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We have investigated the particle-guiding center motion (across a strong magnetic field) caused by

a time-dependent electrostatic field. Two different nonlinear Hamiltonian systems of 1.5 degrees of
freedom have been used. The Hamiltonian is proportional to the electrostatic potential, which is

defined through its spatial Fourier spectrum in two dimensions. A k ' power-law spectrum (k is

the wave vector) and random-phase shifts have been chosen to model the spatial dependence of the
electrostatic drift-wave turbulence observed in several tokamaks. The equations of motion have

been solved numerically. When the average electric field amplitude is larger than a threshold value,

the particle trajectories become chaotic at large scale and a diffusion across the magnetic field sets
in. The diffusion coefficient D has been measured for different values of the average electric field

amplitude A. The classical (quasilinear) scaling has been found at small A, D ~ A, while a transi-

tion to the Bohm scaling is found at higher amplitudes, D ~ A. A recently proposed theoretical
treatment of the same problem has been applied to our models and the theoretical predictions have

been compared to the results of numerical simulations. For relative diffusion, the theoretical pre-
diction of the so-called "clump effect" has been well confirmed by numerical simulations. Theory
and simulation are in .qualitative agreement for the dependence of D on A, but some quantitative

discrepancies exist; their nature is discussed.

I. INTRODUCTION

At present, the major obstacle to the realization of con-
trolled thermonuclear fusion in closed magnetic
configuration devices (tokamaks) is commonly attributed
to the existence of anomalous energy losses due to parti-
cle and energy transport across the confining magnetic
field. These energy losses are higher than those predicted
by the neoclassical theory of collisional transport and
they result in an enhancement of electron thermal con-
duction.

Plasma microturbulence is generally believed to be at
the origin of anomalous transport; in fact, the strong fluc-
tuations of electric (or magnetic) field on spatial scales
much smaller than the plasma radius —i.e., strong field
gradient —result in an enhancement of the diffusion, as if
the collision frequency had grown. Among the different
possibilities of generating plasma microturbulence, much
interest has been addressed to electrostatic fluctuations of
low frequencies, driven by pressure gradients (drift-wave
turbulence).

Even if such electrostatic fluctuations have been ob-

served in all the tokamaks where appropriate measure-
ments have been carried on, ' there is as yet little con-
clusive evidence that these low-frequency, microscopic
fluctuations are indeed the cause of observed anomalous
transport in tokamaks. Moreover, several recent results
have clearly shown the inadequacy of the available empir-
ical transport models. Therefore a deeper understanding
of the diffusion properties of charged particles in tur-
bulent electromagnetic fields is urgent. The assessment of
the actual importance of these fluctuations for the anom-
alous transport is an open and important problem.

Beyond the existing empirical models for tokamak
transport, as far as the theoretical background of tur-
bulent plasma transport is concerned, any theory of plas-
ma turbulence yielding expressions for the correlations of
the various fluctuating quantities also yields transport
coefficients. Many such turbulence theories have been
proposed but no attempt to review them is made here.
We just want to recall that when the level of turbulence is
low, nonlinearities are treated by perturbation techniques
(weak-turbulence theory ) and the transport coefficients
depend on the energy level of the fluctuating fields; thus
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for small fluctuation levels (in the so-called quasilinear
approximation) the diffusion coefficient scales quadrati-
cally with the average electric field amplitude.

For drift-wave turbulence even with a fluctuation level
of a few percent the perturbative approach is no longer
valid and the plasma must be considered as strongly non-
linear, i.e., strongly turbulent. In this case renormaliza-
tion techniques have been developed, with the assump-
tion of incoherent fluctuations resulting from strong non-
linear coupling. In the limit of strong turbulence the
scaling of the diffusion coefficient with the average elec-
tric field becomes linear.

In any case, the renormalization prescriptions rely on

simple closure assumptions which are rather familiar in
Quid turbulence. In fact, the commonly used second-
cumulant approximation for the closure problem is essen-
tially a quasinormal approximation, very similar to the
direct interaction approximation (DIA) introduced by
Kraichnan for Quid turbulence. Another approach in
the incoherent fluctuations picture is known as "clump"
theory and has been proposed by Dupree, ' and Ka-
domtsev and Pogutse" (see also Refs. 12 and 13).

In recent years a great deal of work has been done on
nonlinear dynamical systems in the hope that turbulent
systems, fluids or plasmas, could ultimately be described
with the aid of few relevant degrees of freedom. A close
interaction in many topics between theoretical plasma
physics and classical mechanics has proved to be very
fruitful.

So a new approach to the problem of turbulent
diffusion has been recently tried. The diffusion (trans-
port) properties are investigated in nonlinear Hamiltoni-
an systems obtained, for instance, from the equation of
motion

dx(t) c
, E[x(t),t]XB .

Usually the approximation of this approach is to leave
aside the self-consistent particle-field interaction problem,
and to study the behavior of test particles in given fields
E[x(t),t].

The equation above is obtained in the limit of an elec-
tric field varying at low frequencies, as compared to the
electron and ion gyrofrequencies 0, and 0;, and in the
presence of a strong magnetic field B so that the fast
component of charged particle motion (The Larmor gyra-
tion) can be averaged in the so-called guiding-center ap-
proximation.

Recently, such a model has been studied in the case of
two drift waves. ' Even this very simplified model
displays an interesting behavior. The conditions on wave
frequencies to obtain stochastic particle motion, and
hence diffusion, have been established together with the
dependence of the diffusion coefficient on the field fluc-
tuation amplitude and some insight into the details of
particle transport has been gained. On the same model a
very interesting theoretical work has been carried on
conditions for the destruction of robust elliptic fixed
points (with the onset of global stochasticity) have been
analyzed in detail to determine the conditions for the
diffusio approximation to be valid.

The aim of the present paper is to report the results ob-
tained with a nonlinear dynamical model where some of
the spectral properties of the turbulence —measured in
tokamaks —are taken into account (even if in a still very
idealized way). The comparison of these results with the
theoretical predictions of a recent turbulent diffusion
theory' is also presented; this was, in fact, among the
original motivations of this work. Preliminary results
were given in Ref. 17.

Passing from the simplest system of waves which can
yield stochastic particle motion (i.e., a two-wave model)
to a system where a power-law k spectrum is considered,
many results change. The most important difference is
that we have found a quadratic dependence of the
diffusion coefficient on the r.m.s. electric fields E for
"small" E, and a linear dependence for "large" E
(E = (

~

E
~

) ' and ( ) stands for spatial average).
Both of these regimes are predicted by the theory

they may be identified with the quasilinear and Bohrn
diffusion regimes respectively. On the contrary, the two-
wave model yields a much slower increase of D in terms
of E."

We have also observed the so-called clump
eff'ect ' ' ' in the case of guiding centers; this effect
shows up in the relative diffusion of close particles and is
consistent with an exponential separation of neighboring
orbits. A relevant result is that a simple scaling law is
found for

(5r (t)) =([x"'(t)—x"'(t)]')

in a wide range of turbulent amplitudes E, that is,

(5r'(t)) =F[tD(E)],
a property predicted by the theory' in the range of
moderate amplitudes.

In Sec. II we introduce the model. In Sec. III the nu-
merical methods and particle trajectories are described.
In Sec. IV we report the results for absolute and relative
diffusion, Kolmogorov entropy and other statistical prop-
erties and trajectories. Section V is devoted to a slightly
different model introduced to test the "structural stabili-
ty" of our results. In Sec. VI the comparison between
theoretical and numerical results is done for absolute and
relative diffusion. Conclusions are reported in Sec. VII.

II. DESCRIPTION OF THE MODEL

We consider a plasma in a strong, constant, and uni-
form magnetic field B=Bz, where z is the unit vector in
the z direction. The electric field and the guiding-center
velocities have only x and y components. The observed
turbulent spectrum S(k, co) of electric field fluctuations is
modeled in terms of a given electrostatic field
E(x, t)= —V4(x, t) with

4(x, t)= g 4„sin[k.x+ tp„—co(k)t],
k

where yk are random phases and the 4k decrease as a
given function of k, in agreement with experimental data.

In general, the frequency is k dependent according to a
dispersion law V[k, co(k)]=0, but for simplicity we have
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taken c0(k)=too, a constant. This could be the case for
Langmuir waves, but in the case of drift-wave turbulence
this has to be considered as a simple approximation,
necessary to make numerical simulation feasible.

Finally the wave-number spectrum S(k) is chosen to
have a simple power-law dependence so that it repro-
duces the k subrange energy spectrum which has been
observed in drift-wave turbulence. Equation (1) for
guiding centers is

E (x,y, t) —8 4
y g E—(xyt) (3)

Note that the system (3) is a nonautonomous Hamiltoni-
an system in which the coordinates x and y play the role
of canonical coordinates and the time-dependent Hamil-
tonian is

H(x, y, t)= 4(x—,y, t) . (4)

a,
4(x,y, t) =

27T n=1
n +m (S

(n 2+m 2)3/2

2'
X sin (nx +my)

Thus the physical space (x,y) is also the phase space of
the system.

In this section we consider the following explicit form
of the electrostatic potential (model I):

time of the potential), the chaotic dynamics makes the
Lagrangian field (i.e., the field felt by the particles along
their trajectories) incoherently fluctuating. This fact is
well known from many examples of smooth and non-
chaotic Eulerian fields' where chaotic Lagrangian fields
are obtained.

We report in Fig. 1 a computer-made drawing
representing the equipotential curves of a generic realiza-
tion of the turbulent electric field. A picture of the po-
tential is shown at t=0. The first property of our model
of a turbulent potential field is that it is strongly fluctuat-
ing in time. Actually, the eddies of Fig. 1 are rapidly
modified in the course of time: where a vortex was ini-
tially present, an open line appears, and so on.

This behavior is not simply explained by the propaga-
tion of the structure (see below). The effect of the ran-
dom phases in producing eddies that are irregular in
space is also clearly important. Note that the strong de-
cay law of the Fourier coefficients of the field (k ) tends
to hide the small-scale contributions.

Two peculiar properties of our m.odel, anisotropy and
propagation, have also been observed: each image of the
potential field shows an elongated structure of the eddies;
moreover by superposing the images obtained at different
times a slight propagation in the y =x direction is found.
However, this propagation can easily be proved not to
perturb the diffusive motion of the guiding centers. The
two properties of anisotropy and propagation are easily
understood analytically. Restricting ourselves to the
most simplified case of an electric potential given only by
a dominant mode (n =m= 1),

+0'~ p~ (5)

2~
2 sin (x +y) +qr» coot—

2% L

we immediately realize that at any given time the maxima

where the phases y„arechosen at random in a uniform
distribution on the interval (0,2n. ); only those modes
( n, m ) with n +m (N are taken into account.

This potential has periodicity lengths equal to L in
both x and y directions; in other words, the potential
configuration of the unit square (O, L) X(O,L)ER, at any
given time, is indefinitely repeated in space. In general

T

n n
k= ko=

m m

Y

1.00

0.7 0

the smallest wave vector in (5) is thus

1

~min =+oko

0.50

(with No ——1 in this section). We have

L =NoA, ,„=No2n.lk;„=NA;„, .

where we introduced by definition k;„=Npkp ~ The
width v of the k spectrum is given by
v =k;„/k,„=Xo /N.

The frequency cop can be thought of as an effective
average frequency for drift waves; even if this is a limita-
tion of the model (we still have a coherent variation in

0.25

0.00 0.25 0.50
0.00

0.75 x 1.pp

FIG. l. Equipotential curves [Eq. (5}]of the turbulent elec-
tric field (for t =0). The thickness of lines is proportional to the
local ffatness of the potential.



38 CHAOTIC DIl'5'USION ACROSS A MAGNETIC FIELD IN A. . . 347

and minima of the sine are located on the lines

y = —x+ const. As the amplitudes 4„arerapidly de-
creasing functions of n and m, the structure of (7) is
essentially preserved also in the case of many waves
(N && 1). Moreover, it is obvious that, with the potential
(7), any given line y =x+c (where a maximum or a
minimum is attained) moves in time with the phase veloc-
ity; this is the reason why we say that our model is a
"propagative" one.

In Fig. 1 the thickness of the lines representing equipo-
tentials is a measure of the local flatness of the potential.
A remarkable property of this model is the presence of
open equipotential lines which coexist with closed ones.
This property does not mean that "runaway" particles
are to be expected among the others (for guiding centers
the velocity x is perpendicular to the local field E) as
would be the case if the potential was time independent.

From the potential (5}we get the electric field

a,
E(x,y, t) =—

n=1
n +m (N

N 2~
cos (nx +my)+y„costopt

, (n+m )~

2n.+ sin (nx +my)+ gr„sintopt

=E,(x,y)costopt +E2(x,y)sintopt, (8)

so that the knowledge of four scalar functions (the com-
ponents of E, and E2} is sufficient to determine the elec-
tric field at all times, hence the motion of the particles.

We define an average energy density 8 as

(~E~ )= f dxf dy E(xyt),

which gives, with Eq. (8),

I

of the length L of the box. As will be shown in detail in
Sec. VI, a different parameter A should be used in the
theoretical analysis:

2m cE
~p~max

(13a)

This parameter can also be viewed as the ratio of the two
time scales To and Td..

where

2
Ql

SmL
(10} A = Tp/Td . (13b)

We note that the relation between A and A involves the
ratio L/A, ,„,i.e., the number Np of Eq. (6),

n, m =1
n +m

(n2+m ) A =N()A . (14)

The r.m.s. electric field E is thus given by

As is usual in the numerical studies of modeled systems,
it makes life much easier if one uses a particular units
system made of the numbers characterizing the model.
Thus, we take here L as unit of length, Tp (the period of
waves) as unit of time, and E as unit of electric (and mag-
netic) field [thus writing E(x,y, t)=Ee(x,y, t)]. If, in ad-
dition, we introduce a unit vector perpendicular to the
plane of the system, i.e., b=B/

~

B ~, we arrive at

dx
dt

2m eE
e(x,y, t) Xb =A e(x,y, t) Xb,

Loop B (12)

where t, x, e, and b are now dimensionless. The parame-
ter A is the ratio of the turbulent drift velocity
Ud ——cE/8 =2m. /Tdk;„ to the maximal phase velocity
vz ——copL /2n =L /Tp.

While the parameter A is convenient for the numerical
studies, it has the disadvantage of being defined in terms

III. NUMERICAL INTEGRATION
AND PARTICLE TRAJECTORIKS

In principle, for each particle considered and at each
time step in the numerical integration of Eq. (12) one
should compute the electric field according to Eq. (8),
which would be impossible with the values of N, of the
number of initial conditions, and of the average integra-
tion time that we had to consider. Therefore we have
adopted the following technique: a set of random phases
(y„)is generated and E&,Ez are computed on a square
grid of M XM points

(O, b, 2' , x. . . , L) X(O, by, 2', . . . , L}E(O,L) X(O,L),
with a grid spacing hx =hy =L/M &&A, ;„,i.e., smaller
than the minimum wavelength in the expansion (5). In
this way the four scalar functions E, 2,E, 2 are replaced
by four MXM matrices which are computed only once
and stored in the computer memory. These matrices al-
low us to compute E(x,y, t), at any (x,y, t), by means of a
linear interpolation between the four nearest-neighboring
sites in the matrices, around the point (x,y).

This interpolation procedure might produce numerical
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precision problems if hx was not sufficiently smaller than
A, ;„;by comparing the results obtained with different
values of hx and higher-order interpolation schemes we
have empirically determined how small it had to be. In
this way we arrived at the following choice:
Ax =A, ;„/10=0.004, i.e., we have taken M=250 and
N=25; with a (250) -points grid we have a good resolu-
tion even for the smallest wavelength. The various tests
we just described have shown that, in the general frame
of this work, improving the precision of the techniques
we used did not lead to any significant difference of the
results.

The integration algorithm adopted is a second-order
Euler-Cauchy predictor corrector. The time integration
step was Et=0.005 for A & 1 and bt =0.005/A for
A&1. This choice is motivated by the fact that for
A «1 the smallest time scale in the system is To (equal
to 1); for A »1, we want to maintain b, t-O(10 )

times the smallest time scale in the system which is now

Td & To'
We made several tests to check the reproducibility of

our results which turned out to be nearly insensitive to
changing the grid spacing 1/M, to using or not the re-
striction n +m (N, to reducing further the time in-
tegration step by a factor of 10 with respect to the
above-mentioned criteria (i.e., b,t=0 0005 for. A &1 and
b, t =0.0005/A for A & 1), and to varying the number of
trajectories in the range 100-2000, the usually adopted
value being 400 initial conditions. The simulations have
been performed using mostly Cray X-MP computers. A
CYBER 170 and a VAX 11/750 have also been used.

Something of the potential field structure is retained in
particle trajectories. Actually a rapidly oscillating
motion (of period To) is found together with a slower
drift, due to the turbulent electric field fluctuations. The
effect of the anisotropy of the potential is recognized by
the fact that the elongation of the fast oscillatory motion
is directed around the y = —x direction. How strongly
particle trajectories are affected by the nonlinear nature
of the equation of motion, thus deviating from being
merely single equipotential lines, is then realized by look-
ing at Fig. 2(a).

We report some stroboscopic sections, i.e., "trajec-
tories" in the (x,y) (phase) space made up of dots placed
at the single-particle positions recorded at each period
(r = Tp 2To 3 To . . . ). We also report some stroboscop-
ic sections obtained by folding the trajectories in the
periodicity cell of potential.

In Fig. 2(a) we see trajectories that are periodic on a
length scale comparab1e with the periodic cell L, and
there is no evident relationship with the structure of the
electric potential; in particular, nothing seems to remain
of its anisotropy. Of course, periodic trajectories can be
found with a smaller length. These results correspond to
A =0.2; this amplitude belongs to the range of values for
which we have found a vanishing asymptotic diffusion
coefficient, just because the trajectories are confined. For
this amplitude we have also found a small but definitely
positive value of the Kolmogorov entropy h; in other
words for A =0.2 we have chaotic dynamics and local ex-
ponential separation of nearby trajectories (see Sec. IV).
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FIG. 2. (a) Stroboscopic sections of sample trajectories ob-
tained with A =0.2. The trajectories have been folded into the
unit square. 1000 points are displayed for 10 randomly chosen
initial conditions. (b) Small stochastic region for A =0.2 and

xo ——0.75, yo ——0.75.

This notwithstanding, on a large scale all the observed
trajectories are bounded and closed (i.e., quasiperiodic on
the observational time scale), so that we can think of a
coexistence in phase space of regular and chaotic regions,
with a measure of the latter ones vanishing with A. This
idea is a rather common one for nonlinear Hamiltonian
systems and it is confirmed in our case by what is shown
in Fig. 2(b). Here a stroboscopic section is reported for a
trajectory obtained at A =0.2 (same value as before) but
for a different initial condition (xo ——0.75,yo

——0.75) and
composed of 500 points. It covers a small fraction of the
(x,y) plane and displays the random scattering of points,
characteristic of chaotic motion, with two big holes
which are likely to be the analogue of invariant tori in au-
tonomous systems. Chaotic regions thus exist even at
A=0.2 where nearly all trajectories are closed and the
asymptotic diffusion coefficient is vanishing.

In the considered range of values of the amplitude A,
there does not seem to be a sharp stochasticity threshold,
while different chaotic regimes can take place. These re-
gimes are detected by the change in the functional depen-
dence of the Kolmogorov entropy h and of the diffusion
coefficient D in the interval A =0.2—0.3: D ( A =0.2) =0
and D(A=0.3)&0. Around this threshold a transition
occurs between dynamical trapping of the trajectories
and unbounded diffusive motion, giving rise to large-scale
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stochasticity.
The lack of a threshold for stochasticity (i.e., for posi-

tive Kolmogorov entropy), and the "smooth" increase of
the measure of the chaotic regions in phase space is quali-
tatively shown in Fig. 3 where four different stroboscopic
sections are shown for the same initial condition, but for
slightly increasing values of A. The starting point is

(xo ——0.25, yo=0.25); in Fig. 2(a) this produced a close
trajectory which resembles that of Fig. 3(a) for A =0.25.
In Fig. 3(b) A =0.3 and the number of points is 1000, but
the trajectory is no longer regular: the points scatter
around several "pseudo-invariant" boundaries; the shape
of the previous trajectory is still recognizable.

In Fig. 3(c), with A=0.32, we see that the stochastic
layer penetrates the original "pseudoinvariant" boundary
and two new ones show up inside. For 3=0.34, Fig.
3(d), the thickness of the stochastic layer is increased,
compared to those of Figs. 3(b) and 3(c), and after the
same lapse of time (1000 periods) the trajectory has
spread over a wider region of the (x,y) plane.

In Fig. 4 the initial condition has been changed and the
value of A further increased. A similar scenario is found.
Starting with a closed, regular, and almost elliptic orbit,

obtained at A=0.4 [Fig. 4(a)], we see that going to
A =0.41 [Fig. 4(b)], this regular orbit breaks into many
small and very elongated "islands * this is analogous to
the breaking of invariant curves in other conservative
and autonomous systems. In Fig. 4(c), A =0.42, a section
typical of the appearance of a homoclinic tangle is found;
in Fig. 4(d), again at A =0.42 but for a longer integration
time, we can see a very nice section: the trajectory dis-
places itself in a rather erratic way, but three traps show
up. The traps are easily identified as those regions where
there is a high density of points and consequently where
the trajectories spend a long time without diffusing.

This Fig. 4(d) is a good example of intermittency of our
dynamical system. A particle spends a long time near a
local trap, then quickly moves to another region where it
is again trapped, and so on. This phenomenon is a very
clear mark of non-Gaussian dynamics, and this intermit-
tency acts to slow down absolute diffusion of the guiding
centers (see Sec. IV D).

As A is increased, the stochastic layer gets thicker and
thicker until the phase space is completely ergodic. This
is pictorially well shown by the stroboscopic sections re-
ported in Figs. 2-5.
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FIG. 3. An ordered trajectory losing its stability as A is increased. The orbit of (a) can also be seen (marked with an asterisk) in
Fig. 2(a), but is shown here for A =0.25; (b) A =0.3, a stochastic diffusion starts up and new "holes" show up; (c) A =0.32, the pre-
vious stochastic layer get thicker; (d) A =0.34, a larger scale orbit is obtained. All these figures contain 1000 points. The initial con-
dition is everywhere the same.
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IV. STATISTICAL PROPERTIES
OF PARTICLE MOTION

The results are reported in Fig. 7 where the following
dependences on A appear to apply:

A. Abso1ute di8'usion

In order to study the absolute diffusion properties of
the system, we have considered a set of JV particles uni-
formly distributed at random in the domain 0(x,y (1,
at t=0. %"e have measured the time dependence of abso-
lute diffusion by computing

JV

(r (t)) =—g ~
x;(t) —x, (0)

~
(15)

where x, (t) (i = 1, . . . , JV) is the position of the ith parti-
cle at time t as obtained by integrating Eq. (12) with the
initial condition x;(0).

In general, the long-time dependence of (r (t)) is
linear as shown in Fig. 6, and the dimensionless diffusion
coeScient is defined by its asymptotic slope

(16)

We have evaluated S for several values of A ranging
from A =0.1 to A =10, mostly with IV=400 and for in-
tegration times ranging from t=500 to 3000.

(17)

These dependences, valid for a broad spectrum, are
known as the quasilinear scaling (small values of A, or
weak turbulence regime) and the Bohm scaling (large
values of A, or strong turbulence regime). This result is
very different from what has been found with a two-wave
model, ' which suggests that it is possible to represent
systems by simple dynamical models (though a little more
involved than that of Ref. 14) and obtain a description in
reasonable agreement with the existing theories. We
have just said that for 0.2 &A &0.3 we observe that par-
ticles remain confined in space on almost periodic trajec-
tories with very long periods (typically several hundred
times To). As a consequence, (r (t)) grows in time up
to a saturation level (whose value depends on A ). This
saturation phenomenon has been followed up to
t -6X 10 To with IV= 120. Thus there is a critical value
of A in the interval (0.2, 0.3) below which diffusion stops
(2)=0).

We also measured the quantity
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FIG. 6. Simulation results for absolute a [x =r of Eq. (15)]
and relative b [x'=5r~ of Eq. (18)] diffusion for model I at
A =0.45.
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FIG. 5. Stroboscopic sections for (a) A =0.45 (QL region),

xp =0.741 yp =0.749 (3000 points); (b) A =5.0 (Bohm region),

xp =0.741, yp =0.749 (9000 points).

for both g; =x; and g, =y, . We always found an errati-
cally oscillating value around zero with a mean deviation
of about 10 . In other words, there was no average dis-
placement.

Test runs have been performed with mo ——0, where we
went from three coordinates (x,y, t) to two coordinates

~W

r rg ~

~J'

~y

FIG. 7. Absolute diffusion eoeScient 2) vs turbulence amplitude parameter A. Circles refer to model I and squares to model II
(Sec. V).
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(x,y) in our dynamical system; this implies that chaotic
solutions are forbidden because of the uniqueness of solu-
tions of differential equations; thus diffusion must stop.
If the equations of motion (12) are integrated with coo=0
we find a residual diffusion whose level is lowered by in-
creasing M. In other words, the representation of the
field by discrete matrices and the interpolation algorithm
act as if a noise were added to the system. An overesti-
mate of the diffusion coefficient is the main consequence,
but this amounts to less than 1% with the adopted pa-
rameters.

B. Relative diffusion

The relative diffusion properties are obtained from the
time dependence of the r.m.s. relative distance
5r(t) =x', "(t)—x'; '(t), and

(5r'(r) )=, g ~

x';"(r)—x,'"(r)
~

', (18)

where x';"(t) and x', '(t) are the positions of the two parti-
cles in the ith pair at time t. We are mainly interested in
the relative diffusion of neighboring particles; the initial
separations 5r, (0)=x', "(0)—x', '(0) were taken as much
smaller than the smallest wavelength

~
5r, (0)~ /A, ;„=N

~
5r, (0)~ /L && 1 .

Typically we have used
~
5r;(0)

~

/L =0.0005 && 1/N
=0.04. In Fig. 8 we exhibit a typical time behavior of
ln(5r (t)).

The clump effect predicted theoretically' for relative
diffusion appears quite clearly on this curve (see Sec. VII
for the application of the theory to the present model).
This effect is verified to take place independently of the
value of A, and some sort of "universal" behavior is
found in the range of A values that we have considered
(see Fig. 8),

1 n(5r (t)) =F(t/rz;r), (19)

where r~;r-2) ' is the diffusion time scale. We thus find

that in both the quasilinear and the Bohm diffusion re-
gimes, the relative diffusion satisfies a simple scaling law
which modifies its time dependence according to the ab-
solute diffusion coefficient.

h = hm h(t}= lim —ln (20)
o)ll

where g(t) is a vector in a tangent space whose evolution
is given by

C. Kolmogorov-Sinai entropy

We have verified that particles moving according to
Eq. (12} undergo a stochastic dynamics. Deterministic
chaos is rather ubiquitous in nonlinear dynamical systems
(with the obvious exception of integrable systems).
Roughly speaking, this means that an extreme sensitivity
to initial conditions is present and that nearby trajec-
tories exponentially diverge in time. These properties are
formalized by defining the following quantity (maximal
Lyapunov characteristic exponent)

in&Dr (t)& 0
~ ~

~ 0
~04
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~l
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x$
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FKx. 8. Scaling law for the clump effect in relative diffusion. Crosses refer to A =0.6 (QL regime), open circles refer to A =1
(transition regime), and solid circles correspond to A =5 (Bohm regime).
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and (Bx,. /Bx ) are computed along a trajectory given by
the equation of motion. A positive value of h is a mark of
the instability which makes the motion stochastic; h=0
means that the motion is regular. A practical estimate of
the Kolmogorov-Sinai entropy is obtained by means of a
standard technique; this consists in averaging along a
trajectory the quantity lnd„, with d„=~~W„,~~/

~(W~„,~,~); W„is the distance vector between the refer-
ence trajectory and some nearby trajectory, and % is re-
normalized to a given initial norm after each time inter-
val r As. the stochastic component (i.e., a compact
phase-space area of the unstable motion) can have a very
intricate structure, h could depend on the trajectory, i.e.,
on the initial conditions, even with very long integration
times; ' consequently, we have performed an averaging of
h over 10 initial conditions. By means of ( h ) we obtain
global information about the degree of chaoticity of the
system; (h ) is an estimate of the Kolmogorov-Sinai en-

tropy.
In Fig. 9 we plot the long-time mean value (h ) versus

A. We observe again a change of regime around the
value A —1. Actually, for small values of A we find
(It )- A (A «1) while for A&1 a slower functional
dependence is found, consistent with the logarithmic
dependence of Ref. 14. The errors made in determining
(h ) are of the order of 5%. These are not computation-
al errors but represent the dispersion of the values h; (ob-
tained with different initial conditions). This dispersion is

larger when A is lowered to very small values. It is
worth mentioning that the relation (h ) —A is in agree-
ment with a prediction of the previously mentioned
theory' in the "small clump regime" (see Sec. VII). We
did not hnd any sharp threshold on the value of A for the
existence of a positive average Kolmogorov entropy: a
chaotic component in phase space seems always to be
present in the range of amplitudes that we considered.

The fluctuations of the values of h; are negligible for
A & 1. The strong fluctuations observed for small A, and
in particular when D=O, could be related with the ex-
istence of small chaotic regions among regular trajec-
tories; these regions look disjointed and bounded by
closed quasiperiodic trajectories. Finally, we note that
the dependence of ( h ) on A also denotes the existence of
a smooth transition between quasilinear and Bohm
diffusion regimes. In the limit of large A (low frequency
coo) the diffusion mechanism could be analogous to the
one studied in detail for a simpler dynamical system in
Ref. 23.

D. Non-Gaussian properties of dynamics

As Gaussian approximations are rather commonly in-
troduced in the theories of turbulent diffusion in plasmas,
it is sensible to investigate some statistical properties of
particle motion related to the degree of Gaussian behav-
ior of the stochastic dynamics. One of the simplest ways
of testing to what extent a random variable g(t) (with
zero mean value) is a Gaussian process consists of
evaluating the magnitude of the fourth cumulant, i.e.,

0
& a

Dy

0

1 an@ 2

FIG. 9. Plot of Kolmogorov-Sinai entropy vs A. The slope of the reference line is 2.
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C& ——( g ) —3 ( g ) (in one dimension}, which vanishes

(with all higher-order cumulants) for a Gaussian process.
The deviation from the Gaussianity can thus be measured

by evaluating the kurtosis, i.e., K& (——g ) /(g ), which

reduces to 3 for a Gaussian process. When K is larger
(smaller} than 3, it means that the wings of the probabili-
ty distribution of g are more (less) important as compared
to the Gaussian distribution; kurtosis is "broadness. "

We have measured the kurtosis of the following quanti-
ties: (a) the scalar velocity U =

~

x ~; (b) 5x, 5y, the rela-
tive displacements in directions x and y (as functions of
time); (c) b,x, by, the absolute displacements in directions
x and y (as functions of time). For the time-averaged kur-
tosis K„ofthe scalar velocity, we obtain values which are
systematically below 3.

These are weakly varying with A as follows: for
A=0.5, 1, 2, 3 we have, respectively, E„=2.322, 2.365,
2.379, 2.380. Thus we have a significant deviation of the
fourth cumulant from its Gaussian value. A typical be-
havior of the kurtosis of absolute displacement KQ Kpy
is shown in Fig. 10. The curves mainly remain below the
Gaussian value. For short times (less than one period)
the kurtosis is about 2.3; this value is close to the previ-
ously reported ones for K„,probably for the simple
reason that the absolute displacement is nothing else than
the time integral of the velocity. On the other hand, we
have peak at t =To and at longer times the Gaussian
value is reached.

As for the kurtosis of the relative displacement, in Fig.
11 a typical behavior of K» and E» is shown; around

the clump lifetime, i.e., in the fastest growth of the rela-
tive diffusion, a very strong deviation from Gaussian
statistics is observed. This phenomenon takes place in-
dependently of the value of the turbulent amplitude A. It
reminds us of the fluctuations enhancement which is typi-
cal around an instability point. The analogy between the
exponential separation in the clump regime and a usual
instability has already been suggested. This phenom-
enon also reminds us of the anomalous fluctuations
which are produced during the decay of a metastable
state. The separation of two neighboring particles at t=0
can be thought of as the decay of the dynamically unsta-
ble state of two nearby initial conditions in a chaotic
dynamical system.

The strong peaks of E»,K&y indicate that the fluctua-
tions are dramatically amplified with respect to those ex-
pected for a Gaussian process. For longer times both
Ks„andKs attain the Gaussian value of 3.

These different facts, i.e., that E„is below 3 and time
independent while Kz„&y and K», K& keep non-
Gaussian values only during finite times, are due to the
fact that U (t)=

~

x
~

is a stationary process while
hx, hy, 5x, 5y, are not. The transient deviations for the
latter quantities are somehow reflecting the existence of a
finite decorrelation time scale for the trajectories. In fact,
this time scale is approximately the inverse of the
Kolmogorov-Sinai (KS} entropy, and the clump time
scale (at which the peaks of Ks„s~occur) can be related
to the KS entropy.

Another signature of non-Gaussian stochastic dynam-

hx, &y

4

-4 I

-2 0
In

FIG. 10. Absolute diffusion kurtosis vs logarithm of time. 0, K~; 6, K~~; ———,Gaussian level. Here A = 1 and 800 particles
were involved.
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C(~)=C(n5t)=Co g g x.(t;)x (t, +n5t),
j=li =1

(22)

where Co is a normalization factor, 5t is the elementary
time lag, JK5t is the time interval over which C(r} is

ics has been found by computing the velocity autocorrela-
tion function C(r)=((x(t) x(t+w)), )z, where the dou-
ble averaging stands for averaging over particles
(( . . )~) and over time (( . . ), ). Taking advantage of
the stationarity of x(t) we have computed

evaluated, and JV is the number of diff'erent particles (i.e.,
of initial conditions). With the parameters we used, each
point of the autocorrelation function resulted from the
averaging over 40000—60000 terms in the sum (22}. In
Fig. 12 the velocity autocorrelation (22) is plotted versus
time lag and compared with an exponentially decaying
envelope.

Actually, if the dynamics were Gaussian the velocity
autocorrelation functions would be expected to be ex-
ponentially decaying. On the contrary, the temporal de-
cay of the autocorrelations is slower in the numerical

~ ~

~ ~

0
WA.

t

FIG. 11. Relative diffusion kurtosis vs logarithm of time. 0, diffusion in x direction; 6, diffusion iny direction. Here A =1 and
400 pairs of particles were involved. . on the background is the corresponding relative diffusion.
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simulation where long nonexponential time tails show up.
The fact that the autocorrelation functions in the sto-
chastic components of dynamical systems are in general
more complicated than simple exponentials is common in
low-dimensionality chaos, and also in real turbulent
fluids.

As the diffusion coefficient I) is the time integral of the
velocity autocorrelation function (see Sec. VI), a devia-
tion of the numerical result for 2) from the theoretical
prediction (obtained with a Gaussian approximation) is
expected. We recall that a pictorial aspect of non-
Gaussianity is given by Fig. 4(d) where an intermittent
trajectory is shown. It is quite remarkable, however, that
the correct diffusion law appears not to be affected [i.e.,
(r (t) ) =X)t, large t] Th. is fact is not a priori obvious; it
is well known that intermittency is often responsible for
the appearance of nonclassical diffusion laws [i.e., where
(r (t)) is a nonlinear function of t]. Such nonclassical
diffusion is produced by a hierarchy of trapping times
distributed over a wide range of time scales. Therefore
we can guess that in our model essentially one trapping
time scale is dominant instead of a wide-spread distribu-
tion of trapping times.

V. A MODEL WITH ISOTROPIC POTENTIAL

"structurally stable, " in other words, whether changing
some of the initial assumptions would leave the phenome-
nology essentially unchanged.

We wanted to choose this domain in such a way that
the electric potential would be instantaneously isotropic.
Both a circle and half a circle in the (n, m) plane would
answer this purpose: with the former choice the waves
are stationary (and so is the potential), while the latter
choice maintains the propagating nature of the com-
ponents. Since we did not want to change too many
things at the same time we chose again propagating
waves. Another sensible change consists of not letting
the unit length L coincide with the maximum wavelength
in the turbulent spectrum; thus we have eliminated some
low n and m values according to a constraint
No &n +m gN in the summation of the Fourier com-
ponents of 4. The potential for model II thus became

g II N N
14(x,y, t) =

( 2+ m 2)3/2

N2 &~2+m2~N2

2'Xcos (nx +my)L

In this section we briefly describe the results we have
obtained for another model, with the same spectral slope
but with a different choice for the summation domain in
k space. We wanted to verify to what extent our results
for the previous model (which we shall call model I) were

+%nm —Ot

C (&)
O.

4

. 0

—0 4

—0. 8

0 10 12

FIG. 12. Velocity autocorrelation function. Here A =1 and the number of particles was 200. An exponential envelope is plotted
to display the long-time tail.
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where the symbols have the same meaning as in Eq. (5).
In Fig. 13 we show the equipotential curves for this

field with a generic realization of the random phases

] at t =0 and on the unit square (O, L ) X (O, L ).
Comparing Figs. 1 and 13, one readily sees why we say

that model II is (instantaneously) isotropic: there is no
evident preferred direction in Fig. 13; this isotropic char-
acter of the electric potential and fields is very easy to es-
tablish on mathematical grounds. On the other hand,
looking at how equipotential curves change in the course
of time, one would see their complicated structure de-
form while moving (on average) towards the positive y
axis. Thus model II is "isotropic" and "propagative. "

When we considered choosing the parameters of the
potential (No, N) and the precision of the numerical in-

tegration (essentially the number M of points in the field

grid, or the distance bx between two neighboring points),
we were confronted with a very difficult problem.
Indeed, to make model II closer to the experimental reali-

ty, we should have taken No and N as large as pos-
sible (compared to 1), while keeping their ratio
v =No/N =A. ;„/k, ,„

fixed between —,', and —,', . But,
choosing modestly No =4 and N =25ND =100, one readi-

ly evaluates that, if we wanted the smallest wavelength to
be represented by 10 points, the field matrices would oc-
cupy four Mwords in the central memory of the comput-
er. We thus had to be even more modest and adopt the
values No =4, N=48 (v= —,', ), and bx = —,

'

(M =9X10 ); thus A. ;„/b,x=6.25. With this choice,
the relation between the parameter A and the energy pa-
rameter A [Eq. (13)]becomes A =4A.

From here on, the analysis leading to the equation of
motion (11) as well as the numerical computations follow
the same lines as for model I, the only modification lying
in the domain of k space one sums over; as a result, the

1.00

quantity o. becomes

2 ]
OII —2

n= —N

~2 (~2+m2(~2

N

o(n +m
(24)

In Fig. 14 we present an example of the absolute and
relative diffusion curves obtained. The clump effect for
relative diffusion is again present; absolute diffusion again
starts with a t law for very short times and the regime
(r (t)) cc t soon follows with strongly damped (at small
A) or even no oscillations (larger A, as in Fig. 14). This
is the most relevant difference with the corresponding
curves obtained for model I: not only do the oscillations
of the absolute diffusion curve disappear but the asymp-
totic linear diffusion regime is reached at much shorter
times in model II; hence, the evaluation of the diffusion
coefficient is improved.

In Fig. 7 the different values of the diffusion coefficient
are reported as a function of A. Two facts are striking:
(i) qualitatively, we observe again both limiting regimes,
i.e., D cc A for small A (quasilinear regime) and D o: A

for large A (Bohtn regime); (ii) quantitatively, the values
of the diffusion coefficient in both models are very close.
The scaling law for relative diffusion, reported in Eq. (19),
has been confirmed also for model II.

We have found again that for sufficiently small A

diffusion stops and most of the trajectories are regular;
this happens for A in the range (0.05, 0.15), i.e., the tran-
sition to the nondiffusive regime occurs at lower values of
A than in model I.

As for the statistical properties of the dynamics, we
have found as in model I a strong enhancement in the rel-
ative diffusion kurtosis (Ks„s~)around the clump time
scale. Here the maxima attained by E&, &„are about
40% of the values obtained for the previous model and
have a weak tendency to decrease when A is increased (as
before). The results for the absolute diffusion kurtosis
EQ Qy are in qualitative agreement with those of model

[r (X'([))

Q ~ 75

0 ~ 50

0.25
-10

0 00 0.25 0.50
0.00

0 75 x ] QQ

FIG. 13. Equipotential curves for the turbulent field in model
II at t =0 [from Eq. (23)]. A more isotropic field structure
shows up.

FIG. 14. Simulation results for absolute a [x ':r'of Eq. (15)]-
and relative b [x':fir' of Eq—. (18)] diffusion for model II at
A =5.O.
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I, the essential difference being that, in model II K&„z
reaches the Gaussian value at shorter times, which agrees
with the earlier onset of the diffusion regime. The values
of K, are still below 3 and range from about 2.4 to about
2.7; this is in qualitative agreement with the other reduc-
tions in the deviations from Gaussianity.

A. Absolute difFusion

We here derive the absolute diffusion equation for the
isotropic version of our models in the limit of infinite sys-
tem. Making the models isotropic (at least in the infinite
system limit) is, of course, trivial; it suffices to start from
Eq. (8) and extend the summation over the wave vectors
to domain 5 lying between the circles of radius k;„and
kmax '

E(r, t ) = —a g z cos(q r+ gz —capt),
q

q
qGS

S= Iq:k2;„&qi & k2,„), (25)

with a= —(a/L)(2~/L ). On the contrary, taking the
limit L ~ ~ cannot be done from the start: yq is not a
regular function of q, but a phase randomly chosen for
every q between 0 and 2m. We must therefore derive the
diffusion equation for a finite system, taking the limit
L ~ Oo only at the end. The absolute diffusion equation

d(r'(t)) =2J drC(r)=D(t)
dt 0

(26)

(where ( . ) represents an average over the random
phase pz) naturally introduces the "running" diffusion
coefficient D(t), also related to the velocity autocorrela-
tion function

C(t)=(v(t) v(0)),
where v(t) obeys the guiding-center equation of motion
(1).

Following the method and making the approximations
given in Ref. 16, one arrives at the following nonlinear

VI. THEORETICAL PREDICTIONS AND
COMPARISON WITH THE SIMULATION RESULTS

In this section we apply a recent theory' to the models
we have proposed and compare the predictions of this
theory to the observed properties of both models. We
show that (at least) a qualitative agreement exists, both
for absolute and relative diffusion. We must, however,
insist from the start on the fact that a perfect quantitative
agreement should not be expected. Indeed, the theory
aims at describing an experimental situation where the
dimension L of the system is very much larger than the
wavelengths of the dominant turbulent modes (technical-
ly, the theory is obtained in the limit L~ao, with
A, ;„,A, ,„

finite, the wave-number spectrum thus becom-
ing continuous). In addition, the theory assumes that the
turbulence is stationary, homogeneous, and isotropic. On
the contrary, in the models we have studied the dimen-
sion L is, of course, finite and the electric field spectrum
is anisotropic.

(E (t) E (0) )e —1/4[k (r (t)}]
g2

kcS

(27)

to be compared with Eq. (14) in Ref. 16.
From the definition (25) of E(r, t ), it is very easy to

compute the Fourier component Ei,(t) and therefore the
correlation function

(Ei,(t) E i,(0))

a
k4

2 Re[e ' (1+( e "e "))] . (28)

Averaging over the random phases, we obtain

a 1
(Ei,(t) E i,(0))= costopt

2 k4
(29)

Substituting this result into Eq. (27} and using the rela-
tions and definitions corresponding to Eqs. (9)-(11),i.e.,

with

( ~E(r t) ~') E'
0 2 g\ 2

(30)

la2 (

k
kGS

we arrive at

(31)

d (r (t)) i 1 1 —1/4[k (r~(t)i]}=a cos tempt e
dt 0'

i k
keS

(32}

where we introduced

Ea=c—8
as the amplitude of turbulence (note that this definition of
a coincides with the drift velocity vd introduced at the
end of Sec. II). Note that, to avoid possible ambiguities,
we derived the diffusion equation without any reference
to a particular system of units.

As all quantities appearing in Eq. (32) remain well
behaved in the limit of an infinite system, we may let L go
to infinity. A little algebra then leads to the final
differential equation

d I(t} a km;„z z
2 2 2

, cos(~,t)[Z, (r)—v Z, (r/v )]
dt 2(1—v )

=F(t) (33)

for the dimensionless function I (t)=(—,
' )k;„(r(t) ); in

equation for absolute diffusion (valid for a finite square
system of surface L ):

d'(r'(t) )
dt
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this equation v is equal to k;„/k,„andEz(x) is the ex-

ponential integral function of order 2. Finally, note that
this equation should be solved with the initial conditions
r(o) = r'(o) =o.

Once this equation has been solved, the diffusion
coefficient can be obtained by integrating the right-hand
side [see Eq. (26)], which yields

D(t)=
~ J drF(v). .

IIli n

(34)

The latter two equations have a rather remarkable prop-
erty: if, among the various models with different values
of k;„andk,„,we decide to examine one class, where
k;„varies but v is kept constant, then this class is de-
scribed by a single "scaled" solution. Indeed, if we intro-
duce the "scaled" variables a =ak;„and D =Dk;„,the
equations above become

cos(co t)[E (I ) —v E (I /v )]:F(t)—,
2(1 —v )

D(r)=4J drF(r) .
0

(35)

2m. 1A= —

at-=

opp L
2' E

c
~o B

However, if we want to compare our results (in particu-
lar, the variation of the diffusion coefficient in terms of
the amplitude) with the theoretical predictions, we see at
once that this choice is meaningless, since the theory is
developed in the limit L~ ~. It is then clear that our
unit of length must be one of those that characterize the
spectrum. To determine our choice, we now argue that
we want it to lead to the "scaled" form (35) of the
theoretical equations, i.e., that k;n must be absorbed in
the amplitude. We therefore choose cop=2~ as before

In fact, even if the values of v for two models are not the
same, this scaling property will still be nearly correct,
since v is generally considered to be in the range
—,', & v & —,'„andwhen v varies in this domain, the solution
of the scaled equation changes by less than 1%. Note
that this "approximate scaling" exists because we chose
k;„and v and the field parameters, instead of k;„and

Up to now, any equation we wrote or any assertion we
made was very general, since —as already noted —we did
not choose any particular units system: we only dealt
with physical quantities, not with their measures. How-
ever, when we want to compare the theoretical results to
those of "computer experiments, " we must make the
nontrivial choice of units (here essentially of length and
time). That this choice is nontrivial is, of course, due to
the fact that, to give a precise physical meaning to any
mathematical model, we must complete it with the "rules
of the game, " i.e., a system of units.

In computer simulations the units are always chosen so
as to simplify the calculations, i.e., to eliminate as much
as possible the parameters of the problem. Thus we
chose, so to speak, L =1 and ~0=2~. This led us to the
equation of motion (12), with the following form of the
amplitude:

and k;„=2m.(i.e., A,,„=2m). or t =2mt./coo and
I = 2m l /k, „,so that the theoretical equations for
r(t )=I (t) and D(t ) =D(t)k;„/(2ncoo) now take the di-
mensionless form

where the amplitude is

kmin a:—
C00

kmin
c

cop B

The numerical solutions of Eqs. (36} is easily obtained
and the resulting curve for lno versus lnA is shown on
Fig. 15. The striking feature of this curve is that, outside
the transition domain (i.e., —1 ~lnA 51), inD rapidly
tends to limiting asymptotes with slopes equal to +2 for
lnA ~—~ and +1 for lnA ~00.

At first sight, the D- A scaling may seem identical to
the prediction of the quasilinear theory. In fact, this is
not correct because, in the models we have considered,
the electric field oscillates at one given frequency and a
crude application of the quasilinear approximation would
lead to a "diffusion coefficient" oscillating in time around
a zero average. Thus, the nonlinear damping in our
theoretical equation is here seen to be necessary to obtain
the classical D —A scaling.

In the asymptotic limit A~~, the linear scaling
D- A may be understood at once as a Bohm (or frozen
turbulence) scaling. Indeed, in this limit, the oscillating
cosine factor may be forgotten in Eq. (36) which can then
be integrated once to yield the following expression for
the diffusion coefficient:

D(t)= 1

, [F(0)—F(r )]
v2

1/2

(37)

where

F(t ) =E,[I (7)]—v'E, [r(r )/v'] .

For long times, we thus find

D(t ~ co }~—I2+2v2j '~z . (38)

Figure 15 also shows the "computer experimental" re-
sults we have obtained for models I and II. At first
glance, the comparison between the theory and both
models may lead to the following concise conclusions: (a)
qualitatively, the agreement is good; (b) quantitatively, it
is not too bad. Indeed, it is seen that model I as well as
model II seem to exhibit both scalings predicted by the
theory, and this is quite an encouraging result.

Quantitatively, the simulation points lie below the
theoretical curve. But this cannot be a surprise, since
both models lack important properties which are assump-
tions of the theory: in particular, the model systems are
finite and therefore the wave-number spectrum is
discrete; in addition, both models are anisotropic. That
these facts may be important is suggested by the remark

cos(2mt)[E (I ) —v E (I'/v )]=F—(t),
dt 1 —v

(36)
D(r}= f drF(r),1
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that model II, which is closer to the theory, has the
denser wave-number spectrum and is less anisotropic
than model I.

Finally, we want to mention that non-Gaussian dynam-
ics and intermittency can play an essential role in reduc-
ing the diffusion coefficient (without altering the classical
(r )-t diffusion law, see, for instance, Ref. 30. Non-
negligible deviations from Gaussianity have been found
in the stochastic dynamics of both models I and II.
Moreover, non-Gaussianity is an important property of
the dynamics of real turbulent fluids and plasmas. As an
example, strong marks of non-Gaussian behavior in the
dynamics of density fluctuations have been recently ob-
served in tokamak TFR (Ref. 31) and in tokamak AS-
DEX (Ref. 32). These deviations from Gaussian statistics
are not taken into account in the theory which is based
on a quasinormal approximation.

(g=v, —vz) or of the normalized autocorrelation

(g(t) g(t —r) )
(40)

The theory is based on a separate analysis of the two fac-
tors in the right-hand side of Eq. (39). First, a very sim-
ple model is used to represent the ~ dependence of the rel-
ative velocity autocorrelation. It has been established
that the microscopic Lagrangian correlation time (which
characterizes this r dependence) is actually related to the
value of the absolute diffusion coefficient. The result ob-
tained for relative diffusion is thus given in terms of one
constant, the diffusion coefficient, described in the
preceding paragraph. In the present paper, we deal with
the so-called model "a" of Ref. 16, or the "constant La-
grangian model, " where the correlation time ~, is as-
sumed to be constant in time, and

B. Relative diffusion
—r/v

R,2(r, t) =e (41)

The relative diffusion equation for the mean-square rel-
ative distance (5r (t)) between two particles is given by
the equation'

d(5r (t))
dt o

=2J dr(g(t) g(t —r))

=2(g (t))f de, 2(r, t) (39)
0

in terms of the autocor relation of relative velocity

On the other hand, nonlinear dependence of (g (t) )
on the amplitude of turbulence has been shown to be re-
sponsible for the clump effect, i.e., a strong decrease of
relative diffusion of a small cloud of particles, followed by
an exponential separation of the trajectories. The non-
linear description of (g (t)) is based on the Corssin fac-
torization assumption, and on the Weinstock "second-
cumulant approximation" which is a Gaussian-like hy-
pothesis. An important goal in the present numerical

ln

0—

0

FIG. 15. Comparison of the results for 0( A) vs A. Solid line represents the theoretical results from Eq. (36) for both v= —,'2 and
v= ~', . Circles refer to model I and triangles to model II.
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simulation consists in testing the validity of these approx-
imations.

The time dependence of the relative diffusion can be
described by the dimensionless function

the description of Z(8) given by

=1— [E2(Z)—v E2(Z/v )];de (46)

Z(t) =-,'k', „(5r'(r)), (42)

=4m'A'r (t) 1—,[E,(Z) PE,—(Z/v'))—v'

(43)

where the Lagrangian time scale tR(t) depends on the
model considered for the autocorrelation function

We introduce a timelike variable 8 defined by

"8 ' =4~'A'r„(t), 8(O)=O (45)

which allows us to split the problem into two parts (i)

which obeys the following nonlinear equation (from this
point and unless otherwise stated, we adopt the system of
units introduced in the preceding section, where coo ——2~
and k;„=2~;moreover, to be as clear as possible we
drop the overbar of t, etc.):

(ii) the t dependence of the variable 8(t), which depends
on the model considered, here the constant Lagrangian
memory model with R,2 given by Eq. (39). In this model
one obtains

d8
1 —exp (47)

where we have introduced a new time variable t =2m At.
The explicit form of ~, is given in Ref. 12 and becomes in
our unit system r, =nD/A. The results for Z(t) turn
out to be naturally expressed in terms of the scaled time
td=a, t=2~ Dt He.re we present the results obtained
with the initial value logZO ———5.608 which corresponds
to the initial separation of particles adopted in numerical
simulations of model I.

In the range of values of A from 0.45 to 1.90 the curves
Z(td) calculated from Eqs. (46) and (47) for the corre-
sponding values of the diffusion coefficient (as given by
the simulation) appear to be indistinguishable from each
other. They are represented by the continuous curve on
Fig. 16, where one observes that after a very slow initial

log„z

3
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FIG. 16. The solid curve (several superposed curves) is the theoretical prediction for relative difFusion when A varies between 0.45

and 1.90. The dashed curves are the predictions without clump effect at A =0.4S and 1.90. The various points are simulation results
for model I (for A varying in the same range). To compare with Fig. 8, note that here decimal logarithms are used.
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growth, a rapid exponential behavior takes place, to-
wards a final stage where Z behaves as td, as expected. In
order to visualize the clump effect, we have also
represented in dashed lines, for the two extreme cases
A =0.45 and 1.90, the uncorrelated results which are ob-
tained by neglecting the nonlinear effects of trajectory
correlations, i.e., the second term in the right-hand side
of Eq. (46). It appears that the time behavior obtained in
the numerical simulation (Fig. 16) actually follows rather
precisely the continuous theoretical curve. This impor-
tant result constitutes a very positive indication of the ac-
curacy of the approximations used in order to take the
nonlinearity into account in the theoretical description.
Moreover, the function (5r (t) ), when plotted versus td,
appears to be nearly insensitive to the exact value of the
absolute diffusion coefficient l9 over a wide range of
values (for 0=10 to 10 '); see Eq. (19).

For higher amplitudes of turbulence (D- 1) a displace-
rnent of the curve is predicted towards larger times. In
other words, the "universal" curve [Eq. (19)] obtained in
the numerical simulation is not expected to hold for large
values of D and A.

We now discuss the analytical prediction for the rela-
tive diffusion of nearby trajectories on the basis of Eqs.
(46) and (47). For sufficiently small initial separation,
such that Z(0) «v /2, a time regime appears in which
the solution is given by

Z(B ) =Z(0)exp(2XB ),
where P is a positive Lyapunov exponent, given by

lnv

V

(48)

VII. CONCLUSIONS

In order to study the diffusion of charged particles
across a strong magnetic field, due to a known spectrum

[Ko is the r.m. s. value of the wave vector k, weighted by
the corresponding S(k)-k ]. This exponential growth
of the separation with growing 8 is also an exponential
growth in time, since e-f, t for sma11 value of w„and
hence for D and A vanishing.

The argument in Eq. (48) is then 2XB=2/T r
=4m +Dt =2k.t thus defining the characteristic exponent

2

2~2+0 ~2 D A 2 (49)
v —1

This law, predicted for small values of A, is actually
verified qualitatively in the simulation of model I (see Fig.
9) up to A -0.5. The quantitative agreement is not very
precise: for A =0.3, for instance, where 0-0.002, the
simulation gives (h ) =0.09=A, , while the prediction (49)
gives A, =0.13. However, this is not surprising because
the quantity X defined in Eq. (48) is not exactly equal to
(h ). The difference between (h ) and X could be due to
intermittency effects. Following the definitions of gen-
eralized Lyapunov exponents given in Ref. 33, (h ) cor-
responds to dL(q)ldq

~ ~ 0 and 7 to L (2)/2, and in gen-
eral one has X & ( h ).

of electrostatic turbulence, we have investigated the
dynamical behavior of two different nonlinear Hamiltoni-
an systems. The electron dynamics is described in the
guiding-center approximation. The guiding-center equa-
tion of motion is a nonautonomous Harniltonian system
of 1.5 degrees of freedom whose phase space is the two-
dimensional physical space (perpendicular to magnetic
field). The Hamiltonian is formally proportional to the
electrostatic potential.

A turbulent electrostatic potential is simulated by su-

perposing several hundreds of propagating waves with
random spatial phase shifts. The amplitudes of these
waves are such as to yield a k energy spectrum (within
two extrema k;„andk,„)in analogy with the observed
features of electrostatic turbulence in tokarnaks. The
difference between the two models lies in the summation
domain in wave-number space. The equation of motion
has been solved numerically.

An important property of these models is that when
the average electric field amplitude is large enough,
"most" trajectories become chaotic at large scale (i.e., the
phase space has an unbounded and connected stochastic
component) and diffusion across magnetic field sets in.
Following several hundreds of particles trajectories, an
analysis of the statistical properties of this chaotic dy-
namics has been performed: we studied the absolute
diffusion, the relative diffusion of neighboring particles,
the Kolmogorov-Sinai entropy, and other quantities
measuring the deviation from Gaussian statistics (kur-
tosis of the distribution of absolute and relative displace-
ments, kurtosis of the velocity distribution, velocity auto-
correlation functions).

The main result found for absolute diffusion concerns
the existence of two scaling regimes of the diffusion
coefficient D with the average electric field amplitude A.
D scales as A at low amplitudes and as A at high ampli-
tudes. This shows that simple and low-dimensional
dynamical models can be (at least) in qualitative agree-
ment with existing theories. In fact, these two regimes
can be identified with the quasilinear and Bohm scalings,
respectively. This is a relevant difference with more
simplified models where slower dependences of D versus
A were found.

As for relative diffusion, we have observed the so-
called clump effect; moreover, the relative diffusion curve
has been shown to satisfy a scaling law in the domain of
moderate values of A: the curves obtained at different A

superpose when plotted versus a time variable scaled with
the absolute diffusion coefficient D. Two different models
have been used to test the "structural stability" of the re-
sults: a satisfactory agreement has been obtained.

The numerical results have been compared with a re-
cently proposed theoretical treatment of the turbulent
diffusion of guiding centers. The theory has been adapted
to be compared with the numerical simulations; it yields
the quasilinear and Bohm scalings as limiting regimes
with a transition between them.

A good qualitative agreement has been found between
theory and simulation. However, there is a systematic
deviation between the theoretical and numerical values of
the diffusion coefficients. This discrepancy could be attri-
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buted to the fact that the theoretical values of the
diffusion coefficient have been obtained in the continuum
limit (L ~ ac },for an isotropic turbulent electric field and
using a quasinormal approximation. These assumptions
have not been taken into account by the numerical mod-
els; on the other hand, in view of a comparison among
theory, numerical simulations, and real physical situa-
tions, it is doubtful, for instance, whether a Gaussian
model is the best for representing the real physics of
tokamaks.

A very good agreement between theory and simulation
has been found for the time dependence of relative
diffusion of pairs of initially close particles. Both theory
and simulation agree on the existence of a scaling law for
relative diffusion, at least in the domain of moderate
values of the amplitude of turbulence. Finally, a good
agreement between theory and simulation has been found
at small A for the Lyapunov exponents.
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