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A wide variety of finite-basis-set expansion methods is applied to electron —hydrogen-atom
scattering in the static-exchange approximation. All these methods are based on the Lippmann-
Schwinger formalism. A careful analysis of the numerical results is presented with the aim of select-

ing efficient approaches to the solution of realistic electron-atom (and electron-molecule) scattering
problems. The results show that the efficiency of the expansion methods may depend sensitively on
the characteristics of the interaction terms. Some difficulties of the simple method of moments are
pointed out. A particular least-squares method is proposed to avoid the spurious singularities en-

countered in applications of the Schwinger variational method to singlet scattering processes.

I. INTRODUCTION

Over the last decade, increasing interest has been de-
voted to the solution of quantum-mechanical scattering
problems at low energies. The investigations include
electron-atom and electron-molecule collisions, ' photo-
ionization processes, ' and chemical reaction probabili-
ties. Promising finite-basis-set expansion methods have
been suggested by using a great variety of variational
functionals' ' based on the multichannel extensions of
the Lippmann-Schwinger integral equation.

The best known variational principle based on the
Lippmann-Sch winger equation is the stationary
Schwinger variational principle which becomes a max-
imum (or minimum) principle for the reactance matrix
elements if we consider a particular class of scattering po-
tentials. ' However, there are many exceptions. An il-
lustrative example is electron —hydrogen-atom singlet
scattering in the static-exchange approximation. In this
case, the numerical results of our previous paper" clearly
show the presence of spurious singularities in the reac-
tance matrix elements computed by the Schwinger varia-
tional method.

Since the variational results are not necessarily bound-
ed from above (or below), it may be convenient to replace
the stationary principles by a stability requirement along
the lines discussed in Refs. 12 and 13. In fact, simple
nonvariational expansion methods may also yield stable
results in a fairly large region of the nonlinear scale pa-
rameters characterizing the basis functions (i.e., in that
region the computed reactance matrix elements are al-
most independent of the choice of the nonlinear scale pa-
rameters). Of course, the results of a practical expansion
method must show a convincing stability at relatively
small sizes of the basis set.

In this paper we shall apply both variational and non-
variational expansion methods to the approximate solu-
tion of the Lippmann-Sch winger integral equation.
These procedures will be classified within the framework

of the general method of moments (cf. Ref. 14). As a par-
ticular case, we shall discuss how the least-squares varia-
tional method suggested in Refs. 13 and 15 can be ex-
tended to the Lippmann-Schwinger formalism. A careful
analysis of the numerical results will be presented for the
s-wave electron —hydrogen-atom scattering in the simple
static-exchange approximation. These results may be
useful in selecting the most promising expansion methods
for the solution of complicated scattering problems. We
expect that the static-exchange approximation provides a
more efficient comparative test than the s-wave scattering
by a local exponential potential which has already been
used to explore some virtues (or drawbacks) of 35
different expansion methods. '

The outline of this paper is as follows. In Sec. II we
discuss the theoretical background. Section III is devot-
ed to the least-squares variational methods that are based
on the Lippmann-Schwinger equation. Numerical results
computed by various finite-basis-set expansion methods
are presented in Sec. IV. Some comments and remarks
are left for Sec. V.

II. THEORETICAL BACKGROUND

A. Lippmann-Schwinger equation

We consider the s-wave (l =0) elastic scattering of an
electron at energy c.. This process can be described by a
stationary-state radial wave function f (r) which satisfies
the Schrodinger equation

1 d +U —s f=0, (2.1)
2 dE

where atomic units (a.u. ) are used, and U denotes the cen-
tral scattering potential (or operator). Moreover, we
shall consider only short-range interaction terms U. In
this case, the general asymptotic form of the radial wave
function f (r) is the following:
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f(r)=a, [S(r)+KC(r)] if r~~ . (2.2) (1 G—U)f', (Mg ') —S =b, (Mg"', r), (2.14)

K =tan6, (2.3)

Here the coefficient a, is different from zero and in-

dependent of r, otherwise arbitrary, and K is the reac-
tance matrix element which can be expressed as

where the deviation 6(Mg ",r) is related to the error of
the approximate radial wave function f '& (Mg q', r ).

We now introduce a convenient set of test functions
X, (Mg ', r ). As a next step, let us fix N projections of the
deviation vector b (Mg '

) at zero:
where 5 is the phase shift. In addition, we have

S(r}=k '~ sin(kr),

C(r)=k '~ cos(kr),

(2.4)
(j,(Mg ')

~
b(Mg ')) =0, i =1, . . . , N .

These equations can be expressed as

(2.15)

and

k =(2.)'" . (2.6)

If the value of the coefficient a, is fixed at a 1=1,
then the solution of Eq. (2.1) will be denoted by f ~. The
radial wave function f, (r) satisfies the Lippmann-
Schwinger integral equation'

(1—GU)f, —S =0, (2.7)

where the principal-Ualue free-particle Green's function 6
is given by

N

g L; (Mg ')a (Mg' ') = (X;(Mg"')
~
S),

j=1

where i =1, . . . , N, and

L; (Mg ') = (X;(Mg q
)

~

(1—GU)
~ gj(Mg '

) ) .

(2.16)

(2. 17)

Equation (2.16) is a system of linear inhomogeneous alge-
braic equations which determine the coefficients a (Mg q )

according to the general method of moments.
The approximate reactance matrix element K(Mg ')

can be calculated by substituting Eq. (2.13) into Eq.
(2.10). One obtains

GUf& ——f dr'g(r, r')U(r')f, (r'),
0

(2.8)
N

K(Mgq)= —2 g (S
~

U yj(Mgq))a (Mg' ') . (2.18)

with

g(r, r')= —2S(r )C(r ) . (2.9)

(The symbols r and r denote, respectively, the greater
and lesser of r, r' )The re.actance matrix element K be-
comes

j=1

Equations (2.16) and (2.18) imply

N
K(Mg'"')= —2 Q (S

~

U
~

p;(Mg'))

XL, '(Mg' ')(X,(Mg"')
~
S),

K= —2&S
~

U ~f) & (2.10) (2.19)

(g; ~

F g&) = f P,*(r)FQJ(r)dr . (2.12}

B. General method of moments

The reactance matrix element K can be computed by
using a great variety of the finite-basis-set expansion
methods that are based on the Lippmann-Schwinger in-
tegral equation. We shall employ the numbers a&, Q, and

q (co,g, q=0, 1,2, . . . ) to label a particular expansion
procedure which will be called the M&

' method. As a
first step, we consider the expansion of the radial wave
function f, (r) in terms of a convenient set of basis func-
tions g, (M& '

,r). .The tr'uncated version of this expan-
sion can be written as

N

f', (Mg", ;r) = g a, (M~",'}q,(Mgo,';r) .
j=1

(2.13)

By substituting fI (Mg ', r ) into the Lippmann-
Schwinger equation (2.7), we have

Here, and in the following part of this paper, we use the
obvious notation

(P, ~ g ) = f P,'(r)P (r)dr, (2.1 1)

and the matrix elements of an operator F (involving r)
will be defined by

where L,. ' is defined by

N

L (Mg q
)L J(M'g q

)' (2.20)

Of course, the general method of moments is only a for-
mal framework without a judicious selection of the basis
functions and test functions. These functions must be
specified carefully by taking into account the significant
properties of the interaction term U which governs the

scattering process.

c.=E—E, , (2.21)

where E is the total energy of the electron —hydrogen-
atom system, and E1 denotes the ground-state energy of
the hydrogen atom (E, = —0.5 a.u. ). The static-
exchange approximation of the interaction terms U be-
comes

C. Static-exchange approximation
of the electron —hydrogen-atom scattering

We next apply Mg ' methods to the s-wave (I =0) elas-
tic scattering of an electron by a hydrogen atom and, as a
test case, we shall use the simple static-exchange approxi-
mation suggested by Erskine and Massey. ' Thus, we
have
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U= V(r)+ IV,

where

(2.22) y (M&0, r)=p (r),

X, (M20, r)=Up, (r) .

(2.31a)

(2.31b)

(2.23)

and

Wf& ———1 rw(r, r')r'f, (r')dr',
0

to(r, r') =4( —1) e "(E—2E, r—' )e

(2.24)

(2.25)

D. Basis functions and test functions

In the present study we make use of a set of
(nonorthogonal) square-integrable Slater-type functions

y, (r) Acc.ording to the short-distance behavior of the
exact solution f&(r), the functions pj (r) will be taken as

Here we have S =0 for singlet scattering processes, and
the triplet scattering states are characterized by S=1.
Equation (2.3) may be written as

K( (Mgq)=tan5 (M q) S=O 1 (2.26)

where K' '(M&"') and K"'(M&q) are, respectively, the
approximate singlet and triplet reactance matrix elements
computed by the MQ"' method.

y (Moq', r)=p (r),

X, (M~& ', r) = V(q;r)y;(r), q =1,2, . . . ,

(2.32a)

(2.32b)

where the local positiue defini-te test potentials V(q; r) are
designed to imitate some significant properties of the in-
teraction term U as given by Eqs. (2.22) —(2.25). We shall
choose

—y r

V(q;r) = q=1,2, . . . .
T

(2.33}

Section IV includes some illustrative results of the M0 &

method in which the parameter Zq will be taken as

Thus, according to our classification, the Schwinger vari-
ational method may be called the M2 0 method. We em-

phasize that the M20 method is based on the classical
Schwinger variational principle. Therefore, the
Schwinger variational method is intrinsically superior to
the M0 0 and M', ,

' procedures.
The Schwinger variational method may be simplified

by using the nonvariational Mo q
methods (cf. Ref. 16)

which are defined by Eqs. (2.16)—(2.19) with

yj(r)=A r~e ", j=1,2, . . . (2.27) y =1 for q=1 . (2.34)

where a is a (real) nonlinear scale parameter characteriz-
ing the basis, and the normalization factors are denoted
by AJ. .

We now apply the general method of moments to a
classification of some particular M& q' methods by choos-
ing various sets of basis functions y&(M&q'', r) and test
functions X; (M& ', r ). As a first possibility, we consider

gr (Moo;r)=y, (r), (2.28a)

X;(Mo 0', r ) =y;(r), (2.28b)

with Eq. (2.27). By substituting Eqs. (2.28a) and (2.28b)
into Eqs. (2.16)—(2.19), we obtain the Moo method. This
is the simple nonvariational method of moments' ' that
is called the gM method in a recent work of Staszewska
and Truhlar. '

Let us turn to the nonvariational method of moments
for the amplitude density Uf, (called gM method in Ref.
16) which will be referred to as the M', ,

' method. This
method is given by Eqs. (2.16)—(2.19) with

y (M', ,';r)=U 'gr (r),
X,(MP,';r)=Ups, (r) .

(2.29a)

(2.29b)

Equations (2.19), (2.28a), (2.28b), (2.29a), and (2.29b), im-
16

(2.30)

Notice that the approximate radial wave function
f &

(Mo O, r ) is different from f &
(MI I, r).

It is immediately obvious that Eqs. (2.16)—(2.19) result
in the Schwinger variational method by choosing

All these methods can be applied to the approximate
solution of the Takatsuka-McKoy integral equation '

which involves the subtracted radial wave function C,
defined by

fi=Ci+S (2.35}

K' '(M' ')=K' '(M'"'¹k a)Qq Qql 9 7 (2.36)

where N refers to the size of the basis set, and k is the
wave number in atomic units. We shall prefer those MQ

'

methods which can give reliable results by using relative-
ly small basis-set sizes N in a fairly large region of the
nonlinear scale parameter a. Of course, this region be-
comes larger if the basis-set size N is increased. To get
some additional insight into the stability and convergence

Although the Takatsuka-McKoy equation will not be
considered in the present paper, we would like to mention
that the standard expansions of C& (using the basis func-
tions tp~ ) imply the appearance of the basis function S in
the expansion of the radial wave function f~.

In summary, the general method of moments is well
suited to a systematic classification of various finite-
basis-set expansion methods. This simple and important
fact has been emphasized by Abdel-Raouf. Moreover,
the bound-state calculations of Szondy and co-
workers show that the evaluation of the matrix ele-
ments can be greatly simplified by choosing convenient
test functions.

The success of a particular M&
' method (e.g. , the con-

vergence of the results) may depend on the choice of the
nonlinear scale parameter a in Eq. (2.27). It will be con-
venient to introduce the following notation:
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characteristics of the finite-basis-set expansion pro-
cedures, we next apply several least-squares variational
methods' ' to the approximate solution of the
Lippmann-Schwinger integral equation.

III. LEAST-SQUARES VARIATIGNAL METHGDS

We make use of the integral equation equivalent to the
Schrodinger equation (2.1), plus the boundary condition
for large r as given by Eq. (2.2). This integral equation
becomes

(Xh (Mg '
)

~
5(MQ ')) =0 for h'= I, . . . ,N+p,

(3.9)

which yields N+p (p & 2) linear algebraic equations for
the coefficients a „a,(MQ '), . . . ,az(Mgq). Conse-
quently, the equation A,[f']=0 (f&f') might be satisfied
only by accident.

By variation of A.[f'(M'"')] with respect to the linear
parameters a

&
and a (Mg'), j= 1, . . . , N, we obtain a

simple eigenvalue problem. As a next step, we normalize
the eigenvector by setting

(1—GU)f —iI,S=O . (3.1) a )
——1. (3.10)

(3.2)

By substituting the approximate radial wave function
f'(Mgq, r) into Eq. (3.1), we may write

(1 GU)f '(Mg
q
—)—a &5 =5(M& ', r), (3.3)

where the deviation b, (M~ ",r ) depends on the linear pa-
rametersa t and Z (Mg ), j=l, . . . , N.

We next turn to a definition of the measure of the error
of the approximate radial wave function f'(Mg ', r ) in a
sufficiently large (N+p-dimensional) subspace spanned
by the test functions X, (MQ '

) which are listed in Sec. II.
This definition can be expressed as

A, [f'(M' ')]=Qq ~»—1 —1

(3.4)

in which

N+p
A[f'(Mg"']= g (b(Mg ')

~
Xh(Mg ' ))

X whh (~)(Xh (MQ q )
I ~™gq) )

(3.5}

with

(3.6}

Here the weight matrix w(co) is real, symmetric and all
the eigenvalues of w (co) are larger than zero. For simpli-
city, we shall choose

(3.7)

The variational functional A,[f'(Mg"q )] is positive
sem&definite by construction, and we have

A[f]=0 . (3.8)

Let us mention that, in general, A,[f'] is larger than zero
iff&f', because equation A,[f']=0 would imply

The radial wave function f (r) will be expanded in terms
of the basis functions g (Mg '

) discussed in Sec. II. The
truncated version of this expansion is

N

f'(Mgq, 'r)= g Vz(Mgq)cp&(Mgq', r), co=1,2, . . . .
j=1

The final result is the system of linear inhomogeneous
algebraic equations for the coefficients a (Mg ' ),

j=1, . . . , N. These equations can be written in the form
given by Eqs. (2.16) and (2.17), where

N+p
X;(Mg,') = g (cp;(Mg q )

~

(1—UG)
~
Xh(Mg',') )

Xwhh (cu)Xh. (Mgq), co=1,2, . . . .

(3.11)

In addition, the formula of the eigenvalue A, =A, ' I(MQ"')
becomes

W+p
(Mgq)= g (S ~Xh(Mg'))whh(co)

h, h'=1

X [(X,(Mg,') ~

S)—d,". '(Mg", )],
(3.12)

where S=0, 1, and

N

dh, '(Mg ')= g (Xh (Mgq) ~

(1—GU)
~
g&J(Mgq))

(3.13}

We now observe that the least-squares variational pro-
cedure leads to a particular class of the method of mo-
ments which will be referred to as the Mgq (co&1)
methods. For example, the M&" methods are defined by
Eqs. (2.16)-(2.19) and (3.11), where the functions
q&;(Mgq) and Xh(Mgq) are listed in Sec. II, and the
weight matrix w(co= 1) is given by Eq. (3.7). [Other
weight matrices w (co) may also lead to practical compu-
tational procedures which may be called the M&

'

(co=2, 3, . . . ) methods. ] Let us mention that the Mg
'

(co= 1,2, . . . } methods are more simple than the quadra-
tic variational methods, and the iteration-variation
methods discussed by Rayski and Staszewska and Truh-
lar. ' (For related methods see, e.g., Refs. 4, 26, and 27.)

In summary, the least-squares variational method pro-
vides a rationale for choosing the test functions X, (Mg' ),
co=1,2, . . . , as defined by Eq. (3.11). Moreover, the ei-
genvalue A,

' '(Mg
q ) [see Eqs. (3.12) and (3.13)] may offer

a useful measure of the error of the approximate wave
function within the N+p-dimensional subspace spanned
by the test functions X;(Mgq), i =1, . . . ,N+p (p &2).
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p=5 . (3.14)

Our numerical calculations will be carried out by choos-
ing

I
I170—
'I

l169—
\

168

I
'r

I 'i
I

I

I

I

I

Since the value ofp is fixed, it follows from Eq. (3.11) that
the matrix elements L; (MI, '

) are not absolutely in-

dependent of N for co) 1. Therefore, in general, we
should not expect that the sequence of the approximate
eigenvalues A,

' '(M'"' ) monotonically approaches the true
(s) 13eigenvalue k' '=0 as the basis-set size N is increased.

167

166

165 —l
I

I

164 —
I

I I I lI

I
I

I

I

I

I

I

I Ii I

I

I

I

I

I

I

I

I

I i I I

IV. RESULTS AND DISCUSSION
010 0 12 0 14 092 094 096 098 1.0 15 20 2 5

A. Singlet scattering (S=0)

We first compare some illustrative results of the
Schwinger (M~& 0) variational method with those of the

M2 0 least-squares method defined in Sec. III. The ap-
proximate reactance matrix elements E' '(M~& 0', N;k, a)
and E' '(M~&'z, N; k, a) were calculated at many values of
the nonlinear scale parameter a. Figure 1 shows the re-
sults at N =5 and k =0.5 a.u. (S=O). In this case both
methods are capable of giving continuous and fairly accu-
rate reactance matrix elements K' ' within the large re-
gion 0. 15 &a &0.90 omitted from the plot. However, the
plateaus of the function E' '(M~& 0, 5;0.5,a) are broken
by steep spurious branches which clearly show the pres-
ence of anomalous poles in singlet scattering processes. "
These anomalies of the Schwinger formula can be avoid-
ed by using the M2'0 least-squares variational method.
Notice that the reactance matrix elements E' '(M~&'z',

5;0.5,a} presented in Fig. 1 vary continuously with
respect to the nonlinear scale parameter a and, indeed,
the results of the M2o method are less sensitive to the
choice of a than the reactance matrix elements
E' '(M~& 0', 5;0.5,a) computed by the Schwinger varia-
tional method. These Schwinger results become very un-
stable in the region a & 2. 5, since an unpleasant spurious
singularity is encountered at a=2.7 according to Fig. 2
of Ref. 11. On the other hand, the reactance matrix ele-
ments E' '(M2'O, 5;0.5,a} computed by the M2'0 least-
squares variational method achieve a remarkable accura-
cy (1—2 % ) also in the region 2.75 & a & 5 which is not in-
cluded in Fig. 1.

FIG. 1. Computed values of the singlet reactance matrix ele-

ments K' '(M20', N;k, a) vs the scale parameter a for co=0
(dashed curves) and co=1 (solid curve). Results were obtained

by using M& 0 (co=0, 1) expansion methods defined in text. The
basis-set size N and the wave number k are fixed at N = 5 and
k =0.5 a.u. The curves are continuous and almost constant in

the region omitted from the plot. The dashed-dotted vertical
line indicates the change of the scale at a = 1.0.

Since the simple Moo method gives excellent phase
shifts for the s-wave scattering by an exponential poten-
tial, ' we have tried to apply this method to the static-
exchange approximation along the lines discussed in Sec.
II. This attempt was not successful in the singlet case.
(We find that both the stability and the convergence of
the results of the Mo o method are unsatisfactory also for
the s-wave scattering by a Yukawa potential. )

A remarkable improvement is provided by the Mo &'

(co=0, 1) methods which make use of the test potential
V(1;r) as given by Eqs. (2.33) and (2.34). Figure 2 com-
pares the reactance matrix elements for S=0, N =5, and
k=0. 5 a.u. No anomalous branches of the function
E' '(Mo,';5;0.5,a) can be observed on the plot. Howev-

er, the acceptable results of the Mo &' methods are seen to
be located in a significantly smaller region of the scale pa-
rameter a than those of the M~2 o methods (cf. Fig. 1 ).

In Table I we present a finer comparison of the results

TABLE I. Singlet reactance matrix elements K' '(M&q) and the eigenvalues A,
' '(M&'q) computed by M&q methods at several

basis-set sizes N. The nonlinear scale parameter a and the wave number k are fixed at a=0.5 and k =0.5 a.u. The M&"q methods
and the eigenvalues A,

' '(Mg'q ) are defined in text.

K(0)(M(o) )

3.782 22
2.277 64
1.82020
1.643 36
1.668 73
1.67001
1.671 08
1.670 93
1.670 91

K(0)(M(1) )

3.562 19
2.208 10
1.755 70
1.654 70
1.699 63
1.670 69
1.670 97
1.670 92
1.670 91

A,
' '(M",')

3.6x 10-'
2.3x10-'
5.2x 10-'
3.7x10-"
7.2x10-"
4.2x10-"
5.0x 10-"
3.0x 10-"
6. 1x10

K(0)(M(0) )

1.728 7807
1.730 1330
1.667 3086
1.671 8326
1.670 9069
1.670 8560
1.670 9112
1.670 9112
1.670 9112

K( )(M(")

1.732 3098
1.734 7925
1.667 7738
1.670 8462
1.670 9000
1.670 8959
1 ~ 670 9113
1.670 9112
1.670 9112

A,"'(M,",')
9.5 x 10-'
9.4x 10-'
4.2 x10-'
1.6x 10-'
1.7x10-"
5.2x10-"
2.5x10-"
1.0x 10-"
1.8x 10-"
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1.80—

1.36—

1.32—

—1.83—

-184—

1.68—

1.60
0.2 0.4 0.6 0.8

I

1.0 1.2
-1.86 '

FIG. 2. Computed values of the singlet reactance matrix ele-
ments K' '(M01'N'k, a) vs the scale parameter a for co=0
(dashed curve) and u = 1 (solid curve). Results were obtained by
using M0, ' (co=0, 1) expansion methods defined in text. The
basis-set size N and the wave number k are fixed at N =5 and
k =0.5 a.u.

FIG. 3. Computed values of the triplet reactance matrix ele-
ments E"'(M0™1',N;k, a) vs the scale parameter a for co=0
(dashed curve) and co= 1 (solid curve). The basis-set size N and
the wave number k are fixed at N=5 and k =0.5 a.u. Results
are omitted near a = 1.

for singlet scattering at k =0.5 a.u. The scale parameter
was fixed at @=0.5. The reactance matrix elements
K' '(M&~) were computed by using the Mo,' and Mz o
methods (co=0, 1) at increasing basis-set sizes N. We
show also the eigenvalues A,

' '(Mo"
I ) and A,

' '(M~2'o')

defined by Eqs. (3.12) and (3.13). These eigenvalues are,
of course, not directly related to the error of the approxi-
mate reactance matrix elements K' '. The sequences of
the approximations K' '(M2o) and K' '(Mz'o) display
rapid (but not monotonic) convergence up to eight digits.
Although the Mo &

and Mo &
results show poorer conver-

gence, useful approximations are obtained at fairly small
basis-set sizes N. Notice that one might draw quite a
false conclusion about the superiority of a particular ex-
pansion method by comparing the results calculated only
at one fixed value of a, since the convergence characteris-
tics depend on the choice of the nonlinear scale parame-
ter characterizing the basis functions (cf. Ref. 10).

B. Triplet scattering (S=1)

In triplet scattering calculations the M&
' methods

may work very well except for a narrow region around
a=1. Here we encounter the well-known spurious singu-
larity inherent in the simple static-exchange approxima-
tion at S=1. Of course, this triplet anomaly cannot be
regarded as a defect of the M&

' methods involving
Slater-type functions as given by Eq. (2.27). (For a dis-
cussion see, e.g., Ref. 11.)

Figure 3 shows the triplet reactance matrix elements
K"'(Mo( I,N;k, a) and K'"(Mo( I,N;k, a) at N=5 and
k =0.5 a.u. , plotting I(:"' as a function of the scale pa-
rameter a. Results are omitted near a=1 in order to
avoid the triplet anomalies. Apart from this region, the
functions K" '(Mo I

', 5;0.5,a) and K'"(Mo'I, 5;0.5,a) are
seen to be almost constant up to a=2.2 and a=3.2, re-
spectively.

TABLE II. Triplet reactance matrix elements E"'(M&
q ) computed by M&"q methods at several basis-set sizes N. The wave num-

ber is fixed at k =0.5 a.u. Both E"'(M0 0) and E'"(M0'0) were obtained with scale parameter a= 1.8; all other results used a=0.5.
The M0",' methods are defined in text.

g (1)(M(0) ) g(1)(M(1) ) g(1)(M(0) )

—l. 159
—1.106
—1.671
—1.789
—l. 835
—1.840
—1.837
—1.835
—1 ~ 834

—1.521
—1.546
—1.847
—1.824
—1.831
—1 ~ 837
—1 ~ 833
—1.834
—1.834

—1.787 0305
—l.831 6882
—l.831 6673
—1.833 7333
—1.833 6671
—1.833 6724
—1.833 6657
—l. 833 6666
—1.833 6666

—1.748 2892
—1.831 7178
—1.831 3507
—1.833 8770
—1.833 6716
—1.833 6732
—1.833 6651
—1 ~ 833 6665
—1.833 6667

—2.088 448 797
—1.834 814064
—1 ~ 834 046 436
—1.833 723 300
—1.833 666 857
—1.833 666 673
—1.833 666 652
—1.833 666 622
—1.833 666 622

—1.952 974 600
—1.833 264 557
—1.834015 122
—1.833 685 731
—1.833 666 248
—1 ~ 833 666 640
—1.833 666 646
—1.833 666622
—l.833 666 622
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Similar calculations have been carried out by using the
Schwinger (M2 II) variational method and the Mz'o least-

squares method. The reactance matrix elements
K' "(M2 o } and IC" (M2'o ) show spectacular stability

properties at N= 5 and k =0.5 a.u. Less impressive (but
still useful} results were obtained in applications of the
Moo'(to=0, 1) methods to the triplet scattering. (The
singlet reactance matrix elements computed by the Mo o

methods are notoriously unreliable for N (9.)
Table II illustrates how the results of various M&

'

methods converge at k =0.5 (a.u. ) as the basis-set size N
is increased (S=l). The reactance matrix elements
K'"(Mzo) and K'"(Mo'z) were computed with tz=1. 8;
all other results used the scale parameter a=0.5. The se-
quences of the approximations K "(M~~ o ) and
K"'(M~2'o') show excellent convergence properties. (If
N & 9, then the results agree up to ten digits. ) Moreover,
the Schwinger (M~2 o ) variational method yields monoton-

ically convergent results at S=1. Remarkable accuracy
is achieved also with the Mo,' and Mo,' methods. Final-

ly, we mention that the simple Mo 0 method is capable of
giving surprisingly good convergence in the narrow re-
gion l. 3 & a & l. 6 (S= 1). However, the convergence
characteristics of the results computed by the Mo"o

methods are more sensitive to the choice of the nonlinear
scale parameter a than those of the Mo"&' methods
(co=0, 1).

squares method give excellent results for triplet scattering
processes. However, the singlet reactance matrix ele-
ments computed by the Schwinger variational method are
not free of anomalies according to the results of Ref. 11.
Figure 1 shows how these anomalies can be avoided by
using the M2'0 method presented in Sec. III. For practi-
cal use in electron-atom and electron-molecule scattering
theory, the Mz o (to=0, 1) methods must be generalized
to a multichannel formalism along the lines discussed by
Nesbet' and Lucchese, Takatsuka, and McKoy.

The calculation of the reactance matrix elements K' '

is greatly simplified in the Mo",' (to=0, 1}methods which

involve the test potential V(1;r) defined in Sec. II. How-

ever, the generalization of V to multichannel scattering is
not a trivial problem. Therefore, care must be taken in

applications of the Mo"&'-type methods to complicated

scattering processes.
The simple Mo"o (co=0, 1) methods give fairly accurate

reactance matrix elements for triplet scattering (see Table
II). However, no reliable Mo"o results were found for
S=0 and X & 9. This fact indicates that the Mo"o
methods might not be very useful in scattering calcula-
tions involving complex quantum-mechanical systems.
In summary, the stability and convergence characteristics
of the results computed by a particular finite-basis-set ex-
pansion method may sensitively depend on the interac-
tion term U which governs the scattering process.

V. COMMENTS

In this paper we have used the simple static-exchange
approximation of the electron —hydrogen-atom scattering
to probe the efficiency of various Mg q

methods based on
the Lippmann-Schwinger integral equation. Both the
Schwinger (M~& o ) variational method and the M~&'II least-
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