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Numerical simulations of multiphoton ionization and above-threshold electron spectra
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We study above-threshold ionization (ATI) of a one-dimensional model atom in a time-varying
external laser field. The time-dependent Schrodinger equation is integrated in space and time using
the Crank-Nicholson method, and the photoelectron energy spectrum is then computed by project-
ing the wave function onto the energy eigenstates of the time-independent zero-field Hamiltonian.
We demonstrate an intensity-dependent ponderomotive shift of the ionization threshold, find a
free-electron scaling of the number of ATI peaks with intensity and frequency of the field, and con-
trast the numerical simulations with two simple Keldysh-type models. For certain field parameters
we encounter turn-on transients in the form of "energy-nonconserving" substructure within each
ATI peak. Effects on the results of the physical parameters such as length and shape of the laser
pulse on one hand, and of the iteration parameters on the other, are discussed in detail.

I. INTRODUCTION

In high-intensity photoionization of atoms a sequence
of isolated peaks, separated by one photon energy, is ob-
served in the energy spectrum of the liberated electrons,
as if an electron continued to absorb photons even after it
has been released from the atom. ' This phenomenon is
now commonly referred to as above-threshold ionization
(ATI), The observation that at high intensities the
lowest peaks in the electron spectrum are suppressed rel-
ative to the more energetic ones (which is not consistent
with finite-order perturbation theory) has prompted a
large body of experimental and theoretical ' studies
of ATI. For instance, recent experiments ' on the angu-
lar distribution of photoelectrons and experiments with
short pulses ' reveal new aspects of ATI.

Even though it has been studied for ten years, ATI is
not completely understood. Existing theoretical models
differ in many respects, and typically ignore features of
real experiments such as the temporal and spatial shape
of the laser pulse, or most of the atomic structure, or
both. At the same time, in different laboratories different
electron spectrometers sometimes seem to give different
results in nearly identical experiments, the temporal and
spatial characteristics of the laser pulses are not always
well in control, the space charge of the ions left behind
may distort the electron spectrum, and so forth. It is
diScult to judge how much weight should be put on
agreement or disagreement between an experiment and a
particular theory. Consequently, the experiments cannot
easily distinguish between theories, and no consensus has
been reached about the detailed mechanism of ATI.

The theme of the present work is to make numerical
experiments related to laboratory experiments, but
stripped as far as possible of inessential complications.
We integrate the time-dependent Schrodinger equa-
tion' ' in space and time, ' compute the photoelectron

spectrum, and compare it with theoretical ideas. We em-
phasize that we do not aim at reproducing real experi-
ments and their complexities, but rather at making
unique experiments of our own. It is true that in this way
we encounter physics which at the moment cannot be
studied in real laboratories. We will be satisfied if our
simple model provides some confirmation of qualitative
tendencies and suggests possibilities for new experiments
and theory.

In Sec. II we introduce our model, which consists of a
one-dimensional atom in an external field. We describe
the numerical procedure to solve the time-dependent
Schrodinger equation for it and describe the methods
used to calculate the electron spectrum. By contrasting a
discrete numerical atom (constructed as a device to solve
the Schrodinger equation) with the model atom with its
continuous position coordinate, we can analyze the physi-
cal and mathematical aspects that govern the
computation's accuracy. By comparing the results ob-
tained with different square and smooth light pulses, we
argue that results without a serious bias can be expected
even for a short square pulse. This is a fortunate state of
affairs, considering the cost of computations. Finally, we
briefly mention the question of the d.E versus the p. A
gauge of the dipole interaction.

In Sec. III we present results obtained by analyzing
ATI spectra. We demonstrate in our simulations the
threshold shift and channel closing that have been sug-
gested' ' and partly verified ' as the cause of the
suppression of the lowest-energy peaks in the electron
spectrum with increasing laser intensity. Second, we
point out a free-electron scaling of the number of ATI
peaks with the intensity and frequency of the field. We
regard it as evidence in favor of the continuum-dressing
mechanism ' ' of ATI. Third, we compare the spectra
from two Keldysh-type ' ' final-state dressing models
with our numerical experiments. Although the quantita-
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II. SIMULATION METHOD

A. Outline

Our numerical experiments are built around the Ham-
iltonian of a one-dimensional atom in an external field

H (t) =Ho —x 8(t)sin(cot +P),
where the "unperturbed" part is

1 8
Ho ———— +V(x) .

Bx

(2.1)

(2.2)

Here and below we use atomic units with e =m =%=1.
At various stages of this work we have employed either

one of two binding potentials of the atom: (i) the one-
sided hydrogenic potential

V(x)= —1/x, x )0, (2.3a)

with refiecting boundary conditions at x =0 and (ii) the
soft-core potential

tive agreement is bad, there is some qualitative resem-
blance between Keldysh-type predictions and our simula-
tions.

In Sec. IV we present unusual photoelectron spectra
that exhibit "energy-nonconserving*' substructure within
the usual ATI peaks. In our case (for contrast, see Ref. 7)
the analysis shows that the extra peaks are transients as-
sociated with even a very smooth turn-on of the field.
The remarks in Sec. V conclude the paper.

rosin, 0&t & T

0 otherwise .

(2.4b)

The phase of the electric field P is chosen zero, unless
otherwise noted.

In essence we first find the eigenvalues Wand eigenvec-
tors

~

IV) of the unperturbed Hamiltonian Ho. Next, we
integrate the time-dependent Schrodinger equation with
the full Hamiltonian H(t} in space and time over the
desired pulse duration T, starting from the ground state
of Ho. Subsequently we project the wave function onto
the (typically but not necessarily positive-energy) eigen-
states

~

W) to obtain the photoelectron energy spectrum

P(W;T)=
i ( W

i
f(T)) i

(2.5)

The last step is to investigate and interpret the spectra in
terms of pulse duration, intensity, wavelength, etc.

The technical irnplernentation of this procedure is de-
scribed in Sec. IIB. In Sec. IIC we discuss the relation
of our necessarily discrete computations to the desired
solution of the continuous-variable space-time Schro-
dinger equation and in particular enumerate factors that
determine the truncation errors. Two partly practical
and partly physical issues that we wish to regard here as
part of the solution methodology, the effects of the pulse
length and pulse shape and of the gauge of the elec-
trornagnetic field, are investigated in Secs. II D and II E,
respectively. Finally, in Sec. IIF we list certain limita-
tions on the parameters in our calculations, the reason
for which is currently not understood.

V(x) =— 1

( 1+x2)1/2 (2.3b) B. Practical computations

The second of these has not been studied before, but it
is in some respects a more realistic model for multipho-
ton ionization studies. Both potentials have a Coulomb
tail, and consequently the high-lying bound eigenstates of
Ho have a Rydberg series structure. Both models
represent atornlike quantum systems governed by a com-
plete Harniltonian, and hence satisfy sum rules similar to
real three-dimensional atoms. The soft-core model (2.3b)
possesses the additional advantages that parity is a good
quantum number, and its bound states do not have per-
manent dipole moments. In this respect it is more realis-
tic than one-sided hydrogenic models. One may view
parity as the one-dimensional remnant of three-
dimensional angular momentum and contend that in
model (2.3b) the dipole moment selection rules are analo-
gous to those of three-dimensional atoms. In this paper
our discussion will be restricted to this model unless oth-
erwise noted.

The envelope of the electric field will either be charac-
teristic of a square pulse:

(2.4a)

(2.6}

The momenta have an upper limit in practice (as do the
electron energies), so loosely speaking the p A interac-
tion is bounded. Here

A (t)= —f 6(t)sin(cot+/)dt
0

(2.7)

is the vector potential in the gauge with A (t)=0 at t =0.
The relation between the d E and p A wave functions f
and g' is well known:

1. Conversion to the p- A gauge

The wave function of the ionized electron is obviously
going to spread out as a function of time. In this sense
the dipole interaction, which is proportional to x, will
grow without bound, and numerical problems might en-
sue. Therefore we first convert the Hamiltonian to the

p A gauge of the dipole interaction. As the A term can
be absorbed in a phase factor that has no bearing on oc-
cupation probabilities, the new Schrodinger equation for
the correctly transformed effective wave function reads

0 otherwise,
P(x, t)=e '""'"g'(x, t) . (2.8)

or a smooth pulse To obtain the final results in the d-E gauge one should
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first convert the initial ground-state wave function of Ho
to the p A gauge [for the particular form of the vector
potential (2.7) nothing needs be done], do the time in-

tegration of (2.6), and then convert the outcome back to
d.E before taking the inner product (2.5).

TABLE I. Notation, energy, and symmetry under inversion
of the ten lowest-energy bound states of our one-dimensional
model atom with the binding potential V(x)= —(1+x )

x =( —ao, ~ ). The energies are accurate to about +1 in the last
digit displayed.

2. Discretization of the Schrodinger equation

The next step is to discretize the wave functions and
the operators acting on them. Instead of the continuous
wave function g(x) we utilize an N + 1 dimensional vec-
tor g„=g(x„) whose components represent the wave
function at the points x„=n5x, for n = N/2—to N/2.
The discrete counterpart of the time-independent Hamil-
tonian is defined by the expression

(H, P)„=—,(g„,—2g„+tt„,)+ V(x„)f„,1

2(5x)

(2.9)

Level index n Energy W

—0.669 8
—0.274 9
—0.151 5
—0.092 70
—0.063 54
—0.045 50
—0.034 61
—0.026 89
—0.021 71
—0.017 73

Even/odd

and the p A interaction is represented by

( —p Ag)„= (g„+)—f„))iA
(2.10)

Both of these approximations of the derivatives are accu-
rate to second order in 5x. We use refiecting boundary
conditions at both ends of the integration region. Hence
the declarations

and N =32 K. The results should coincide with the cor-
responding energies of the continuous atom to within
about +1 in the last digit displayed. We show in Fig. 1 a
plot of the lowest eigenenergies against 1/(n+1), veri-
fying their rapid approach to Rydberg scaling.

4. Time evolution

1 —N/2 14'/2+ 1—

are always understood in our formulas.

3. Energy eigenvalues and eigenfunctions

(2.11)
A time step 5t of the wave function is carried out ac-

cording to'

P(t+5t)= 1 — H t+-i5t 5t
2 2

In the discrete representation the matrix of the time-
independent Hamiltonian is tridiagonal. We use the stan-
dard QL algorithm ' to find the eigenvalues. Widely
available routines can also compute the eigenvectors.
However, we do not need all eigenvectors, and how many
are needed is decided later.

To generate an individual eigenvector P„" correspond-
ing to any approximate eigenvalue 8'k we therefore em-

ploy the "inverse iteration" method. ' We repeatedly
solve the linear equations

i5t 5t
X 1+ H t+—

2 2
P(t) . (2.14)

This is a second-order approximation, i.e., the error is of

(Ho —Wk )p"(i + 1)=ltt"(i) (2.12)
40

beginning with a random initial vector g"(0). How it
works can be seen by writing the solution to (2.12) in the
eigenstate basis as

20

(2.13)

If 8'k is a good approximation to a true eigenvalue 8'k,
the projections in (2.13) amplify the

~
Wk ) component of

vector
~

g"(i) ) at the expense of the others.
Because parity is a good quantum number, the eigen-

states can be chosen either even or odd; in fact, the ener-

gy eigenstates n =0, 1, . . . are alternately even and odd.
The ground state is even. In Table I we list the energies
of the lowest 10 discrete states obtained for 5x =0.707

I

50
(n+1)

I

100

FIG. 1. —1/W for the ten lowest bound-state energies W
(C) ) of our one-dimensional soft-core atom plotted against the
function (n +1) of the index n =0, 1, . . . labeling the states.
The solid line is the linear least-squares fit. Rydberg scaling of
the energy levels is evident.
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the order (5t) . In fact, (2.14) is a trivial generalization of
the familiar Crank-Nicholson algorithm ' to the case
when the parameters of the partial differential equation
depend on time.

5. Implementation of the computations

tized atom introduced as a solution method for the con-
tinuous Schrodinger equation is a quantum system in its
own right. But, as we utilize the discrete atom to approx-
imate the continuous atom rather than as an independent
object of study, the connection between the two has to be
laid down.

It is evident from (2.12) and (2.14) that solving a set of
linear equations with a tridiagonal matrix is the
bottleneck of the computations. We started the comput-
er work on a CDC Cyber 180/990, a fast scalar machine.
The solution was implemented with a well-known simple
form of Gaussian elimination for tridiagonal equations.
This algorithm does not vectorize, however, so we aban-
doned it when the computations were transferred to a
Cyber 205 supercomputer with two vector pipes.

Currently we resort to cyclic reduction. ' The idea is
to combine the original equations in such a way as to
eliminate every second one of them, so that the remaining
P„couple to g„z and r)'j„+z. This process is repeated
until the number of equations is so small that the scalar
Gaussian elimination is faster than continuing to cut
down the number of equations. We usually let the num-
ber of equations run down to one or two. After the
remaining equations have been solved, the process is re-
versed; the known values of P„and f„+2 are used to
generate the intermediate P„+ . The method applies to
any set of tridiagonal equations, and it vectorizes. Unfor-
tunately, it also involves repeated compression and
decompression of data, and tricky bookkeeping. Even
though we implemented the algorithm in the explicit vec-
tor code of the Cyber 205, the cyclic reduction solution
turned out to be only six or seven times faster than the
Gaussian elimination in real-valued problems, and two or
three times faster with complex vectors.

There are a number of other differences between the
implementations of the computations on these two
machines. In this paper we always describe our current
methods, even though many of the results still date back
to the Cyber 180/990 and may have been obtained
differently. We have checked that the-alterations in the
algorithms should not produce changes in the results
comparable to the uncertainties resulting from the trun-
cation errors.

In the computations reported below the iteration pa-
rameters vary greatly. Before entering a more detailed
discussion, we want to give an impression of the parame-
ters that constitute the present practical limits: N
=32 K, 6x =0.07, 5t =0.08, and number of time steps
Nz ——16 K. The integration region thus extends the dis-
tance D =5xN/2-1000 a.u. to either side of the origin,
and the pulse time is T =5tNz--1000 a.u. About four in-
verse iteration steps are needed to extract an eigenvector
such that the probabilities of the undesired contamina-
tion states are below 10

C. Discrete computations versus the continuum problem

With the reflecting boundary conditions (2.11) the
discretized unperturbed Hamiltonian (2.9) and the per-
turbation (2.10) are Hermitian operators in the Hilbert
space of N+1 dimensional complex vectors. The discre-

1. Spectrum of the Hamiltonian

In the limit of large N the energy may be regarded as a
continuous function of k, and the level density is approxi-
mated as

ak N5x
rr&2W [1—(5x) W/2]'i

(2.16)

Were it not for the second square root in the denomina-
tor, (2.16) would be the familiar asymptotic approxima-
tion (N~ ~ ) of the energy level density in a box of
length N5x for a free particle with a continuous position
variable. The discreteness of the grid of x does not essen-
tially perturb the energy spectrum for energies 8'satisfy-
ing

5x&W ((I . (2.17)

Note that &2W is the momentum of an electron with en-
ergy W, so (2.17) requires that the de Broglie wavelength
of the electron be much longer than the grid spacing.
This is precisely what one might have expected in the
first place.

When the binding potential V(x) is included, a small
number (say 30 out of 30 K) of levels are split off from the
positive-energy band and are pulled down to negative en-
ergies. Except in the immediate vicinity of the threshold
where the continuum approximation leads to a spurious
divergence, (2.16) turns out to be a good approximation
to the density of positive-energy levels. The number of
energy eigenstates up to 8' = 1 is of the order 1000.

2. Time dependence

Imagine next that the Schrodinger equation were in-
tegrated exactly both for the discrete atom and for the
true continuous atom. The question is, under what con-

The discrete atom has a finite number N +1 of eigen-
states. The number of the Rydberg levels is finite, and
there are no true continuum states.

The spatial size of a hydrogenic Rydberg level with
principal quantum number n is of the order n . On the
other hand, the natural n for the Rydberg series of our
discrete atom to terminate is such that the wave function
extends to the reAecting boundary. This leads to the esti-
mate n-D' -30 for the number of negative-energy
eigenstates of the discretized atom, which is borne out in
our numerical studies. The ground state falls at
8' = —0.670.

To investigate the positive-energy spectrum of the
discretized atom we temporarily ignore the binding po-
tential. The energy eigenvalues are then found to be

Wk
—— 1 —cos —,k =1, . . . , N+1 . (2.15)

k~
(5x)' N+2
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BW(
k

Using (2.16), we have

T&2W &X5x .

(2.18)

(2.19)

Another obvious condition is that the wave packet that
started propagating from the origin at t =0 must not yet
have hit the reflecting boundary at time T. But, with the
recognition that the velocity of an electron with energy
W is &2W, this condition too boils down essentially to
(2.19).

ditions can the discreteness be ignored in the time evolu-
tion of the wave functions.

Qualitatively, the difference between a discrete and a
continuous spectrum should not show for short interac-
tion times when the discrete levels cannot be resolved,
i.e., when the observation time T and level density
Bk /8 W satisfy

4. Convergence of time integration

The remaining technical question of the numerical in-
tegrations is the convergence of the time-stepping algo-
rithm with varying 5t. The operator on the right-hand
side of (2.14) is unitary, both in quantum mechanics with
a continuous position variable and for our discretized
atom. All eigenvalues of the time-stepping operator have
unit modulus, and repeated time stepping cannot amplify
anything (errors included) exponentially. In other words,
the algorithm of (2.14) is numerically stable.

To estimate the truncation error derived from the finite
value of 5t we study the evolution of the eigenvector

~
Wk ) of the discretized unperturbed Hamiltonian Ho

Exact time evolution over T =Nz-5t simply multiplies the
state by the phase factor exp( —iTWk), whereas Nr re-
peated applications of the time-stepping algorithm give

1 (i l—2)5tWk
l~(T))=

1
(2.21)

3. Definitio'n of the photoelectron energy spectrum

In the continuous case, when the continuum eigen-
states are energy normalized,

Both ways, just a phase factor is attached to the wave
function. Now, the ratio of these phase factors may be
written

P(W)dW= i(Wi1() i'dW

gives the probability of finding the electron in the energy
interval [W, W+dW).

In the discrete case we define the photoelectron spec-
trum as

e'&=

i5t
xp Wk

i5t
exp — Wk

2

i5t
1 — Wk

2

i5t1+ Wk

(2.22)

P( —,'(WI, + W, + W, +)+ W;+2))

+
W;+2 —W;

(2.20}
lim 1+— =e

&~ oo N
(2.23}

which after expanding the fraction in 5t and using the
limit

at the energies appearing on the left-hand side, and by
linear interpolation for the energies between these points.
On the right of (2.20) we have averaged over the popula-
tions of the alternating even and odd eigenstates of the
discrete atom, which may have vastly different popula-
tions. The integral of P(W) from (2.20) over an energy
region containing discrete eigenvalues approximates the
sum of the populations of those eigenstates, the better the
more slowly varying P ( W} is as a function of W, and the
larger the number of eigenvalues is. Equation (2.20) is a
justifiable analog of the continuum-electron spectrum for
the discrete atom.

For a neutral atom the oscillator strength per unit en-

ergy interpolates continuously across the ionization
threshold, and no finite measurement time allows for an
exact determination of the accumulation point of the
Rydberg series. In this sense nothing abrupt happens at
the ionization threshold. Equation (2.20) is defined as a
mathematical formula beginning from the average of the
energy of the lowest four eigenstates. Our message is that
it has physical content at negative energies, too: It is nat-
ural to define a continuous energy spectrum using (2.20)
all the way down the Rydberg states which cannot be
resolved from their neighbors during the given interac-
tion time and which therefore still behave like a continu-
um.

gives an approximate expression for the phase g,

g- —,', TWk(5tWk ) (2.24)

The phase error over the whole significant range of ener-
gies W should be uniformly smaller than or of the order
of one, which gives a condition on 5t

1/2( 1 12
T8' (2.25)

5. Final choice of computation parameters

The only way to find out for sure if the integration pa-
rameters result in a tolerable error in the photoelectron
spectrum is to vary them and analyze how the result
changes. This is, unfortunately, a very laborious and ex-
pensive procedure which cannot be done routinely. In-
stead, we generally test the accuracy at extreme values of
the parameters (say, the highest intensity in a series of
spectra at different intensities) and when we want to rule
out truncation errors as a possible source of a qualitative
feature in the results.

Nonetheless, we do have a few analytic conditions.
Equation (2.17) states that the grid should be dense
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enough to hold the de Broglie wave for the highest relevant
electron energy and gives a condition on the spatial step
5x. Equation (2.19) demands that the wave packet propa
gating from the origin must not hit the rejfecting boundary
during the given interaction time T and thus determines
the number of spatial points E. Finally, (2.23) which en-
sures that the discrete time evolution formu1a does not
cause a large phase error in the relevant energy states, dic-
tates the time step 5t.

We have indications from early phases of this work
that accurate wave functions are obtained only at smaller
[5t-(5x) ] time steps than is our current practice.
However, we have found by starting from such time steps
and then repeatedly doubling 5t that, somewhat mysteri-
ously, the electron spectra are much less sensitive to the
time step than the wave functions.

In principle, round-off errors of the computer should
also be considered. However, we have carried out all
computations in 64-bit double precision and have not en-
countered round-off errors that would rival the trunca-
tion errors.

D. EfFects of pulse length and shape

I. Square-pulse data

We begin by examining the photoelectron spectra at
different interaction times, first for different length square
pulses. We obtain ATI peaks, and they exhibit features
not observed in experiments: They move, split, and
recombine in the short time scale of one field cycle. Fig-
ure 2 shows the electron spectra for times T correspond-
ing to 8, 8—,', 84, 8—'„and 8—,

' cycles of the external field for

co=0. 148 (five-photon ionization) and Co=0.05 ( —10'
Wcm ).

This feature also appears in one-sided atom models
where the peaks do not split and the explanation is easier
to uncover. Following multiphoton absorption, in addi-
tion to flying away from the atomic core at a roughly
constant speed, the electron undergoes forced oscillations
in the external field 6'osintvt at the velocity
v(t)= —(Cairo)cosrvt It . is this quiver motion that de-
forms the spectra in Fig. 2. The quiver velocity may be
anticipated to be zero at times corresponding to n + —,

'

and n+4 cycles of the field when cosset =0. Indeed,
these are the times at which the computed spectra have
peak spacing equal to one photon energy. The magnitude
of the peak motion also agrees with that predicted for the
quiver motion. The splitting in Fig. 2 ensues because for
a two-sided atom model (both positive and negative spa-
tial coordinates x included) each peak in the unsplit spec-
trum at 8—,

' cycles corresponds to a roughly half-and-half
mixture of electrons flying away from the origin in the
+ and —directions. At any given time the quiver

motion, whose velocity amplitude is the same for all elec-
trons, adds energy to half of the electrons and subtracts it
from the other half.

The picture of the quiver motion is further confirmed
in Fig. 3 which gives the spectra for varying phases of the
field 6'csin(rot+/) with (a) /=0 and (b) P=n/4 Th. e.
spectra are taken at times corresponding to 8—,

' and 9 cy-
cles of the external field, respectively, when the quiver ve-
locity —(6'olrv)cos(rvt+/) should be zero. They are
nearly identical. The phase at which the field is turned
on does not play a significant role for these field parame-
ters, as long as the spectrum is also recorded at a proper-
ly shifted phase.

In Fig. 4 we plot the spectra for 4—,', 8—,', 16—,', and 32—,
'

cycles of the field, again, for co=0. 148 and 8()=0.05, and
some of the corresponding numerical data are given in

(a)

~~
C

JD
6$

CL

=R
(b)

FIG. 2. Electron spectra for the field frequency co=0. 148
(five-photon ionization) for a square pulse with field strength
DO=0. 05 ( —10' W crn ), at times T =339.63, 344.94, 350.25,
355.55, and 360.86 corresponding to 8, 8 —,', 84, 8—'„and 8 —,

' cy-
cles of the external field (from top to bottom). The integration
parameters are %=32766, 5x =0.707, and 5t =0.0829179.
The total ionization probability under the curve of the middle
graph for the 84 cycle interaction time is 3.3)( 10 '.

2
W/~

FIG. 3. Spectra for the field A'Osin(cot +P) with (a) / =0 and
(b) m/4, each for co=0. 148 and 40=0.05. The spectra are given
at times corresponding to 84 and 9 cycles of the field, respec-
tively.
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Thv =5.9, 5.8, 5,7, and 5.9-2m. .
Our experience is that if there is going to be an ATI

spectrum at all, it usually materializes in about two or
three field cycles. Thereafter the positions and relative
heights of the ATI peaks remain largely unchanged if
taken at times when the quiver motion comes to a halt.
In spite of our deliberate attempts to produce an excep-
tion to this rule, we have only come across the one that is
presented in Fig. 5. Again we choose co=0. 148 but the
intensity is higher than before, ho ——0. 1 ( -4)& 10'
W cm ). We plot the spectra for 4—,', 8—,', and 32—,

' cycles
of the field, and include a portion of negative-energy
Rydberg states. Between 4—,

' and 8—,
' cycles of the field the

"photoelectron" peak in the Rydberg states gets lifted up
into the continuum and is seemingly dumped predom-
inantly to the lowest above-threshold peak.

The oscillations in the spectrum conform to the veloci-
ty U(t)= —(6'pleo)cosrot which is the solution for adia
batic, not sudden, turn-on of the driving force Bosincot.
The invariance of the peak positions and relative heights
with respect to the turn-on phase of the field and the in-
teraction time confirm the picture that the electron leaks
out of the atom continuously, and in so doing emerges
locked to the adiabatic quiver velocity. The spectra
should be taken at times when the quiver motion has
come to a standstill, because then only the drift motion
remains and carries clean information about the ioniza-
tion.

h

Q

I

2

WIM

FIG. 4. Spectra for square pulses with co =0. 148 and

60——0.05, for 44, 84, 16—', and 32—' cycles of the field (from top
to bottom). A detailed breakdown of the peak positions, etc., is
given in Table II.

Table II. The peaks narrow with increasing interaction
time, but their positions and relative heights are practi-
cally the same at all these times. Assuming exponential
decay of the ground state to the continuum, the respec-
tive ionization probabilities (areas under the curves for
W&0) would correspond to the ionization rates 4.5, 4.1,
3.9, and 3.8 && 10 /cycle. A small drift is discerned as if
there were an initial burst of nonexponential excess ion-
ization, but we do not know how much of the effect is
real and how much numerical errors. Since the total ion-
ization is small even after 32—,

' cycles, the widths of the
peaks might simply derive from the finite interaction
time. In fact, the full widths at half maximum hv give
for the lowest-energy peaks in Fig. 4 the products

2. Smooth-pulse response

To take the electron spectra at times corresponding to
nk —,

' cycles of the external field may sound somewhat
artificial. To dispel the associated doubts we have carried
out comparisons between spectra obtained with various
length square and smooth pulses. An example, the ATI
spectrum with a 32—,'-cycle square pulse and after a 32-
cycle smooth pulse, is presented in Fig. 6 for m=0. 148
and 60=0.1. To the extent that the peak positions for

32116—'41 81Cycles in square pulse

1369.14
0.114
0.077
0.037
0.185
0.333
0.252
1.249
2.251

17.698
5.043
0.459
0.0043

689.88
0.061
0.078
0.037
0.185
0.333
0.252
1.249
2.251
4.681
1.308
0.128
0.0082

180.43
0.019
0.076
0.040
0.187
0.333
0.268
1.266
2.251
0.387
0.095
0.009
0.0326

350.25
0.033
0.077
0.037
0.185
0.333
0.252
1.249
2.251
1.235
0.339
0.034
0.0167

Interaction time T
Total ionization
Average energy' ( W)
Position of lowest peak Wo

Position of second peak W1

Position of third peak W&

Wo/co
Wl/~
W2/co
Height of lowest peak
Height of second peak
Height of third peak
Lowest peak F%'HM hv

'( W) is defined in Eq. (3.2).
Position stands for the argument W giving the maximum of the peak of P ( W).

TABLE II. Numerical data of the electron spectra for co=0. 148 and @0——0.05 at times T corre-
sponding to 44, 8—', 16—', and 324 cycles of the external field, as plotted in Fig. 4. The iteration parame-

ters are N =32766, 5x =0.0707, and 5t =0.0829179.
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FIG. 5. Spectra for square pulses with co=0. 148 and @0=0.1
(-4X10' Wcm ), at 4—', 8—', and 32—' cycles of the field. The
ionization probability for the 84-cycle interaction time is 0.63.

FIG. 7. Population of the first excited state of the atom as a
function of time for a 32-cycle smooth pulse with co=0. 148 and
6o——0. 1. A resonance is apparent at times t =520 and 840.

the smooth pulse can be defined meaningfully, they are
qualitatively the same as for the square pulse. Also, the
relative heights of the ATI peaks appear to be roughly
the same.

One possibly undesirable feature of smooth pulses also
is evident in Fig. 6(b). The peaks are broader than for a
square pulse and may have a fuzzy substructure. Anoth-
er source of potential complications with smooth pulses
can be detected by plotting the population of the first ex-
cited state (n = 1 ) as a function of time, as in Fig. 7. At
times t =520 and 840, with the field strength v(t)
=0.087, the dynamic Stark shifts have rendered a reso-
nance between the ground state and the first excited state.
It apparently is a three-photon resonance with frequency
0.4440, close enough to the zero-field frequency 0.3949
between these states.

3. Summary ofpulse shape and length considerations

At present we use the smooth pulse only when there
are good reasons to believe that the smoothness may
essentially influence the physics. For routine ATI spectra
this is not the case. One can simply take the square-pulse
spectrum at a time when the quiver motion has come to a
standstill. At such times the spectrum represents the
pure drift motion, i.e., electron energies acquired in the
process of ionization. Also, as far as the positions or rela-
tive heights of the peaks are concerned, nothing except
aesthetics is usually gained by continuing the time in-
tegration after the spectrum has initially formed. For
these reasons our nominal choice is the 4—,'-cycle square
pulse.

E. On the gauge of the electromagnetic Beld

tg

CL

I, A.
0 2 4

It is said sometimes that the spectrum is "solved in the

p A gauge. " By this we mean that one starts from the
ground state of the bare Hamiltonian Ho of (2.2), then in-

tegrates the Schrodinger equation in the form (2.6), and
finally projects the result onto the eigenstates of Ho as in
(2.5). The diff'erence from our procedure is that the wave
function is not converted back to the d E gauge using
(2.8) before the spectrum is calculated. We shall brieffy
discuss the relation of this method to the d.E integration.

%'e will take the term "bare" to indicate the absence of
electromagnetic fields and potentials (A =F. =0). The
bare eigenstates

~

W), and particularly the initial wave
function

~
P(t =0)), are the same, independent of the

gauge. The t ~0 wave functions for the interacting elec-
tron are, however, difFerent. As given in (2.8), the con-
nection is a simple unitary transformation

FIG. 6. ATI spectra for a 32 —'-cycle square pulse (a), and

after a 32-cycle smooth pulse (b), for co=0. 148 and Ao ——0. 1.
The respective areas under the curves are 0.94 and 0.57. with

(2.26)
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U eixA (t) (2.27)

We assume that both A (t) and E(t) are nonsingular at
t =0, so the bare and interacting wave functions join
smoothly there.

It will not escape attention that the predicted spectra
in the two gauges, according to the conventional pro-
cedures sketched above, are generally not the same for
t)0:

vg
—E, vA —~ = —+ (2.29)

the sum v A + v& is a constant. The quiver motion of the
electron is cancelled, and the p. A spectra should be
frozen.

Although this argument is rigorously valid only if the
electron energy is far above threshold so that

~
f(t) ) and

~

g'(t) ) may be approximated by simple linear combina-
tions of left- and right-going momentum eigenstates, the
freezing is quite conspicuous for all ATI peaks. In fact,
the observation in our numerical experiments antedates
the prediction. For an example, see Fig. 8 giving the
p A counterpart of Fig. 2 for the choice P=n. /2, i.e.,
E ( t)= Bocoscot. In this case the peaks are permanently at

(2.28)

simply because
~

P'(t))&
~

g(t) ).
The difference also has a simple interpretation. Be-

cause the unitary operator in (2.27) is the momentum
translation operator, the p A state

~

g'(t)) can be seen
to be same as the d E interacting state

~
g(t) ), but with

the velocity U„= A (t) added to it. As the quiver velocity
U&(t) and this fictitious transformation velocity satisfy
the respective equations

the positions where they are found in the d.E spectrum
of Fig. 2 at times corresponding to n+ —,

' cycles.
The inequality expressed by (2.28) opens up the ques-

tion of which result should be used in the subsequent
analysis. Adiabatic turn-on of the fields in real experi-
ments may well make any difference unobservable at
present, but this does not diminish the importance of this
question as a matter of principle. We will return to this
treacherous issue elsewhere, and in this paper just adopt
the widely advocated view that the d E results are the
"correct" ones.

F. Restrictions on the parameters

As we have already mentioned, in our computation a
characteristic ATI spectrum emerges after a few field cy-
cles if there is ever going to be one. We have encountered
two general types of situations when we do not obtain us-
able spectra at all.

As the field intensity is decreased, keeping the frequen-
cy and interaction time fixed, the spectrum finally be-
comes "erratic. " An example of such a spectrum is
shown in Fig. 9 for co =0.148, Co =0.025, and
T =180.43. We will discuss elsewhere the interpretation
of spectra at intensities low enough to see the perturba-
tive scaling of the ATI peak heights with intensity.

Also, as the field intensity is increased, keeping the fre-
quency and interaction time fixed, the spectrum is even-
tually lost in a broad background. Figure 10, which
shows the spectra for the two field strengths Co=0.07
and 0.14 for ten-photon ionization with co=0.07, offers
an example.

These problems are not entirely numeric, but reflect
some underlying physics that is not fully understood at
present. Effectively for every fixed frequency co we obtain
meaningful results only in a limited window of field
strengths 80. The choice of what to regard as meaningful
is naturally subjective. Our present criterion is to reject
results that no longer look like ATI spectra, e.g., which
do not show clearly identifiable peaks whose spacing
equals the photon energy.

D

C5

CL

CL

FIG. 8. Electron spectra for the field frequency co=0. 148
and strength 60——0.05 for the square pulse of the form
6'(t) = Cocoscot, at times corresponding to 8, 8 —,', 84, 88, and 82
cycles of the field (from top to bottom). These graphs are run
using the p A gauge of the dipole interaction rather than the
d.E form of Fig. 2.

FIG. 9. Electron spectrum for a 4—'-cycle square pulse with

co =0.148 and 40——0.025. ATI peaks cannot be identified.
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ever, the upshift of the ionization threshold should
remain. Hence the peaks should move down in energy
with increasing intensity. To check this argument, we
plot in Fig. 11 the photoelectron spectra for Bo——0.05,
0.07071, and 0.085, with m=0. 148 fixed. We include
some negative-energy states, the highest of which still
behave like part of the continuum for this interaction
time T =180.43 corresponding to 4—,

' cycles of the field.
The spectra are pulled down in energy with increasing in-
tensity. We actually see a channel close as the lowest
peak sinks below the continuum limit.

By observing the peak positions and counting the chan-
nel closings we can also deduce the threshold shift quan-
titatively as a function of intensity. Specifically, we
derive from the position Wp (the maximum of the lowest
above-threshold peak) the quantity

FIG. 10. Electron spectra with m=0. 07 (ten-photon ioniza-
tion) for square pulses with (a) @0——0.07, 4—' field cycles and (b)

Co ——0. 14, 8~ cycles. These examples are fairly low-accuracy

computations with N =9000, 5x =0.1, and 5t =0.087 656.

III. ANALYSIS OF ELECTRON SPECTRA

Having explained the numerical procedures in great
detail, we now turn to the findings that have emerged
from study of the electron spectra. We demonstrate the
ponderomotive shift of the continuum threshold, point
out a free-electron scaling in our results, and contrast the
simulations with two primitive Keldysh-type models.
This section concludes with a partly speculative discus-
sion of the implications of the results.

A. Shift of the continuum threshold

In real experiments the lowest-energy peaks in the
spectrum are suppressed or outright vanish in compar-
ison with the higher ones as the intensity is increased. A
widely accepted explanation' ' combines two theoretical
concepts. First, when the ejected electrons leave the laser
focus, their quiver motion is converted into translational
kinetic energy. They gain an energy equal to the pon-
deromotive potential of a charged particle in an ac field,
W~ =8p/4pi . Second, it is assumed that inside the field
the ionization energy is dynamically shifted up from the
zero-field ionization potential Wi (here W~ =0.6698 from
Table I) by nearly the same amount W~. The number of
photons required to ionize the atom then increases from
n p

= [ Wl/pi] to nF ——[(Wl+ Wp )/pi], where brackets
mean "smallest integer larger than. " The effects of the
threshold shift and of the ponderomotive acceleration on
the electron energies almost cancel. The photoelectron
peaks emerge at the detector with energies nearly in-
dependent of the light intensity, except that the ioniza-
tion channels corresponding to absorption of fewer than
nE photons are closed and the corresponding peaks are
missing.

The ponderomotive after-acceleration is absent in our
simulations because the field is homogeneous in the whole
space and the electron never leaves the laser beam. How-

Wp+ (ns np )cl) ( npco WI )

Wp
(3.1)

and plot it in Fig. 12 as a function of the field strength for
three-, five-, and ten-photon ionization with co=0.27,
0.148, and 0.07, respectively. The error bars reAect the
estimated absolute numerical accuracy of the peak posi-
tions.

If the peaks were precisely at the positions correspond-
ing to the ponderomotive shift of the continuum thresh-
old, R =1 would hold true identically. Since by its very
definition R ~1 as op~00, in the case of five-photon
ionization we have explicitly checked, as in Fig. 11, that
the three closings of ionization channels expected in the
finite intensity range of Fig. 12 take place approximately
at the intensities predicted by the ponderomotive-shift ar-
gument. The quantity R represents the ratio of the shift
of the ionization threshold to the ponderomotive poten-
tial. It appears from Fig. 12 that the higher is the multi-
photon order, the closer (in relative terms) is the thresh-

~~
D

JD

F
Q

4

~R 4 5
2 4

W/~

FIG. 11. Electron spectra for 60=0.05, 0.07071, and 0.085
(from top to bottom) with co=0. 148 fixed, for 44-cycle square

pulses. With increasing intensity the lowest ionization channel
is closed. The numbers track the corresponding peaks at
different intensities.
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FIG. 12. The quantity 8, essentially the ratio of the shift of
the continuum threshold to the ponderomotive potential, as a
function of the field strength 60 for 44-cycle square pulses with

the laser frequencies co=0.27 (0), 0.148 (0), and 0.07 ()&).
The error bars reflect the estimated absolute accuracy 0.01 of
the position of the lowest ATI peak.

FIG. 13. Population of the fifth excited state of the atom as a
function of time for a 32-cycle smooth pulse with co=0. 148 and

60——0. 1. The maximum population coincident with the max-
imum intensity is unusua11y high.

old shift to the ponderomotive potential.
Recently downshifts of the peaks have been reported '

in real experiments utilizing laser pulses so short that the
electrons do not have time to leave the focus before the
pulse goes by. Then the ponderomotive after-
acceleration is inoperative. These experiments and our
numerical experiments are conceptually equivalent in
that the ponderomotive acceleration is avoided at least
partially, and the results are also qualitatively similar.

To conclude this section we momentarily return to the
bound-level populations obtained in five-photon ioniza-
tion with a 32-cycle smooth pulse for 80——0. 1, as in Fig.
7. We have studied these populations from n =0 to
n =9. It turns out that the populations of the first (the
subject of Fig. 7) and fifth states are the largest ones
among the excited states. The population of the fifth ex-
cited state n =5 is plotted in Fig. 13 as a function of
time.

Now, in Fig. 5 for the 32—,'-cycle square pulse with

80=0. 1 the position of the lowest peak in the continu-
um corresponding to actual six-photon ionization is
8'0=0.088, and subtracting one photon energy gives
8'= —0.060. On the other hand, by Table I the state
n =5 is the odd-parity state whose energy is closest to
—0.060. We thus interpret the anomalously large popu-
lation of the fifth excited state at the maximum intensity
of the pulse as an indication that the Rydberg levels slide

up by an amount roughly equal to the shift of the contin-
uurn threshold; and close to the maximum of the smooth
pulse the level n = 5 is shifted to five-photon resonance.

B. Free-electron scaling of ATI spectra

To shed new light on the mechanism of ATI we next
compare the ATI scaling behavior in our simulations
with elementary continuum-electron concepts. The key
point to notice is that the parameter g=eo/~, four

f dW WP(W)
(W)=

dWP 8'
(3.2)

of the continuum electrons and from the position 8'0 of
the lowest peak the dirnensionless quantity

X=—((W) —W, ) (3.3)

and plot it in Fig. 14 as a function of g for various field
strengths for five- and ten-photon ionization (squares and
crosses, respectively).

Alternatively, we could first define a peak more care-
fully as the region of 8'around the local maxirnurn of the

spectrum between the points on either side of the rnax-
imum where the monotonous decrease of P(W) away
from the maximum ceases, then compute the area of the
peak Pz, and finally define

times the ratio of the ponderomotive energy to the pho-
ton energy, is the only possible dimensionless parameter
for a free, nonrelativistic, quantum mechanical electron
in an external radiation field. It is thus no accident that
free-electron arguments ' invariably lead to scaling of
ATI with this parameter. It is obvious' that this scaling
cannot remain exactly valid in a theory where no free-
electron or nearly free-electron ansatz has been made. It
is an open question whether the scaling is a good approxi-
mation for an electron above the ionization threshold of a
real atom.

Our wave functions and photoelectron spectra are irn-

plicitly functions of g, of course. We therefore derive
from the average energy
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X SPs

N= (3.4)

S=0

We use this definition in Fig. 14 for three-photon ioniza-
tion (circles).

Either way, N(rt) is a measure of the number of ATI
peaks. For instance, X is zero if there is only one sym-
metric narrow peak in the continuum. The numbers
N(ri) defined ih (3.3) and (3.4) normally agree to within a
few tens of percent. In fact, such an agreement is one of
our criteria for a valid ATI spectrum. However, because
of the large area that accumulates in the background as
compared to the widely spaced peaks, the definition (3.3)
would occasionally give a negative N to one of the three-
photon points in Fig. 14. This is why we use the
definition (3.4) for three-photon data in this paper, in-
stead of the more clear-cut expression (3.3).

For some of the ten-photon spectra used in compiling
Fig. 14 the relative heights of the peaks in the spectra are
already strongly corrupted by truncation errors, but
N(rt) turns out to be much less sensitive to them. The
data in Fig. 14 are thus believed to have a numerical ac-
curacy of about 10%.

Another interesting question is how much the use of
short 4—,'-cycle pulses influences the outcome. To this end
we note that in the exceptionally unfavorable case of
Figs. 5 and 6 (of the positive-energy spectra we have gen-
erated, these are the only ones where the change with
time is apparent even to the eye) N varies from 0.66 to
0.92, the 44-cycle result being the largest. This range is

quite wide, but not wide enough to alter the qualitative
features of Fig. 14.

Considering that the intensities of three- and ten-
photon ionization for the same g differ by a factor of 50,
it is clear that the number of ATI peaks primarily de-
pends on Co and to through the combination rt rather
than individually on the intensity or frequency.

g (x, t)=exp i x p-
p

CO

p@o .
coscot + singlet

g2
~in2cot-

8co

2

2 4 2

(3.5)

Here p is the momentum such that the Volkov state turns
into the plane wave exp(ipx) if the field is turned off adia-
batically. The term in the first parentheses represents a
plane wave whose momentum oscillates as appropriate
for the quiver motion of the ion, the term in the second
parentheses is the Floquet energy consisting of the bare
energy of the electron and the ponderomotive shift, and
the remaining terms come from the periodic part of the
Floquet function. The form of the wave function (3.5)
corresponds to linear polarization, the only one that can
exist in one spatial dimension.

Using the generating function of the Bessel functions,
the wave function may be written

g~(x, t)= exp i p— cosset x

x& XJ„„p@o @o

N SN
Jk

C. Keldysh models of ATI

We finally compare our ATI simulations with two
final-state dressing models whose key idea is originally
due to Keldysh. They are based on two notions: (a) the
wave function of a positive-energy electron in both a laser
field and the electrostatic field of its ion is approximated
by a photon-dressed free-electron Volkov state and (b)
lowest-order perturbation theory connects the bound ini-
tial state to the free Volkov final states.

The Volkov state is the Floquet solution to the time-
dependent Schrodinger equation of a free electron in the
external field. In the nonrelativistic approximation, in
the d E gauge, and for the field Cosintot, it reads

2

)& exp —i + +neo t
4co

0.1 2 5 10 100

FIG. 14. Average number of above-threshold peaks N as a
function of the dimensionless parameter g=bo/cg for 44-cycle
square pulses, for the same three laser frequencies as in Fig. 12.
The solid line is the fit to the form N =It:q, giving K =0.188.
The display is logarithmic in order to separate the data for low-

g values.

(3.6)

The key feature of (3.6) is that a state whose energy at
zero field equals W =p /2 is shifted up by the pondero-
motive potential and acquires sidebands whose energy
separation equals the photon energy. To excite an elec-
tron whose momentum outside the field were p, it is
sufficient to excite any of these sidebands.

Several versions of the Keldysh model have been ap-
plied to ATI. All take their main characteristics from
the Bessel functions of the Volkov states, but otherwise
differ quite a lot in their strategy. In some cases it is as-
sumed that the ground state ionizes directly. ' ' In oth-
er words, high-order sidebands of continuum states are
excited by one-photon transitions directly from the
ground state. High-order Bessel functions describe even
the lowest-order peaks in the continuum in such a theory.
In other approaches' it is assumed that the atom jumps
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over the bound states with the aid of an effective multi-

photon matrix element, so that the lowest peak in the
continuum has the Bessel function order zero. Inter-
mediate forms' are also possible where the order of the
lowest peak might equal, say, the number of channels
that are closed as a result of the finite intensity. The
problem with all approaches resorting to the multiphoton
matrix element is that high-order effective transition ma-
trix elements are in practice nearly impossible to calcu-
late ab initio.

At the present status of Keldysh-type models one real-
ly cannot justify more elaborate treatments than the one
obtained simply by using the Bessel functions (the
strengths of the sidebands) as the relative heights of
different peaks in the continuum:

Ch

C

(c)

QO g2
+S X ~k 3 Js+U+2k

Sco

Ps
CO

2

(3.7)

We assume that the Sth (0,1, . . . ) electron peak emerges
with energy

8q =(nE+S)to —( Wt+ Wt, )

and momentum

(3.8)

Ps=(2Ws) (3.9)

D. Summarizing the analysis of electron spectra

Our results on the movement of the peaks as a function
of intensity strongly support the ponderomotive shift and

both incorporating the ponderomotive shift of the thresh-
old. The models where the ground state is coupled to the
continuum directly or via an effective multiphoton matrix
correspond to the respective choices v =nE and v =0 in
(3.7).

All matrix element factors that multiply the peak
heights are taken to be independent of energy in (3.7). In
particular, the prefactor does not tend to zero at the con-
tinuum threshold. This is a viable assumption for two
reasons. First, we deal with energy spectra and not the
flux of outgoing electrons, which would incorporate as a
multiplier the asymptotic velocity that tends to zero at
the continuum threshold. Second, our atom has a long-
range binding potential like the Coulomb potential.
Therefore, at least in one-photon transitions the oscillator
strength per unit energy extrapolates continuously across
the ionization threshold. Models where the coupling
per unit energy goes to zero at the threshold are suspect
both in view of this observation and also because in our
simulations the zero of energy does not seem to acquire
any singularly special position.

The peak heights predicted by formula (3.7) for v = nE
and v =0 are shown in Figs. 15(a) and 15(b), and in Fig.
15(c) we give the corresponding ab initio spectrum, in all
cases using co=0.07 and E =0.07071. The quantitative
agreement between Figs. 15(a) or 15(b) with 15(c) is bad,
and the modulation in the envelope of the peaks in
graphs 15(b) and 15(c) is the only plausible candidate for
even a qualitative similarity. The present versions of the
Keldysh model do not represent accurately an atomic
electron.

FIG. 15. Photoelectron spectra from Eq. (3.7) for v =nF (a)
and v =0 (b), and from the numerical simulation for an 8—'-cycle
square pulse (c), with co=0.07 and 6'0=0.07071. The simula-
tion spectrum is computed using the iteration parameters
N =15308, 5x =0.07071, and 5t =0.0112199. For these pa-
rameters the individual peak heights sustain truncation errors
-30% and the total ionization (-0.1) is off by —10%.
Nonetheless, the qualitative appearance of the spectrum is not
dictated by truncation errors.

channel closing' ' as the mechanism of the relative
suppression of the lowest peaks in the electron spectrum,
which takes place in ATI experiments. We basically cor-
roborate recent short-pulse experiments. '

Suppose next that the photon dressing of the continu-
um states were the dominant rnechanisrn of ATI. Put
differently, suppose that a quantitatively accurate ATI
model can in principle be set up like in our primitive
Keldysh-type models, but with more accurate continuum
wave functions or a better account of the coupling be-
tween the bound and continuum states. High up in ener-

gy where the continuum states are only slightly perturbed
by the ion core the free-electron parameter g is expected
to govern the continuum dressing. The parameter g
should show up prominently in the scaling of ATI with
the field strength and intensity. On the other hand, light
can induce transitions between the atomic continuum
states only because they differ from free-electron plane
waves as a result of the Coulomb interactions with the
atomic core. An atom admittedly has enough dimension-
al quantities to make up the dimensionless g, but we con-
sider it unlikely that a pure free-electron parameter hap-
pens to govern continuum-continuum transitions which
are possible only because the electrons are not free. All
told, the numerically observed free-electron scaling of
ATI is nicely compatible with simple continuum dress-

20, 8 —10

Free-electron scaling might be robust enough to sur-
vive the complications of real experiments too, so it may
be worthwhile to look for it specifically.

Some more speculative remarks about the Keldysh
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H, = g Jk
g

Js+2k(&2Sv1)
k = —oo

(3.10)

With the assumption ps ——(2Sco)'~ we have removed
from the theory the last trace of atomic structure, namely
the dependence of the peak positions on ionization ener-
gy. It is no surprise then that (3.10) is a function of r) and
S alone. Using the peak heights from (3.10) as the areas
Ps in (3.4), we obtain numerically for large g the expres-
sion for the number of peaks

models might also be warranted. No Keldysh model
built on free-electron wave functions can be reliable close
to the threshold where the electrons feel the ionic core
strongly. Indeed, the region around zero energy is
different in all three Figs. 15. Second, if the notion of an
effective multiphoton matrix element is viable in the first
place, one would expect the coupling to behave somewhat
like the cross section of the photoelectric effect, i.e., tend
to zero as the continuum energy increases. The true
heights of the ATI peaks as a function of the electron en-

ergy should eventually fall off faster than in models based
on constant coupling. In fact, the relation between Figs.
15(b) and 15(c) is as suggested by this reasoning, whereas
the agreement between 15(a) and 15(c) becomes worse
still if the peaks in 15(a) are multiplied by a function that
falls off with energy. Third, when 15(a) and 15(c) are
both multiplied by the square root of energy in the calcu-
lation of the energy flux, the agreement might become
reasonable, and a coupling that tends to zero at the con-
tinuum threshold could render the agreement even better.
Such a coupling, however, does not appear plausible.

The g scaling of the Keldysh-type models may also be
of some interest. High up in electron energy the momen-
tum of the peak S is accurately given by ps ——(2Sco)'
which thus is a feasible overall approximation for the mo-
menta if there are many peaks present. In the case v =0
(multiphoton matrix element replacing the bound states)
the peak heights from (3.7) may be written

In Fig. 16 we plot a portion of the photoelectron spec-
trum for the 64—,'-cycle square pulse with @o——0.05, and
with co=0.52 corresponding to two-photon ionization.
As the energy range shown spans just one photon energy,
the multiple peaks cannot be ascribed to ATI.

To exhibit the origin of the structure in Fig. 16 we give
in Fig. 17 the same spectrum, part of the energy level dia-
gram of the atom and a few possible light-induced reso-
nance transitions, all drawn to scale. The middle peak la-
beled 0" in the spectrum of Fig. 16 corresponds to two-
photon ionization of the ground state, while the rest of
the peaks (including the largest one) come from one-
photon ionization of excited bound states. The laser
nearly matches the frequency from

~

0 & to
~

2 &, but this
transition is dipole forbidden and no resonance ensues.

We discuss these observations in a semiquantitative
model. We start by assuming that the light first couples
the ground state

~

0 & to the other bound states
~

n &

(n =1,2, . . . ), and in the second step the excited bound
states

~

n & to the various continuum states
~

W &. The
respective dipole-moment matrix elements are denoted by
do„and d„, and the coupling energies by Qo„
( =dp„Cp/2) and 0„.The rotating-wave approximation
(RWA) is the second ingredient of our approach. We
first replace the level energies with their detunings from
resonance; when the ground-state energy is redefined as
zero, the excited state

~

n & will have the energy
b „=W„+ Wz —co, and the continuum state

~
W & the en-

ergy 6 = W+ Wz —2'. Second, the couplings between
the levels become time independent. The couplings after
the two-step RWA are sketched in Fig. 18.

Let us treat the light-induced coupling between the
bound states as a small perturbation. To first order the
ground state acquires a small admixture of excited-state
character, and the excited states receive a small ground-
state component. Time-independent perturbation theory
gives as the "dressed" energy eigenstatesQO„QO„
~0'&=~0&+~y ~" ~n&, ~'&=~n& —i ~" ~0&.

N(v])= —,'r) . (3.11) (4.1)

For comparison, the slope of the linear fit in Fig. 14 is
0.19. On the other hand, in the v =nE type Keldysh
model the true g scaling (independent of the ionization
potential) sets in when Wp » Wz. Such parameters are
currently not accessible in our numerical simulations.

IV. TURN-ON TRANSIENTS IN ELECTRON SPECTRA

The recent observation of spectral structure within the
ATI peaks broke new ground in multiphoton ionization
physics. In their paper Freeman et al. explain the intra-
peak features with time-dependent level shifts: The pulse
intensity varies as a function of time, and so do the level
shifts. At some intensities a bound level is brought to an
intermediate resonance, which manifests itself in an in-
creased ionization rate and an extra peak in the spec-
trum. We have so far not been able to reproduce this
chain of events in our simulations. Instead, we have
discovered another mechanism that creates multiple
peaks within the ATI peaks.

65

CL
0I ~

3t

FIG. 16. Structure within the first ATI peak for a 644-cycle
square pulse (T =776.34) with @0——0.05, and with co=0.52 cor-
responding to two-photon ionization. The total ionization is
1.4)&10 . The notation refers to the physical origin of the
peaks: See Fig. 17 and the text.
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3 ~

OI I

from time-dependent perturbation theory (within the
RWA).

In the numerical experiment of Fig. 16 the field is
turned on suddenly at the initial time t =0. We therefore
decompose the ground state

~

0) in terms of the dressed
states, whose populations to lowest order in the field in-
tensity are

0
n

(4.3)

FIG. 17. ATI spectrum of Fig. 16, part of the energy level di-

agram of the atom, and a few possible light-induced resonance
transitions, all drawn roughly to scale. It is apparent that the
peak 0" in Fig. 16 originates from two-photon ionization of the
ground state

~
0), while the peaks denoted by 1' and 3' come

from one-photon ionization of the excited bound states
~

1) and

In second order the levels also shift, but this is of no con-
cern here.

The coupling to the continuum causes an (exponential)
decay of the dressed states and accompanying accumula-
tion of electron energy peaks in the continuum. The
peaks corresponding to ionization of

~

0') and
~

n') will
have the bare energies 2' —O'I and co+ W„, respectively,
and Fermi's golden rule gives the transition rates

On ~n, 2tzJ —W'

1 „=2mB„+a, . (4.2)
n n

I o——2n.

I o is recognized as the usual two-photon ionization rate

liNN~I

1~

I

'I I
1 I
'L I
l
1 I
l I
'i I

I
'l I
11
lI

(b)

FIG. 18. The coupling scheme where the ground state is first

dipole coupled to the excited bound states and these bound
states are subsequently coupled to the continuum (a); the same
scheme after the RWA has pulled the excited levels down by co

and the continuum by 2' (b).

I ot, I „tg(1 .

Then (4.2), (4.4) give

~on ~n, 2~- ~,
Pc 2n. ——

n

(4.5)

(4.6)

P„=2m
2

On n, co+ W„

As long as the inequality (4.5) is not violated, the ratio of
the peak heights remains unchanged both as a function of
time and when the intensity of the field is varied. If the
coupling matrix elements were slowly varying functions
of continuum energy so that the difference between
2~ —8'I and co+ 8'„would not be crucial, the energy-
nonconserving peaks would give the incoherent decom-
position of the two-photon transition rate. Also, in the
weak-field limit of perturbation theory Co~0 the extra
peaks become infinitely long lived. This is the reason we
dub them energy nonconserving.

In our numerical experiments we find that up to
T =776.34 (64—,

' cycles of the field, -20 fs) and 6'c=0.05
( —10'4 W/cm ) the relative peak heights remain practi-
cally unchanged with changing interaction time and field
strength. This is as expected in view of the fact that
I &T = 1.8 and I 3T =0.3 hold true for the upper limits of
T and Do.

The structure of the spectrum in Fig. 16 is thus a turn-
on transient. If the field is turned on infinitely slowly, the
state

~

0) transforms into
~

0') adiabatically, and no oth-
er dressed state is populated. The energy-conserving
peaks are the only ones to remain. This prediction is
essentially confirmed in Fig. 19, where the electron spec-
trum is plotted for the 64—,'-cycle square pulse and 96-
cycle smooth pulse. The extra peaks, and their ATI du-

Subsequently these dressed states decay exponentially to
the continuum. The total populations of the correspond-
ing electron spectrum peaks as a function of time are

QO„
Po ——1 —exp( —I Ot), P„= [1—exp( —1 „t)] . (4.4)

n

After a long enough time when all exponentials have
decayed out, the ratio of the populations in the "energy-
nonconserving" (P„) and "energy-conserving" (Pc) peaks
is proportional to the field intensity, the small parameter
of the perturbation theory.

A more interesting situation occurs when the relevant
dressed levels have not yet decayed significantly,
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(a}

The remaining question is why we apparently do not
see transients for five- and ten-photon ionization. We
suspect that turn-on transients or the absence thereof
may be a major factor in determining the window of pa-
rameters where we see meaningful spectra. But, as a re-
sult of the required interaction times, at present it is
difficult if not impossible to verify such an assumption for
five- and ten-photon ionization.

(b)

W/co

FIG. 19. Base-ten logarithm of the photoelectron spectra for
a 64—'-cycle square pulse (a) and for a 96-cycle (T =1159.97)
smooth pulse (b), for two-photon ionization with m=0. 52 and
80=0.05. Every tick mark on the vertical scale corresponds to
one decade in P( W). The dynamic range is thus much larger in
the smooth-pulse trace (b). The total ionizations are, respective-
ly, 1.4)& 10 and 7.2)& 10

plicates, are present in both spectra, but for the smooth
pulse they are strongly suppressed.

The extra peaks in the spectrum are an example of a
rather esoteric way of how time-dependent perturbation
theory may fail, and in principle at least they also provide
a method to obtain information about the bound states of
the atom. Nonetheless, in real experiments the pulses
turn on smoothly, so it may be doubted whether such
effects can be observed. In fact, the time scale of even
our smooth pulse in Fig. 19 is much shorter than in any
published experiment.

We note that we have used two-photon ionization as
our example because (i) our programs then allow us to
run a large number of field cycles, and (ii) we have not ob-
served such unambiguously identifiable turn-on transients
for five- or ten-photon ionization. In real experiments
two-photon transitions may be the worst case for turn-on
transients. For large multiphoton orders the time scales
are automatically longer because the field period is
longer. Even more importantly, the (virtual or real) in-
termediate levels are higher up in the Rydberg ladder and
may have neighbors close by that can be excited non-
resonantly. With the quest toward shorter pulses the
possibility of bound-state transients in the electron spec-
tra should be borne in mind.

V. CONCLUDING REMARKS

In this work we have laid down a procedure to carry
out ATI experiments numerically, demonstrated in our
simulations the threshold shift and channel closing sug-
gested' ' as a possible mechanism of the peak suppres-
sion, pointed out a free-electron scaling ' of the number
of ATI peaks with the intensity and frequency of the
field, compared two Keldysh-type ' ' final-state dress-
ing models with our numerical experiments, and demon-
strated energy-nonconserving peaks in the spectrum be-
tween the ATI peaks.

Generally, our ab initio simulations are both laborious
and cost a lot of computer time. We have thus been
forced to some tradeoffs, such as using fairly short square
pulses for the mass production of data, and sacrificing on
the numerical accuracy. However, all our spot checks
with different pulse lengths, shapes, and phases con-
sistently suggest that in the range of parameters of our
ATI spectra the electron leaks out of the atom in an
essentially time-independent way, i.e., the correlation
time scale of ionization is still much shorter than the time
scales in our numerical experiments. The conclusions of
our analysis of the electron spectra should thus remain
virtually unchanged if either longer square pulses or
smooth pulses were used in the simulations.

We regard the major question in our simulations to be
that, without knowing why, we obtain sensible electron
spectra only in a limited region of parameters. We are
presently considering ways to increase substantially the
interaction time available in our computations, in the
hope that we would obtain new insight into the underly-
ing physics. Another appealing project would be to im-
prove upon the Keldysh-type theories, especially tailoring
them to our one-dimensional atom, in order to see if a
quantitative agreement with simulations might eventually
be reached.
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