

(A5)

where both cosCt and sinCt/C are even functions of C
and therefore diagonal in the basis of atomic eigenstates
and photon number states.

One can establish the following two basic results:

It is clear that y and C commute with each other. It is
also clear that C is not diagonal in the basis of the atomic
states and photon number states, but C [and, hence, by
Eq. (A3), y] is. We have, from Eq. (A2),

C =—,'b, +A, (a a+Ia)&a I). (A4)

The operator e' ' which appears in Eq. (Al) may be writ-
ten as

APPENDIX

The spectrum (3) may be calculated from the exact
solutions for the Jaynes-Cummings model due to Ack-
erhalt' and presented in Ref. 12. Using the notation of
that paper, with minor modifications, the operator o (t) is
given by

—1CO t LCt sinyto(t)=e 'e' ' cosyt+iC o(0)
y

o(t)
I
n, a ) =e

—

tlat

;g sing„t
cosy„t-

Pn

xe'c'I n, b &,

—ice t slnpn t
o(t)

I
n, b)= ie —'Av'n, e'c'I n —l, b) .

Pn

(A6a)

(A6b)

.
&

sinyt

y

where C and y are operators, given by

C = ,'b, o2+A.(a o—+oa)

and

(A 1)

(A2)

Here
I

n, a ) (
I
n, b ) ) denotes a state with n photons and

the atom in the upper (lower) state, and i2„and p'„are the
functions of n defined by Eqs. (7). Equations (A6) show
how the calculations of average values such as (3) are re-
duced in any case to the calculation of the average value

iC(t2 —t&) .of e ' ' in the lower atomic state, which using (A5)
and (A2) can be seen to reduce to

ic( —1, i6 sino' (tl 2)
&m, b

I
e ' '

I
n, b) =5„cosy'„(t, t2)+—

2 p
(A7)

Consider now a general initial state of the system, (,1( ):

I k 0& = g & n
I k&(a I

n, a &+p
I

n, b &» (A8)

where
I
a

I
+

I p I
= l. Using the results (A6) and (A7) we obtain, for the dipole-dipole correlation function (3),

&k 0 I
o'«)«t )

I 0 0&= & [ I
&n

I k& I'I a
I

'&n a
I
a'«)a«»

I
n a &

n=0

+
I

& n+1I k& I

'
I p

I

'&n+1 b
I
o'(t1)o(t2)

I
n+1 b &

+ap'&n
I g) & g I

n +1)& n + l, b
I

cr (t1)o(t2)
I

n, a )

+a*p&g'I n ) &n+1
I

g') &n, a
I

o (t1)o(t2)
I

n + 1,b )] . (A9)

Some of the summation indices have been renamed to make the state
I

n + l, b ) appear in all the matrix elements. This
could be done because all the matrix elements involving the state

I
O, b ) are zero [see Eq. (A6b)]. Equations (A6) and

(A7) may now be further used to cast Eq. (A9) into the form
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;„(, , )
(.g stn)M'„(t) t—i)

(g, f I
o (t, )a(t )

I g, g) = g e ' ' ' cos)M„'(t, —t )+
n=0 Pn

&g sinp„t& sing„t
&

cosp, „t,+ (kln) .+ikon+1
2 p~ Pn

COSP„t2—
in@„t2

(n
I
f)a ii—&n+1 "

( n+1Ig)P
Pn Pn

(A10)

Now the first factor on the right-hand side of Eq. (A10) may be written as the sum of two terms which differ only by the
sign ofp'„:

;tIt sin)tt'„(t) tz )—
costu„(t) t2 )—+

Pn

I I—ip ti +tp, t2
e " e

2Pn
(A 1 1)

(A12a)

With this, Eq. (A10) may be written as the sum of two terms, each one of which is the product of a term containing t i
times its complex conjugate with t2 in place of ti. Specifically, introducing the functions f+ and f defined as

' 1/2
i(p„+p„+a) )t

f+(y,„,p, '„,t)= 1+ 1+ e
2Pn 2Pn

' 1/2
A (& n + 1 i( „)&+„)&+»&)&

—Izn&lzn&t = 1+
22pn Pn

Eq. (A10) may be written in the form

(A12b)

g [a'(0 In [f+(p„,p„', t) )+f+( p„,p'„, t) —)]+p'(g
I n+1)[f ( —p,„,p'„, ti)+f ( Iz„,p,'„,t) )—]j

n=0

x [a(n
I k&[f'+(p», p„', t2)+f+( )tt )M' tz)]+&&n +1

I ()[f' (p. p'. t2)+f* ( —)tt. , )tt'. , t2)]]
+(same with p, '„~—p„') . (A13)

To calculate the spectrum, Eq. (A13) must be substituted in Eq. (3) of the paper. After the integration over t, and tz,
one obtains the sum of two products of complex conjugate terms, i.e., the sum of two absolute-value-squared terms
(differing only by the sign of )u„' ) shown in Eq. (8). The functions F„'+ ' and F„' ' used there are readily seen to be due to
the integrals of f+ and f, respectively.
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