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This paper is devoted to the autoionization process of large-angular-momentum Rydberg states.
After a brief account of autoionization formalism in nonrelativistic theory and single-configuration

approximation, we apply it to atomic states with one electron of large angular momentum. The
dominant contribution is the direct one and the exchange contribution is ignored. In this frame-

work, the autoionization width varies with the principal quantum number as n ' and exponentially
with the angular momentum. When two excited electroris interact with a spherically symmetric

core, it is demonstrated that the interaction between the Rydberg electron and the core polarized by

the valence electron is proportional to the interaction between the two active electrons. Using new-

ly derived radial matrix elements, we obtain a generally good agreement between our results and ex-

periments on barium and strontium. Large-/ Rydberg states are shown to be stable versus autoioni-
zation as soon as I is about 7. Possible refinements of our method are reviewed.

I. INTRODUCTION

Since the early work of Garton et al. ,
' special attention

has been paid to autoionization of Rydberg states in
alkaline-earth atoms. The autoionization process gives a
number of pieces of informations about the intraatomic
interactions. Moreover, autoionization processes play an
important role in plasma physics because they are the ex-
act reverse of dielectronic recombination. New experi-
mental techniques, such as isolated-core excitation and
Stark mixing of Rydberg states" have provided a way to
reach autoionizing states with relatively large angular
momentum. Such autoionizing states have equally stimu-
lated theoreticians' work, mainly within the multichannel
quantum-defect theory (MQDT) formalism. For exam-

ple, interference between different channels result in

strong structures in the autoionizing profile of
(5d3/2nd3/z) states of barium. In strontium the autoion-
ization properties of the (5@3/2nd, ) and (5pt/2nds/2)
series are interpreted by taking into account the excita-
tion process from the (5snd) 'Dz, D2 bound states.
Even the (6p, /2ng )(6p3/2ng) series of barium interact, re-

sulting in a Fano proNe with q reversal in some cases. '
Furthermore, this latter work enlightens the interest of

large-angular-momentum studies, first emphasized by
Cooke. The reason for that is multiple. On the one
hand, when the angular momentum l, of Rydberg elec-
tron increases, the overlap with inner-electron wave func-
tion vanishes, canceling complex exchange effects: a reli-
able ab initio treatment becomes possible. On the other
hand, large-angular-momentum autoionizing states ap-
pear to be especially stable. We thus know two classes of
quasistable states in the continuum: the interference-
stabilized states ' and the ones considered here.

Autoionization of Rydberg states in the Coulomb for-
malism has been analytically investigated by Nikitin and

Ostrovsky. ' Here we propose an extension of their re-
sults. Coulomb bound-free matrix elements are comput-
ed numerically, avoiding the complex problem of uniform
asymptotic expansions. Interaction between the outer
electron and the core polarized by the inner electron is
considered as well as the various coupling schemes of the
dielectronic atom.

The present paper is organized as follows. In Sec. II
we develop the Coulomb formalism for autoionization.
Neglecting the exchange contribution is justified by phys-
ical considerations. In Sec. III we emphasize the main
properties of Coulomb matrix elements between circular
Rydberg states and continuum. Section IV is devoted to
a study of static polarization of the atomic core by the
two excited electrons. Bound-bound matrix elements for
the valence electron are obtained in Sec. V. In Sec. VI we
briefly show how to modify the calculated widths when

going frotn LS coupling to the more realistic jl coupling.
Section VII presents numerical results compared to ex-
periments in strontium" and barium. A discussion of the
validity range of this method is presented in Sec. VIII.
New asymptotic expansions for matrix elements of nega-
tive powers of r between a Rydberg state and a continu-
um state are discussed in Appendix A and the transfor-
mation formulas from I.S to jj coupling are detailed in

Appendix B.

II. AUTOIONIZATION FORMALISM
IN THE SINGLE-CONFIGURATION APPROACH

Consider a diexcited atom, with the outer electron,
hereafter called the "Rydberg electron" and labeled 1,
much more excited than the inner electron referred to as
the "valence electron" and labeled 2. The other electrons
are named core electrons, and their influence mill be stud-
ied in Sec. IV. At this step of the formalism, we ignore
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the spin-dependent part of the Hamiltonian. Following
the Heisenberg approximation for helium, we write the
atomic Hamiltonian, in Hartree units (e =Pi= m = 1):

I =2m
~

A, +( —1)'A,
~

', (2.4a)

where the direct and exchange amplitudes are defined as

H =H0+ V

with

(2.1a) Ad =
& ("pip el )L l

I/
I ("212 "]1])L )

nplp)L
~

I/'~ (n212 n]1])L )

(2.4b)

(2.4c)

P ]
H0 ——

2

Y Pz Z
(2.1b)

After multipolar expansion of the electrostatic interac-
tion, one gets the direct amplitude

and

V= 1 1

12 r]
(2.1c)

Ad=( 1) [11(] 1] 12]

I ] I k l~ I0 k I ] l~ L

X 0 0 0 0 0 0 1 1 1(
k

Y=Z —1 (2.1d) (2.5a)

Z being the net charge of the core, and Y being the

remaining charge after autoionization. One should notice
that Hamiltonian (2.1b) is unsymmetrical in the exchange
of electrons 1 and 2. However, the Pauli principle holds
even in such a case and perturbation theory can be adapt-
ed to it as discussed in the literature. " Assuming LS
coupling, the zeroth-order solution for the eigenvalue
equation is, in r representation

@L(r] r2) g &LML
l
1]12mlm2) Yl (II])

All i, m2

&R„](r, )Y& (Q2)R„] (r2),

with, for positive k,

k

z " z
Ad —— dr, r] dr2r2 z ] R«(r] )R«(r2)

0 0 k+1 0 0

&(R„] (r, )R„] (r2) .

We have adopted the notation

[j,k, l, . . . ]=(2j+1)(2k+1)(21+1)

(2.5b)

(2.6)

with the corresponding eigenvalue

z'
2n

(2.2a)

(2.2b)

and r (r, ) is the greater (smaller) of the radii (r, , r2).
The 2'-polar contribution to the exchange amplitude has
for radial part

S
oc

p
oo

p (
A,'= dr]r] dr2r2 ] R„] (r, )R«(r2)

0 0 ~$+ Q Q

The properly symmetrized solution, including spin, is

Ls(rl r2)

[@L(r],r2)+( —1) @L(r2,r])]
~

&Ms)

(2.2c)

f dr r R«(r)R;&(r)=5(e e'), —(2.3)

the autoionization rate from ( n 212, n, 1, ) configuration to
(nplp el ) configuration is written

In practical cases, one has 1,&12 and thus the two wave
functions involved in (2.2c) are orthogonal.

If 1] is sufficiently large, we can use single conjiguration-
waue functions Configurati. on mixing arises from pertur-
bation by interaction (2.1c): it is a small effect as long as
the two wave functions are spatially separated. There is
experimental evidence for that: Kachru et al. ' have
shown that (6png) states of Ba do not mix with (6pnd)
states, while a mixing is observed between (6p3/2nd, )J
and (6p3/2ns]/2 J

The autoionization probability is obtained from Fermi
golden rule. Assuming that continuum wave functions
are normalized as

yR„, (r, )R„, (r, ) . (2.7)

Since wave functions of Rydberg electron and valence
electron have a very small overlap, the integral (2.7) is
negligible as long as n, is much larger than n 0 and n z.
Using a crude approximation for R„ t and R„] (Slater

0 0 2 2

wave functions) Nikitin and Ostrovsky' have shown that
exchange effects are generally negligible for I, & 2. An
equivalent simplification occurs for the direct amplitude
itself: assuming that the valence electron is always closer
to the core than the Rydberg electron (nonpenetration
hypothesis), the direct amplitude reduces to the product

Ad — dr, r, R,&(r])r,
' 'R„] (r])

0 l I

dr2r2R„] (r2)r2R„] (r2) .
0 0 0 "2 2

(2.8)

The polarization contribution to the quantum defect has
been derived from this factorization. ' The direct-
product amplitude (2.8) involves two monoelectronic ma-
trix elements. The Rydberg wave functions R„ I and R,I

1 1

will be considered as Coulombic (Sec. III): this is reason-
able since measured quantum defects are not greater
than a few hundredths for I & 3. On the other hand, the
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wave functions R„ l and R„ l will be drawn in Sec. IV
0 0 "2 2

from spectroscopic data, the Coulomb approximation be-
ing too crude for the valence states.

III. RYDBERG MATRIX ELEMENTS

R,&(r) = (2pr)'(2i+1!

Xe ' ",F, (i+1+iY/p;2i+2;2ipr), (3.2a)

Let us first consider the continuum wave functions R,l.
The linear momentum p is defined by

where

C l=P

' 1/2

~

r(i+1+&Y/S')
~

e

2
(3.1)

As was shown by Nikitin and Ostrovsky, ' the continuum
@rave function may be considered as a plane wave

JI+, /2(2pr) only for fast ejected electrons. Using true
Coulombic wave functions induces a corrective factor of
order exp(n. Y/2p), generally not negligible. We thus use
the wave function

2
~ 1/2

Y g (1+qp /Y )
0&q&l

—2n Y/p
(3.2b)

In the same way, the only reliable description for the
bound Rydberg wave function R„ l is the Coulomb one:

1 I

Y (n, +l, )!3
' ]/2

R„ l (n, —I, —1)!

n, —I& —1

(2p, r) 'e
q=0

( —2p, r)'
(2i, +1+q)! ' (3.3a)

P]=
n~

(3.3b)

being the linear momentum of electron 1 on its Bohr orbit. This wave function is a linear combination of the so-calle
Slater wave functions:

(2 )Ii+3/2
R' ()= ll —

p~ r

P~ ~ [(2i +2)!]1/2 (3.3c)

This latter wave function is the correct one for circular Rydberg states (n, =1~+1). In this section we give analytic re-
sults relative to Slater wave functions (3.3c), while in Sec. VII we present numerical results involving exact wave func-
tions (3.3a).

The bound-free matrix element involved in (2.8) is

(2p)) ' c I(2p)' 2E)(1+1+iY/p, i+I) —k+2;2i+2;2ip/(p(+ip))
[(2l, +2)!]'/ 2i+1 '

(p&+ip )

(3.4)

Notation
~ p, i, ) stands for the Slater wave function (3.3c), while notation

~
n, i, ) is reserved for the Coulomb wave

function (3.3a).
The main e6'ort to get the bound-free matrix elements lies in the computation of the hypergeometric function, not ex-

pressible versus simpler transcendental functions when I —l&+k is positive. Asymptotic expansions for large I have
been given by Nikitin and Ostrovsky' but unfortunately their validity range is quite restricted. Here we simply use a
more conventional numerical method to evaluate the Gauss functions, and in Appendix A we outline a method to get
asymptotic expansions of (3.4) for large i.

The Euler integral representation for 2F, is'

&F&(a,b;c;z) = I (c)
du u '(1 —u)' ' '(1 —zu)

I (a)I"(c —a) 0

With the above-mentioned parameters, this representation is not convenient since the integrand rapidly oscillates.
After deformation of the integration path in the complex u plane we get
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2F, (l+1+iY/p, l+I, —k+2;21+2;2ip/(p, +ip))
I+ ll —k+2

(p&+'p }

2i mg Res(f ) e
—QY/p2 —2l —1

=PIp
~ I + Il k +2 2 2 (I + Il k+2)/2

(p +ip) '
( 2+ 2)

xf' dg ( 1 + g )I +&r/P( 1 }I—ir/P

I+ I
l
—k+ 2

g +;„„„4
2 2 2 2

I —Il+k (3.6a}

with

8= tan '(p, /p ), (3.6b)

PIp = (21+1)!
~
r(1+1+ Y/p}~'

(3.6c)

The symbol g Res( f) means the sum of residues of the function

I + iY/p
(3.6d)

in the sector of the complex plane such that 0 & arg(s) & g, p being any angle in the range (0,2m). The function f has a
pole for s = —1 if I —I, +k is positive, and a pole for s = —e ' . A convenient choice for the integration angle lt has

proven to be m+8 With s.uch a choice for P, and assuming

m:—I —I)+k —1&0,

expression (3.6a) involves the residue off at the pole s = —l. One has

2im Res( f) ( i ) 2ne"—" ~ .f'(I +1+iY/p )

)I I+]
—k+2

(
I I+]

—0+2 f (I k+2+IY/p)

(3.6e)

x 2F, ( —m, 1+I,—k+2;I, —k+2+IY/p;(p& ip)/( 2ip—))—for m &0 . (3.6f)

The Gauss function involved in (3.6f) is easy to evaluate since it is a low-degree polynomial.
General properties of matrix element (el

~

r " '
~ p, I, ) and thus of autoionization amplitudes can be derived from

their large-I asymptotic expansions. According to Nikitin and Ostrovski, the characteristic parameter is l,p ~ /p . In
most physical cases, since n, p /Y is a large number, we have

I lp 1 /p « 1

If the free wave function is Coulombic and the bound wave function is a Slater one, we get, assuming (3.7), '

(3.7)

1/4 —n'Y/2p2 1+

I pill )
(p&/p) ' (p/2)'

I, ' I ((I —I, +k+1)/2)
(3.g)

This matrix element depends on the order k of multipolar
expansion as (p/21,'/ ) /I ((I —I, +k+1)/2). The
larger the angular momentum I& and the smaller the elec-
tron velocity p are, the faster it decreases. It is maximum
for the smallest allowed value of k. This reflects the rap-
id convergence of multipolar expansion when r, is much
greater than r2. Assuming k =1 and I =I, +1, this ma-

I
l

-+ 3/2
trix element varies with I& as (2Y/pn& )

' /I, : it de-
creases exponentially with angular orbital momentum.
In Sec. VII we show that this exponential behavior is still
observed with more general Coulombic bound wave func-

tions. Assuming p is not too small to preserve condition
(3.7) and to neglect the variation of exp( —m. Y 2/)p, we
check that (3.8) depends on the ejected electron velocity

I
l
+ k —3/2

as p ', which obviously favors the production of
slow electrons. This behavior is quite generally ob-
served. ' Finally, one easily verifies that

(el+2
~

r '
~
p&l& ) 21& »1 . (3.9}

(eI ~r
" '~p, i,»—I, +k+1

The maximum allowed value for I is the most probable.
Such a result equally holds for bound-bound matrix ele-
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ments but it is less obvious in the present case: since
r ' favors regions close to the core, one could expect
the larger matrix element for the smaller I since the wave
function comes then closer to the core.

As a summary, the dipolar contribution to multipolar
expansion is preponderant if the valence-electron transi-
tion allows it; electrons are preferentially produced with
the lowest velocity and the higher angular momentum
(1&+1 for a dipolar transition of the valence electron).
The bound Rydberg electron must be described by a
Coulomb wave function and not simply by a Slater one.
Unfortunately, no simple analytical result can be ob-
tained in practical cases: the first few terms of the

Il +q —Pi rl
Coulomb wave function, varying as r, ' e ' ' with

q=0, 1,2, . . . give contributions of the same order of
magnitude. In Sec. VII matrix elements
&el

i
r " '

~
n, l )1come from a numerical computation,

based on the above-mentioned integral representation.
Nevertheless, conclusions derived in this section for
Slater wave functions remain qualitatively correct for
Coulomb wave functions.

IV. CORE-POLARIZATION EFFECTS

It has been shown for long now' ' that spectroscopic
properties of alkali atoms cannot be understood without
taking into account the electrostatic interaction between
valence electron and the closed-shell core. When the
valence electron does not penetrate the core this interac-
tion is named a polarization process. Besides, the action
of this electron on the core is not instantaneous. A
theory of nonadiabatic (or dynamic) polarization has
been given by several authors. ' This effect is now taken
into account in model potential calculations' and investi-
gated by a careful measurement of quantum defects. ' '

Core polarization has also to be considered in autoioni-
zation. Nonadiabatic effects are not explicitly taken into
account in this work. However„we prove that interac-
tion between the core and a single valence electron de-
pends on the multipolar polarizabilities in the same way
as the interaction between the core and the two active
electrons in autoionization. Thus, introducing in the
present formalism an effective polarizability accounting
for nonadiabaticity seems quite reasonable. Finally,
nonadiabatic polarization effects should be moderate for
closed-shell cores at least for dipolar polarizability.

Interaction between the core and the two excited elec-
trons can be reliably taken into account assuming the
nonpenetration hypothesis:

H=H0+ Vq, + Vi, + V, (4.2a)

Z Pi
H, =H, +

2 r2 2
(4.2b)

Hp is the free Harniltonian for the noninteracting core
(H, ), the valence electron, and the Rydberg electron.
The interaction between core and valence electron is

1
V2, =+

r2g
(4.2c)

Core-polarization effects mainly originate in this interac-
tion. V is the interaction between the two excited elec-
trons (2.1c), responsible for autoionization. Finally, V„
is the interaction between Rydberg electron and core:

1V„=g
j 1j

(4.2d)

kr
Vz, ——g g Pk(cos82, )

k)0 j J „k+1
~ko

r2
(4.4a)

, QPk(cos8~, )r,
k)1 r2+

(4.4b)

Using the sum rule for spherical harmonics,

2l +1g 1'i,„(Q, ) Fi* (Q2) = Pi(cos8, 2),
4n

(4.5)

where 0 represents the angular coordinates of 8, we

obtain

(k)
2c X g 1 k+1k)1 + r2

(4.6)

T', ' is the irreducible tensorial operator defined in r-

representation as

Condition (4.1) infers the following hierarchy of the aver-
aged interactions:

1&00&I) I&V2, &I) I&V&I I&Vi, &I (43)

We first consider core polarization by the valence elec-
tron only. The core energy and wave function at second
and first order in V2„respectively, are derived from per-
turbation theory. The multipolar expansion of 1/r2i is,
according to (4.1),

rj (rp (ri (4.1)
T' '=g Yk (0 )r (4.7)

being the radius vector of any of the core electrons.
The Hamiltonian for two electrons and a core is split as
follows:

Matrix elements of T' ' between the ground state
(cJ,M, ) and an excited state (c'J,'M,') of the core are ob-

tained using Wigner-Eckart theorem:
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If E„ is the energy difference E, —E,', the second-or4er energy of the polarized core is

E, = g (c'l V, lc) (c
l V, lc')1

c' (&c) cc

4m Yk (Q2) 4~ Yl2(Q2) 1 c
J' k J

, 2k+1 l "+' 21+1 r'+',
,

E„, —M,
'

lr M,
7

J,' l J,
—M,

'
A, M,

K, lI. J,M

x &c'J,'llT'"'llcJ, &*&c'J,'llT'"llcJ, & . (4.9)

CX1

2l +2
1&1

(4.10a)

If the core is spherically symmetric, J, and M, are zero
and thus k and I equal J,', and ~ and A, equal M,'. Using

the value of (' 2 I 0) (Ref. 21) and the sum rule (4.5), one

gets

s 21+1,,(,) E„

2l +1
g

+l~kl~~k ' (4.12c)

Finally the mean value of the interaction between the
Rydberg electron and the polarized core is

with the static polarizability of order 2':

al —— Sn

(21+ 1)

x g l
(c'J,'=1 llT'"llcJ, =0)

l

. (4.10b)
c' (&c) cc'

The perturbed core wave function is, up to first order,

lcJ,M, )= lcJ,M, )

( ) ~ l 277

I+1 I+1
r1 r2

X g Ylk(Q, ) Yl'k(Q2)+c. c.

This is, using (4.5) again,

Pl (cos9,2)
& v„&=—y,

1&1 rl r2

(4.13)

(4.14)

(c'J,'M,'
l

V2, l
cJ,M, )

+ g l
c'J,'M,'

c' (~c), cc

(4.11)

4 Yu(Q 1 ) 471 Yk (Q2)

„21+l, l+l 2k+ l, k+l

(4.12a)

with

S= y &c'J'IIT' 'llcJ, &*&

c'(~c), cc'

J,' I J, J,' k J,
—M,

'
A, M, —M,

' (4.12b)

Assuming again a spherically symmetric core, we get
from orthogonality property of 3j symbols

We now express the mean value of the interaction be-
tween Rydberg electron and core, assuming nonpenetra-
tion (4.1),

& v„)=&~J,M, l v„ l
~J,M, &

On the other hand, with the hypothesis (4.1), one has

I
r2V= g Pl(cos0, 2)

l&1
I+1 (4.15)

The interaction between the Rydberg electron and the
valence electron is thus screened by the interaction be-
tween the Rydberg electron and the core polarized by the
valence electron. From (4.14) and (4.15),

1

V+( V„)= g P, (cos8, ), ,
1—

1&1 r1

al

r 21+1r2
(4.16)

cz(
1

c 2 2(+2 1 —exp—
1 r2

4(+-2
r2

(4.17)

for the polarization potential and by changing (4.16) into

If the core is not spherically symmetric, the result is

not so simple since V2, induce a first-order energy shift

E„due to the quadrupolar interaction. Nevertheless, re-

lations (4.10) and (4.14) hold after averaging over the core
magnetic quantum number M, .

Expression (4.16) is unpractical for small radius r2, to
account for penetration of the valence electron inside the
core, one usually introduces a phenornenological cutoff
function on the screened multipole and the polarization
energy. Following Norcross, ' the radial matrix elements
are derived by changing (4.10a) into
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TABLE I. Matrix elements (nolo i
r

~
nzlz ) in barium tt. All wave functions are taken positive for

large r. All quantities are in a.u. Computations are made with the polarizabilities (Ref. 23) a, =10.61,
a& ——45.96, al ——0 for I )3 and the core radius (Ref. 24) r, =1.85. Columns a,b,c: this work, with, re-

spectively, a,&0 and a2&0, a&&0 and a2 ——0, al ——0 and uz ——0. Column d: Lindgkrd and Nielsen (Ref.
30). Columns e and f: Gallagher (Ref. 32), for the fine-structure component j2 ——I, + 2

and j,=I, ——,',
respectively.

noEO

5d
6p
6p

6s
6s
5d

13.14
3.781
2.522

81.43

13.95
3.727
2.499

81.52

17.63
4.24
3.842

109.4

4.19
2.455

4.06+0. 11
2.66+0. 17

4. 10+0.15
2.60+0. 17

1
T2

V+ ( V„)= g P, (cos8,2)
1&1

1+1

CX 1
1 —exp21+ 1

2

' 21+1
T2

V,l
—=( V„)= — 1 —exp

2T

CX2 T. 1 —exp
2T r~

10

(5.1)

(4.18)

for the screened multipolar expansion of the dielectronic
interaction. There is no adjustable parameter in expres-
sions (4.17) and (4.18) since values are available for the
multipolar polarizabilities ' and for the radius r, .

U. BOUND-BOUND MATRIX ELEMENTS

As shown in Sec. IV, core-polarization effects can be
included in the two-electron formalism of autoionization
by introducing in the direct amplitude

(nolo i

r"
~
nzl2)(el i

r " '
i n, l, )

a properly screened operator r . A number of oscillator
strengths in alkaline-earth ions like Ba II or Sr II are avail-
able. But as shown in Sec. II, matrix elements of r with
k greater than unity may be involved in the autoioniza-
tion amplitude. Thus we have computed new multipolar
elements of Sr II and Ba II. The spin of the valence elec-
tron is neglected. This restriction is easy to withdraw;
furthermore, spin-orbit interaction will not stronly affect
radial matrix elements between low-lying states.

Matrix elements of the valence electron are computed
by direct integration of the Schrodinger equation using
the Numerov method, in the spirit of the work of Zim-
merrnan et al. The polarization potential includes mul-
tipolar up to quadrupolar interaction, with appropriate
cutoff functions:

and matrix elements of r are screened according to Sec.
IV results. Static polarizabilities for Sr II and Ba II are
reasonably well known. ' Multipolar polarizabilities
higher than quadrupolar are poorly known, although
Sen has derived numerical fits for n1 to a4. Further-
more, nonadiabatic corrections mentioned in Sec. IV are
much more difficult to estimate. Gallagher et al. have
studied nonadiabatic effects on core polarization in Ba
but nothing equivalent has been done for Baal. We de-
cided not to include these effects in the computation,
keeping in mind that dipolar polarizability a1 is slightly
modified while the correction to the quadrupolar con-
stant a2 may be more significant. The overall effect on
matrix elements of polarization corrections beyond the
dipolar one should remain moderate (less than 10%) as
shown by a direct computation including successively the
various polarizabilities in the series (4.17). Finally, we do
not specify the intracore potential: radial integration is
only performed inward, using energies from spectroscop-
ic tables, with an average over fine-structure doublets.
The inner bound of integration is determined by the
short-range behavior of the solution: closer to the nu-
cleus than the classical inner turning point, the integra-
tion terminates as soon as the solution begins to diverge.

The new values for radial matrix elements are listed in
Tables I and II. Results on Ba?I (Table I) show that in-
clusion of quadrupolar polarizability bears a small
influence upon matrix elements, even on (5d

~

r
~

6s)

TABLE II. Matrix elements (nolo
~

r
~

nzlz ) in strontium n (a.u.). Computations are made with the
polarizabilities (Ref. 23) al ——5.813, 0.~=17.15, aI ——0 for I & 3 and the core radius (Ref. 24) r, =1.57.
For other details see Table I.

4d
5p
5p

noI0

5s
5s
4d

11.89
3.551
2.620

72.26

13.02
3.529
2.749

75.82

16.21
3.892
3.988

105.9

3.847
2.821

3.79+0.08
2.77+0.24

3.75+0.08
3.03+0.30
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which is screened by the core quadrupole. We have tried
to vary the core radius r, to test its inhuence on matrix
elements. Such a procedure has been previously used to
determine r, by minimization. We have observed that
matrix elements vary very slowly with r, in its range of
relevance (1—3 a.u. , for instance).

It appears that our spin-independent wave functions
are as good as those of Lindgkrd and Nielsen or those
computed with Bates and Damgaard tables. ' For exam-

ple, the radiative width of 6P states in Barr is now accu-
rately known (1%);our value (1.3, in units of 10s s ') lies
between the determinations for 6P, &z and 6P3p by Gal-
lagher (1.28 and 1.60, respectively) or Kuske (1.26 and
1.58, respectively), while Lindgkrd and Nielsen obtain
1.602. Discrepancies with experimental results could be
explained by some peculiarity of the core potential of
Baal, as suggested by recent results of Lahiri and Man-
son. Anyway, these discrepancies are moderate and we
thus believe that our higher transition moments are reli-
able estimates.

VI. TRANSFORMATION TO OTHER
COUPLING SCHKMKS

Formalism of Sec. II was developed in LS coupling,
with spin included only to satisfy the Pauli principle.
The discussion in Sec. V suggests that the wave function
of the valence electron is not drastically modified when
spin is included. Spin-orbit effects are expected to be

k= j2+11, (6.1b)

J=k+S1 . (6.1c)
From now on, we omit the principal quantum numbers
(n &, n2) for the sake of conciseness. The transformation
matrix is '

even smaller for the slower high-l, Rydberg electron. In
this work we account for spin only to identify correctly
the autoionizing state. If a Rydberg electron with I, not
too small is interacting with a low-lying valence electron,
electrostatic interaction 1/r12 —1/r] is smaller than
spin-orbit coupling for the valence electron, but greater
than spin-orbit coupling for Rydberg electron. The ap-
propriate coupling is the jl (or intermediate) coupling. If
the angular momentum of Rydberg electron increases,
spin-orbit interaction decreases (like an, /
[(1,+ —,')(j, + —,')]) while the electrostatic interaction de-

creases much more rapidly, as well as polarization effects.
Then for 1, suSciently large (usually about 10), both elec-
trons appear as almost noninteracting and a better cou-
pling turns to be the jj coupling as for fragmented sys-
tems. Here we give the transformation formulas from LS
to jl coupling; the corresponding transformation from LS
to jj coupling is studied in Appendix B.

In jl coupling, angular momenta are coupled in the fol-
lowing order:

j2=I2+s2 (6.1a)

~
((12sz)j21I)ks,JM) =g ( —1) ' ' '[(2L+1)(2S+1)(2k+1)(2j2+1)]'~

L,S

J l 1 l2 L
X k k

. 'X l(12li)L(s2sI)SJM) .
$1 $2 $1 j2

(6.2)

The principal interest of this scheme is that the valence-electron Hamiltonian as well as the electrostatic interaction be-
tween electrons are diagonal with respect to k. To get the autoionization probability I l l l l we must compute the

2~2 1 0~0

square matrix element of V between (6.2) and an autoionized state within the same coupling. The derived expression is

lengthy and involves interference between the amplitudes relative to each LS value. But is simplifies if we do not mea-
sure the angular momentum jo of the ion produced. We have from (6.2) and from orthogonality property of 6j sym-
bols: '

L S J l 1 12 L
g I'i, i (, ,

——(2k+1)(2j +1)g (2L+1)(2S+1)
Jp L,S

~LS
l7ll lpl (6.3)

1, l2
=(2j, +1)g (2L +1)

L
k

pL
'2'1 -'0'

(6.4)

Transformation coeScients can be derived from tabulat-
ed expressions. ' One finds

Furthermore, if we neglect exchange, I is independent
of S. Using the normalization relation for the 6j
coeScient, we finally obtain

~IkJ
12J2 ll Ipf pl

Jp

l, l,
(2j, + 1)(2L + 1) k

(6.Sa)

1, l2 L
(2j~+1}(2L+1)', k

(1, +1,+k+-,')(1,+k —1, + —,')
(2k + 1)(21~+ 1)

(6.5b)

(I, +1, k+ ,')(1, +k ——I, +——,')
(2k + 1 )(21,+1)

if (j 2, L ) =(12——,', k ——,') or if (j z, L }=(lz+,', k+ —,
' ), and—
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3I) ——
2

I) ——1

2

I, —2, 1, —1

I, —l, l)

I( —1,l)

1),l, +1

I„I)+1

21) —1 I ) +1
31

&
31]

r,
I&+ 1 2l] —1

31,
"-'

3l,
'

I) 2l)+3
3(I

& + 1) 3(1)+ 1)
r, + r,

21, +3 I,r,+ r.
3(1 1) 3(1 +] )

+

I)+1,1)+2

if (j ~, L ) = (12 —
—,', k + —,

'
) or if (j 2, L ) = ( 1~+ —,', k —

—,
' ). In

the special case l, =1, we have listed in Table III the al-

lowed values of jz, k, and I expressed versus I . In in-

terrnediate coupling, the autoionization width depends on
k but not on I, since the whole Hamiltonian is indepen-
dent of the Rydberg-electron spin.

VII. APPLICATION TO BARIUM AND STRONTIUM

Using the monoelectronic bound-bound matrix ele-
ments or r derived in Sec. V and bound-free matrix ele-
ments of r ' evaluated as explained in Sec. III, we
have obtained the autoionization width of
(6p, n, l, ), (Sd, n, l, ) states of Ba and the (Sp, n, 1, ) state

TABLE III. Transformation from LS coupling to jI cou-

pling. Widths I in jI coupling are expressed versus r, ro,
and I + which are the LS-coupling widths for L respectively

equal to I& —1, I &, and I
& + 1. The orbital angular momentum of

the inner electron is 12 ——1.

I k
2j2 1 Ojo

of Sr. As emphasized previously, present results are reli-
able for 1, not too small ( ~3). The classical n, depen-
dence of the widths is very well reproduced in the present
calculation. The I, dependence is presented in Table IV
for the (6p, n, l, ) states of Ba, with a detail of each au-
toionization channel probability. The dominant channel
is (Sd;e, l =1,+ I). Channels 1 =1,+3 are unfavored be-

cause they involve only octopolar bound-bound matrix
elements. In LS coupling all states of a given
configuration have an equivalent autoionization width,
with a small predominance for L =I, +1 if l, is smaller
than 5 and for L =I, —1 otherwise. Since the bound-
bound matrix elements as well as angular factors are of
the same order of magnitude for each of these probabili-
ties, these considerations reflect properties of bound-free
matrix element (el

~

r " '
~
n, l&). In Table V we have

written the autoionization width of the (6pj2, 241, )k state
in jl coupling. Setting aside the results relative to l, =2,
for which the large-angular-momentum expressions may
fail, we find a greater width for k =1,+—,

' or for k =1,——,
'

according to whether l
&

is smaller than 5 or not.
Experimental data are available for (6p, n, 1, ) of

Ba. ' For instance, the autoionization width of
(6p, zz, 24d )k =—,'is found to be 1.2 cm ' while we calcu-
late 10 cm ' in Table IV. Exchange contribution to au-
toionization amplitude is far from being negligible for the
6pnd state as indicated theoretically by Nikitin and
Ostrovski's work and experimentally by the quantum de-
fect of 2.74: penetration of Rydberg electron with l~ ——2
inside the valence orbital is not negligible. Taking into
account spin-orbit interaction would modify slightly the
radial wave function R6, and there is no evidence for
strong series interaction near the above-mentioned Ba
state.

Results by Ja6'e et al. provide a better test of our cal-
culation. The measured widths of (6p3&2, 24g )k,J=S are
0.87 cm ' and 0.69 cm ' for k= —,

' and k= —", , respec-

TABLE IV. Autoionization probabilities for the processes (6p, 24ll)L~(5d, el)L or (6s, el)L in
barium. A11 widths are in a.u. (219475 cm ). Left columns, ion state (5d or 6s); L value, ejected-
electron angular momentum. Right columns, autoionization probabilities, each column for one I,
value.

Ion state
L

5d

L =I, —1

5d
L=I,

5d

L =I, +1
6s

L =I, —1

6s
L =Il +1

Il —3

I, —1

I, +1

Il —1

Il+1
I, +3

1, =2

3.59 x 10-'
4.97 x 10-'

3.22x 10-'
2.92x 10 '

4. 19X 10—'
1.42 x 10-'
3.84x 10-'

3.74X10 '

3.27x 10 -'

1 ~ 62x 10-"
5.06 x 10-'
2.66X 10

2. 12X 10
1.04 x 10-'

4.80x 10-'
7. 15x 10-'
1.88 x 10-'

5.23 x 10-'

2.21 x 10-'

3.20X 10-'-'

1.55X 10-"
5.96X 10-'

6.55X 10-"
2.76x 10-'

4.44 X 10-"
1.42x 10
7.55x 10

3.08x 10

3.37X 10 '

3.66x 10 "
4.50x 10 "
4.58 x 1O-"

4.6Ox 1O-"
2.21x 10—"

l. 84X 10—"
1.O1 x 1O-"
7.57X 10

7.57x 10

1.59x 10-"
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TABLE V. Autoionization width of (6'&,241&)k state of Ba in jl coupling (a.u.). Left column,
values of k and j2. Right columns, autoionization width of each state, each column for one 1 l value.

ll ——3
2

11, ——
2

II, ——
2

1, + —,
'

+1
+ 3

1, =2

4. 12 X 10-'

2.24X10-'
2.24X 10-4

4.75X10 '

3.86 X 10-'

5. 11X10 '

2.77 X 10-'

2.05 X 10-'

1.76X 10

2.48 X 10-'

1.57 X 10-'

3.00X 10-'

6.01 X 10-'

4.75 X 10

4.03 X 10-'

4.30X 10-'

3.38X10 '

4.91 X 10-'

4.59X10-"
3. 70X 10

3. 11 X 10-"
2.56X 10-"
2.36X10-"
2.70X10-"

tively. In Table V we get, respectively, 0.34 cm ' and
0.66 cm '. The agreement has been improved as expect-
ed.

Computations have also been made for the autoioniza-
tion of (Sd, n, I, } to (6s, el ) state, less probable since it in-

volves a quadrupolar transition of the inner electron.
The (5d»z16d, /2)J =0 width is found to be of the order
of 10 cm ', much greater than the value measured by
Van Woerkom et al.: in this case, the disagreement is ex-

plained by strong orbital penetration and by series in-
teraction which accidently destroys the autoionization
probability near n =16 for the (5d3/pnd3/2)J =0 series.
For I, greater than 3, results are detailed in Table VI.
Though the autoionization probability is a little smaller
for (Sd, n, I, ) states than for (6p, n, I, ) states, it should be
easier to measure since the 5d state spontaneously decays
by quadrupolar emission only.

On the other hand, by comparing our results in Sr
(Table VII) to those of Cooke et al. corrected for laser
bandwidth, we find a better agreement with increasing I,
(from 3 to 5). When Sr tt is left in the 4d state, electrons
are much slower (p =0.288 a.u.} than when it is left in

the 5s state (p=0.466 a.u.). One can observe in Table
VII that for l, greater than 3, slow electrons are preferen-
tially produced: this behavior mentioned for autoioniza-
tion of circular Rydberg states (Sec. III) is more general.

Analyzing the various experimental data, we note that
the ( p6, n, l, ) series in Ba are much narrower than the
corresponding ( p5, n, t, ) series of Sr. For example, in Sr
the width of (Sp»z16f) is about 20 cm ', thus the width
of (Sp, /z, 24f) should be 5.9 cm ' assuming n, scaling:
this is much larger than the width of (6p&/~, 24f) in Ba.
Atomic-structure effects increase the autoionization
width in Sr and decrease it in Ba; the Coulomb theory ig-
noring series interaction gives a medium width.

VIII. DISCUSSION

To improve the validity range of the present model,
one has to ask which approximation should be removed.
First, penetration cannot be totally neglected for small I,
values (less than 4), as suggested by the value of quantum
defects which cannot be interpreted by pure core polar-
ization. Exchange effects are expected to be still impor-
tant for I, &3 and then to decrease very rapidly. Spin-
orbit effects are not expected to drastically modify most
of the present results. They decrease rapidly with l&,

though less rapidly than Coulomb interaction between
electrons; spins have been included only to identify the
autoionizing state.

In most cases the interaction responsible for autoioni-
zation is the electrostatic repulsion between electrons
1/r, 2. Spin-dependent interaction must be invoked ex-
ceptionally' when two terms of a different series are ac-
cidentally very close.

The single-configuratio approximation becomes more
and more reliable as l increases. Configuration interac-
tion involves matrix elements of 1/r, ~ between bound
states, much like those studied here, which have been
shown to decrease rapidly with l, . Thus single-
configuration approximation should hold for large I,
since then different series do not interact. '

It appears from Tables IV and VII that for n
&

close to
24 and l, close to 7 the autoionization width of an atomic
state becomes smaller than typical rates for dipolar elec-
tric emission. Such diexcited states decay by spontaneous
emission and not by autoionization, the atom being left in
a long-lived monoexcited Rydberg state. The present pa-
per deals with the autoionization process alone, and it
does not concern the excitation line shape, unless the au-
toionization process has the dominant probability.

IX. CONCLUSION

ll —2

I,
1, +2

1, =4

2.49 X 10-'
2.69 X 10-'
9.68 X 1Q-'

5.57X10—"
7.30X 10—'
2.26 X 10—'

7.63 X 10
1.46X10-'"
1.57X10 '

TABLE VI. Autoionization width of (5d, 241, )L states of Ba
(a.u. ) in LS coupling. Since the final ionic state is 65, the ejected
electron momentum is 1 =L. For other details see Table IV.

Autoionization is essentially a two-electron process; for
large-angular-momentum states, it can be reduced to a
single-electron description. In the large-l, limit, we have
shown that core polarization due to both excited elec-
trons ean be reliably taken into account. Using numeri-
cal wave functions for the inner electron and a Coulom-
bic description for the outer electron, we have computed
a set of autoionization widths in reasonable agreement
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TABLE VII. Autoionization probabilities for the process (5p, 1611)L~(4d,el)L or (5s, el)L in

strontium (a.u. ), The first lines detail each channel probability. The last lines are the total width for a
given state in LS coupling, and the experimental results of Cooke et al. (Ref. 4).

Ion state
L

L=l, —1

4d
L=1,

4d

L =I)+1
5s

L =I( —1

5s
L=I, +1

L =I, —1 (total)
L =11 (total)

L = I, + 1 (total)
Experiment"'

I, —3

I, —1

I, +1

I, —1

11+1

11+3

2.24X10 '
5.68 x 10-'
5.40 X 10-'

2.22 X 10-'
2.05 x 10-'-

2.01x 10
1.51 X 10-'
2. 37 x 10-'

1.22 x 10-'

2.72 x 10-'

6.09 x 10-'
2.07 X 10
4.43 x 10-'
1.0x 10-4

2.44X 10-"
2.30X 10-'
1.81x 10

1.37 x 10-'
8.46x 10-'

3.52 X 10-'
4.64x 10-'
2.04x 10-'

1.14X 10-'

4 99X10-e

1.85 x10-'
8.47 x 10-'
1.00 X 10
3 ~

9x10-'

1.89x10-"
1 ~ 82x10-"
4.65 x 10-'

8.34x10 '
2.31X10

5.43X10 '
1.11X10
8.63X10 '

8.36x 10-'

6. 17x 10-'

4.67 X 10-'
2.32X10 '
1.79x10 '
4. 1x10-'

'Reference 4.
Laser bandwidth subtracted.

with present experiments where I, ranges from 3 to 5.
Possible refinements of the theory have been reviewed.
We have proven that for I, large, which practically
means I, g 7, diexcited states are stable versus autoioniza-
tion. Then, the line broadening reAects the width of the
bound-bound ionic transition only. New experiments in-
volving greater I

&
are clearly needed to test the validity of

the present predictions. In this sense, there is a serious
hope in new methods for production of circular Rydberg
states.
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APPENDIX A: ASYMPTOTIC EXPANSION
FOR THE BOUND-FREE COULOMB

MATRIX ELEMENTS

Here we outline the elements of a large-I asymptotic
expansion of

2F ~
( l + 1+i Y/p, i + i, —k +2; 2i +2; 2ip /(p ~ +ip ) ) .

It is assumed that I, I [ are large with respect to
~

i —i, ~, k. The present approximation is uniform versus
parameters p,p, . Basically it utilizes a complex-plane in-
tegration and an expansion of the rapidly varying part of
the integrand near the saddle point.

We start from the integral representation of the Gauss
function [cf. Sec. III, formulas (3.5) and (3.6)]:

2F, (I +1+iY/p, 1+1)—@ +2;2l +2;2ip/(p, +ip ))

=pt f ds f(s), (Ala)

with

f (s)=exp[A(s)]/(1+s) (AIb)

A(s)=(1+iY/p)lns —(1+It —0+2)ln(1+e ' s) .

(A 1c)

The direction of integration in the s plane can be rotated
of any angle le such that

0 & l( & sr+2 tan '(p, /p ) . (A2)

If g is greater than ~ and if i —i, +k is positive, the con-
tribution of pole —1 is exactly taken into account using
expression (3.6f). The complex amplitude 3 (s) admits a
saddle point when 3'(s) cancels, i.e., when s equals sp
defined by

I +i Y/p 7]+V
Sp=

I i
—k +2 —/ Y/p p i

—/p

The variation of 3 (s) near its maximum is characterized
by the number

(l +i Y/p )(l, —k + 2 i Y/p )—= ——,'soA "(so)=
2(1+I, —k +2)

(A4a)
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the phase of Q being defined by

~
arg(Q)

~

(m/4 . (A4b)

1/2
I (Q,Z)=, (+2iQ)

Since
~ Q ~

is large when I is large, whatever p or p, are,
we can transform the integral in the sp direction from

f p' to J ', „, and neglect in the expansion of A (s)
0

near sp terms of order higher than 2. This gives
~ —il+k1+sosO oo

f ds f(s)=spf(sp)
0 so

with

]+so
I —I+k —I Q&

I Sp
(A5)

22
I (Q, Z)= f dt (A6)

(t+Z) +'

This integral is defined for m integer, arg(Q) are not
greater than m /4 and Z not real. The factor—I+I) —k,(1+s) ' in (Alb) is rapidly varying around sp when
the maximum so is close to the pole —1, so it is taken
into account exactly in (A5). The integral (A6} can be ex-
pressed versus simpler transcendental functions, namely,
versus parabolic cylinder functions with integer index.
More explicitly, if m is negative,

I (Q, Z)=2in' (2iQ) H, (iQZ), (A7)

I (Q, Z)=+ d
dZ [e ~ erfc(+iQZ)] .

(A8)

The upper (lower) sign in (AS) corresponds to Im(Z) pos-
itive (negative). The complementary error function is
de6ned as

2 ~ f 2
erfc(z) = 1 — dt e

1/2 0

For numerical computations, the function (A8) can be ex-
pressed either as an entire series or as an asymptotic ex-
pansion:

(A9)

H„being the Hermite polynomial of order n, and if m is
non-negative,

m

I ((r +m +1)/2)
X +2IQZ

y tr=p
This series converges everywhere in the complex plane.
If the product QZ is large, one can prefer the asymptotic
expansion

(A10}

1/2
I (Q, Z)- zFp(m/2+1, (m+1)/2;;1/Q Z } .

QZ m + I

(A 1 1)

This condition mainly holds for low-ejected electron en-
ergy (p of the order of pI ), but its practical range of ap-
plicability is restricted; in particular, it obviously cannot
hold for circular Rydberg states (n, equal to i

& + I ). In-
cidentally, condition (A12) refiects the following analogy
for the autoionization of diexcited Rydberg atoms: a
quasicircular state (1, =n I ) behaves like a Rydberg state
ejecting a fast electron (p much greater than p, ), both
having a very small autoionization probability.

APPENDIX B: TRANSFORMATION
FROM LS COUPLING TO jjCOUPLING

For a large-I1 Rydberg electron, the angular momenta
are obtained in the jj scheme rather than in the jl
scheme. Besides, jj coupling treats both electrons on the
same footing: it is more convenient if one wishes to esti-
mate the exchange autoionization amplitude. The trans-
formation relation from LS coupling to jj coupling is '

Expressions (A5) —(A10) have been compared to the "ex-
act" one derived from numerical integration. When I is
large we obtain a reasonable agreement (better than 30%
for I equal to 10) but the computed expressions have a
non-negligible imaginary part. Simple (and real) analytic
equivalents can be obtained beyond the case considered
in Sec. III ( 1Ip, /p small), when

2

(A12)

I, I, L

~
(nzlzjz, n, lIj I )JM ) =g [(2jz+1)(2j&+1)(2L+1)(2S+1)]' —,

'
—,
' S .

~
(nzlznII, )ISLAM) .

L,S
J2 J1

(81)

As in Sec. VI, we take the matrix element of the interaction V and raise to square. After summation over the angular
momentum of the ion (jp) and of the ejected electron (j), we get

'2
I, l2 L

I, I, ——g (2j, +1)(2j,+1)(2I-+1)(2S+1) —,
'

—,
' S (82)

J1 J2

Neglecting exchange, I does not depend on S. We thus have to sum expression (82) over S. To do so, one can re-
mark that coeKcients involved in (82) and (6.4) are related by
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TABLE VIII. Transformation from LS coupling to jj coupling. Widths I" in jj coupling are expressed vs I, I o, and I + which
are the LS-coupling widths for L respectively equal to I] —1, I&, and I l +1. The orbital angular momentum of the inner electron is

lz ——1. Notations: P=2l, +3!,+4, Q=(2!,+1)(21~—l, +1),R =(21, +1)(21~+51~+4),S =21, +1~+3.

I[ ——]
2

Il ——]
2

1I] ——
2

I

I[ ——]
2

I]+ 2

I, ——1

2

I)+
I)+2
I] ——I

2

I[+—,
'

I ) + —,
'

3
2

1

2

3
2

3
2

1

2

1

2

3
2

3
2

1

2

3
2

3
2

3
2

I, —2

I, —1

I, —1

l, —1

I,

I, +1
I)+1
l, +1
I)+2

r
[(21,—1)I +(I, + 1)I ]/31,

[PI +4(l', —1)FO]/[31, (21, +1)]
[(I, +1)(2l, —1)I +I ]/[l, (2l, +1)]
[2l, —1)I +QI +41, (21, +3)I ]/[3l, (2l, +1)']
[4(1,+1)'(2l, —1)1 +RI +(2l, +3)I' ]/[3(l, +1)(2l, +1)']
[4(l, +1)~I +(21,—1)RI +l', (2l, —1)(2l, +3)I ]/[3l, (l, +1)(2l, +1)']
[(I, +1) (21, —1)(2l, +3)I +(2l, +3)Q1 +4l', I ]/[31, (l, +1)(2l, +1)']
[l, I +(2l, +3)I ]/[3(l, +1)]
[I +l, (21, +3)I ]/[(I, +1)(2l, +1)]
[41,(l, +2)I +Sl ]/[3(l, +1)(21,+1)]
r,

'2
I, 12 L '2 '2

l, l, L j, j, J
g (2j, +1)(2j2+1)(2L+1)(2S+1) s, s2 S =g (2j, +1)(2j2+1)(2k+1)(2L+I) '

S i.

J& Jz

or, after summation over the angular momentum j, of the Rydberg electron,
'2

l, l2 L 2
l, l~ L

g (2j, +1)(2j2+1)(2L+1)(2S+1) s~ s2 S . =g (2j2+1)(2L+1) '

j],$ ~ . k
s2 k

J& J2

(B3)

(B4)

The transformation matrix of coefficients involved in (B2) and (B3) is written in Table VIII in the particular case of the

p valence electron (lz ——1).
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