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Detailed calculations of the electron-impact excitation of Ca+ are performed using both pertur-
bation theory and the close-coupling approach. Particular attention is focused on the resonance
(4s-4p) excitation since experimental emission-cross-section data are available for this transition.
The results of the most sophisticated model, a six-state (4s, 3d, 4p, 5s, 4d, 5p) close-coupling calcula-
tion with semiempirical Hartree-Fock target wave functions and including one- and two-body core-
polarization potentials are in better agreement with the experimental cross section and resonance-
fluorescence polarization data than any other calculation. At incident electron energies below the

5s, 4d, and 5p thresholds, the six-state calculations are essentially in agreement with the experimen-
tal data, although rich resonance structures predicted by theory are not seen experimentally due to
the finite energy resolution. At energies above the 5s, 4d, and 5p thresholds the six-state emission
cross sections exceed the experimental cross sections by about 20%, once allowance is made for cas-
cades from the 5s, 4d, and 5p levels.

I. INTRODUCTION

In this paper we present the results of a detailed study
of the electron-impact excitation of the resonance (4s-4p)
transition of Ca+. While the calculation of electron-ion
cross sections is mainly motivated by the importance of
cross-section information in a number of significant ap-
plications, e.g., the modeling of fusion and astrophysical
plasmas, this was not the primary motivation for the
present work. While many theoretical calculations of
electron-ion collisions have been completed, experimental
cross-section data are only available for relatively few
ionic species. While it is not feasible to use experimental
results to supply all the data needs of the fusion and as-
trophysical communities, these experimental studies play
a pivotal role in testing the adequacy of the calculations.
Comparison of experimental and theoretical cross-section
data for a few selected ionic species can be used to pro-
vide an independent test of the accuracy of the theoreti-
cal techniques.

Most of the experimental studies to date have used
photon emission techniques to determine the cross sec-
tion. One of the best examples of a carefully done emis-
sion experiment is the work by Taylor and Dunn' on the
excitation of the 4s-4p transition of Ca+. Their choice of
Ca+ as a system to study was partly motivated by the rel-
atively large number of published calculations on this
species at the time they initiated the experiment. Emis-
sion cross sections have also been measured by Zapeso-
chnyi et al. The results of this experiment confirm
those of Taylor and Dunn. Zapesochnyi et al. also pub-
lished emission cross sections for the excitation of the Ss
and 4d levels from the ground state. Since excitations of

the Ss, 4d, and Sp states result in cascades into the 4p
state, the cross sections for these states are helpful in un-
raveling the emission cross sections of the 4p state.
Somewhat paradoxically, while one would have expected
that publication of experimental cross-section data would
have stimulated further theoretical eFort (especially in
view of the fact that there mere large discrepancies be-
tween theory and experiment), this has not been the case.
Until very recently, the only calculations ' performed
since the Taylor and Dunn experiment have been carried
out using the distorted-wave approximation.

In this work we have undertaken some close-coupling
calculations of the Ca+ system at two diferent levels.
Both three-state (4s, 3d, 4p) and six-state (4s, 3d, 4p, 5s,
4d, 5p) calculations have been performed. One- and two-
body polarization potentials have been included at all
stages of the calculations. In order to test the accuracy
of the (unitarized) Coulomb-Born and distorted-wave ap-
proximations, we also report results for these approxima-
tions using exactly the same wave functions and polariza-
tion potentials. The remainder of this paper is arranged
as follows. In Sec. II, we discuss the calculation of the
Ca+ bound-state wave functions, while in Sec. III we de-
scribe in detail the various levels of approximation used
for the scattering calculations. The results of our calcula-
tions for the 4s-4p transition are presented in Sec. IV and
compared with the results of other investigations. In Sec.
V we describe the results of our calculations for the 4s-3d
transition. In Sec. VI, we present cross sections for exci-
tations to the 5s, 4d, and Sp levels from the ground state,
and use them to estimate the cascade contribution to the
4p emission cross section. Finally, we summarize our re-
sults in Sec. VII and discuss their implications.
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II. THE Ca+ BOUND-STATE WAVE
FUNCTIONS

We started this calculation with a very simple premise.
A scattering calculation is only as accurate as the approx-
imations for the target wave functions will allow. There-
fore we have taken some care to ensure that our Ca+
wave functions are as accurate as possible. A simplified
model of the Ca+ ion is to picture a loosely bound
valence electron outside a tightly bound argonlike core.
However, the n=3 core orbitals are not all that tightly
bound [e.g. , the Hartree-Fock (HF) eigenvalues are
s3, ———4.97 Ry and E3 = —3.16 Ry]. As a consequence
the Ca + core has a reasonable large dipole polarizabili-
ty" ' (=3.2ao), large enough, in fact, to cause a
significant perturbation of the valence-electron wave
functions.

The effects of core polarization can be included in two
distinctly different ways. One can use the ab initio ap-
proach, allowing virtual excitations from the 3s and 3p
orbitals and constructing a configuration-interaction (CI)
wave function. There are two problems with this ap-
proach that make it an unattractive method for a scatter-
ing calculation. First, using complicated CI wave func-
tions to represent the Ca+ bound states would greatly
lengthen the time needed to do the calculations. Second-
ly, this approach does not include the core polarization
effects "felt" by the second "scattered" electron. The al-
ternative is to use the semiempirical approach. Initially
we construct a set of fixed-core HF wave functions for
the Ca+ bound states. The semiempirical polarization
potentials are then determined by the requirement that
the calculated binding energies of the Ca+ valence states
by the same as the experimental binding energies. This
approach has the advantages of being inexpensive to im-
plement as well as providing a natural extension to the
second "scattered" electron. For these reasons we adopt-
ed the semiempirical approach for this work.

In order to initiate our calculations we performed a
series of numerical HF calculations (NHF) of the Ca+
states using the Froese-Fischer' HF program. Koopman
energies for the valence states determined from calcula-
tions using a relaxed core and fixed core (determined by
calculations of the 4s state) are given in Table I. It is
clear that the calculations using the 4s fixed core provide

a reasonable approximation (except in the case of the 3d
state) to the calculations with a relaxed core. Therefore
the error introduced into the scattering calculation by the
use of a fixed core is not expected to be large.

Analytic HF wave functions (AHF), however, were ul-

timately used for the scattering calculation. The primary
reason for this is that the polarization potential has been
included in our analytic HF program, while there is no
provision for the inclusion of a polarization potential in
the numerical HF program of Froese-Fischer. It is seen
in Table I that the present Koopman energies calculated
with a 4s fixed core are in excellent agreement with the
numerical Koopman energies. Having adopted the 4s
core, the description of the valence states is improved by
including the semiempirical polarization potential in the
Hamiltonian and recomputing the wave functions for the
valence states. We choose a form for the polarization po-
tential initially adopted by Norcross and Seaton

V,~(r) = [1—exp( r lp& )—] .

The valence for the dipole polarizability (ad) in the
above expression was chosen' ' to be 3.16ao. The
values of pt in the expression are determined by the re-
quirement that the computed binding energies of the 4s,
4p, 3d, and 4f states be the same as the experimental
binding energies (averaged for spin-orbit splitting). The
values of pl so determined were 1.6516ao, 1.6594ao,
1.9324ao, and 1.77ao, respectively, for l=O, 1, 2, and 3.
The value of p2 (1.9324ao) seems anomalously large, pri-
marily because the 3d orbital penetrates into the inner re-
gion of the atom much more than any other orbital and is
thereby more sensitive to the polarization potential. The
use of the polarization potential results in an immediate
improvement which affects the scattering calculation.
The binding energies of the semiempirical wave functions
agree with the experimental binding energies to an accu-
racy of better than 1%. The HF binding energies, on the
other hand, have an overall accuracy of about 5%. Since
we use the same core potential for states with the same l
value, the semiempirical wave functions were orthogonal
to quite a high degree of precision; any residual
nonorthogonality was removed by the Schmidt orthogo-
nalization procedure.

TABLE I. Theoretical and experimental binding energies (in Ry) for the low-lying valence states of
Ca+. We use the abbreviations NHF and AHF to distinguish between calculations undertaken with the
Froese-Fischer program and those done with the Slater-type orbital expansion technique.

State

4s
3d
4p
5s
4d
5p
4f

NHF
related

core

—0.832 638
—0.714 197
—0.618 955
—0.385 796
—0.339 781
—0.313043
—0.250 345

NHF
fixed 4s

core

—0.832 638
—0.675 276
—0.619631
—0.386 260
—0.339 982
—0.313354
—0.250 377

AHF
fixed 4s

core

—0.832 644
—0.675 276
—0.619 624
—0.386 267
—0.339 987
—0.313 359
—0.250 365

AHF
fixed 4s

core+ Vp, i

—0.872 556
—0.747 836
—0.641 642
—0.396064
—0.350 302
—0.320 132
—0.252 376

Expt. '

—0.872 556
—0.747 835
—0.641 640
—0.397 175
—0.354 492
—0.320 460
—0.252 376

'Reference 15.
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A further test of the quality of our wave functions lies
in the calculation of the oscillator strengths between
those states that will be included in the close-coupling ex-
pansion. A comparison of the absorption oscillator
strengths, calculated at various levels of approximation
are shown in Table II. Also shown in Table II are experi-
mental oscillator strengths from a number of sources. In
a number of instances, we used the published branching
ratio for transitions from 4p to 3d versus 4p to 4s to
convert given values for the 4p lifetime into an oscillator
strength. Focusing on the 4s-4p transition, it appears
from the comparison between the HF and semiempirical
oscillator strengths that the inclusion of the semiempiri-
cal polarization potential had a very small effect on the
wave functions. However, this is only true superficially.
The radial dipole integral, i.e.,

(r ) = J dr P, (r)rP (r) (2)

is quite different for the two sets of wave functions. The
value of this integral for the HF wave functions (3.92ao)
is larger than for the semiempirical wave functions
(3.78ao). The shrinking of the more tightly bound sem-

iernpirical wave functions, however, is counterbalanced in
the calculation of the oscillator strength by the increased
energy difference between the states.

More accurate values of the oscillator strengths require
that a core-polarization correction be made to the dipole

operator. ' ' ' Oscillator strengths computed using a
modified dipole operator,

r' = r — [ I —exp( r /—p ) ]
czd r

6 ~ 1/2
2

(3)

are also given in Table II. The value of p used in this ex-
pression, namely, 1.75ao, was fixed by taking the average
of po through p3. It should be mentioned that this correc-
tion is analogous to using the dielectronic polarization
potential' in the scattering calculation. Again concen-
trating on the 4s-4p transition, we see that using a
modified dipole operator results in a significantly smaller
oscillator strength. This value for the oscillator strength
is in agreement with the most precise of the experimental
measurements, the Hanle effect experiment of Gal-
lagher. There is also reasonable agreement with the os-
cillator strength of Hafner and Schwartz. ' This is to be
expected since their calculation is conceptually similar to
ours. The agreement with experiment for the other tran-
sitions is also uniformly good. [It should be mentioned
that the present approach has been used to calculate os-
cillator strengths for Al +. There is excellent agreement
(to within 0.5% for the 3s-3p, 3s-4p, 4s-3p, and 4s-4p tran-
sitions) of the oscillator strengths calculated using the
present approach with the accurate calculations of
Froese-Fischer. ]

TABLE II. Comparison of absorption oscillator strengths calculated in a number of different ap-
proximations with experiment. %'e present oscillator strengths computed with both ab initio and sern-

iempirical HF wave functions. The semiempirica1 oscillator strengths are also computed using a
modified dipole-length operator with core-polarization correction. Theoretical values computed by
Hafner and Schwartz (HS) (Ref. 17) and experimental values derived from a variety of sources are also
presented.

Transition

4s-4p 1.092 1.032

Ab initio HF
fI f,

1.110 1.043

Semiempirical
HF

Modified
operator

fI

0.961

HS

1.03

Expt.

1.05+0.09'
1.02+0 1

0.99+0.03'
0.90+0.08
1.01+0.05'

4s-5p

4p-5s

5s-5p
3d-4p
3d-5p

4p-4d

4d-5p

'Reference 18.
Reference 19.

'Reference 20.
Reference 21.

'Reference 22.

&10

0.173

1.516
0.049
0.0001

0.865

0.165

0.0001

0.165

1.479
0.0065
0.0005

0.800

0.129

&10

0.173

1.508
0.075
0.0012

0.900

0.178

&10

0.165

1.489
0.025
&10

0.837

0.141

0.0019

0.179

1.477
0.066
0.0004

0.869

0.176

&10

0.167

1.554
0.074
0.0009

0.794

0.108

0.18+0.02'
0.16+0.02

0.053+0.006'

0.87+0.09'
0.91+0.06
0.82+0 05
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III. DETAILS OF THE CALCULATIGN

We have performed a number of different calculations
for the Ca+ system. While these calculations often used
quite different approaches, we have used exactly the same
bound-state wave functions and Hamiltonian. Since the
core-polarization potential was used in constructing the
Ca+ valence states, it was also included in the Hamiltoni-
an for the second scattered electron for reasons of con-
sistency. We made one minor change to the one-body
part of the polarization potential felt by the "scattered"
electron. A value of 1.7482ao was adopted for p2 because
the value of 1.9324ao obtained by fitting the 3d binding
energy to experiment was thought to be anomalously
large. If the binding energy of the 4d level is required to
match with experiment then a value of 1.7482ao is ob-
tained. This value was thought to yield a more "typical"
polarization potential for the 1=2 partial wave of the
scattering electron. Note that a value of 1.77ao was uni-

formly adopted for I & 3.
The two-body dielectronic polarization potential was

also included in the Hamiltonian. The form adopted for
this potential was

I'] 'I'2
& d~(r~, rz)= —2ad [[1—exp( r, /p )]-

p
2

p
2

1 2

)& [1—exp( r& /p ) ] ]
'—

(4)

The value adopted for p, i.e., 1.75ao, was the same as that
used in Eq. (3).

The different calculations are now described in order of
increasing complexity.

(i) UCBAV6. This was a fully unitarized Coulomb-
Born calculation (with exchange up to a total angular
momentum of 10) with on-shell coupling included be-
tween six states (4s, 3d, 4p, Ss, 4d, and 5p).

(ii) UDWV6. This was a fully unitarized distorted-
wave calculation (with exchange) with on-shell coupling
included between six states (4s, 3d, 4p, Ss, 4d, and 5p).
The distorted waves were computed in the exact static-
exchange potential appropriate for each channel.

(iii) CC3. This was the only calculation in which we
did not include polarization potentials. Three states
(4s, 3d, 4p) were explicitly coupled in the close-coupling
approximation. These states were represented by fixed-
core ab initio HF wave functions and the polarization
potentials were omitted. Exchange was included up to a
total angular momentum of 10.

(iv) CCV3. This calculation is the same as the CC3 cal-
culation except that semiempirical wave functions were
used and the one- and two-body polarization potentials
were included in the scattering Hamiltonian.

(v) CCV6. This calculation was the same as the CCV3
calculation except that six states (4s, 3d, 4p, 5s, 4d, and
Sp) were explicitly coupled together in the close-coupling
expansion. To properly map the resonance structure for
the 3d and 4p excitations at incident energies below the
Sp threshold, a very fine energy mesh (0.01 Ry) was used
in this energy range.

L —1

=const=x, (5)

then the sum of partial cross sections to infinity can be
performed analytically by

Qr ——Qr /(1 —x) .
J =Jo

(6)

In general, sufficiently many partial waves were comput-
ed with the IMPACT program to ensure the potential error
involved was minimized.

Finally, for optically allowed transitions, Burgess has
derived a sum rule based on the Coulomb-Bethe approxi-

The angular algebra for the close-coupling calculations
described above were performed using coLALG (Ref. 25)
and CCALG. The numerical solutions of the coupled ra-
dial equations were determined using IMPACT. The IM-

PACT calculations were carried out at two different sites

using two different versions of the programs. Since the
lowest three states of the Ca+ ion are energetically quite
close, one would expect that coupling effects would

remain strong, even for quite high partial waves. We
used IMPACT to solve the CC equations up to a maximum
value of the total angular momentum L of 20. In order to
have sufficient accuracy in the solutions for high values of
L, it was necessary to use different radial integration
meshes for the different partial waves. For low values of
L, a rather fine mesh was used. Ho~ever, for higher par-
tial waves, where the centrifugal barrier causes the first

inAection point in the radial wave function to occur at
relatively large values of r, the starting region, which is
represented by a power series, needed to be extended.
Therefore, for L )7, we increased the number of points
in the starting region from 5 to 9. However, in order to
keep the number of tabular points to a reasonable size, we
also increased the distance between mesh points as fol-
lows. With the first mesh point equal to zero, the second
mesh point is given by rz ——7&/Z, where Z is the nu-

clear charge. For L &7, V& was set to 0.1, while for
L & 7, it was increased to 0.3.

Nevertheless, except for the lower energies, it was not
possible to include enough partial waves with IMPACT to
get converged cross sections for the 4s-3d and 4s-4p tran-
sitions. Different techniques were used to take into ac-
count the contributions from the higher partial waves. In
the first method, we supplemented the IMPACT E ma-
trices with K matrices for high values of L calculated in
the unitarized Coulomb-Born approximation. Three-
state Coulomb-Born E matrices were used for the CCV3
calculations and six-state Coulomb-Born calculations
were used for the CCV6 calculations. The maximum L
value for which Coulomb-Born calculations were per-
formed was increased with energy, and for the highest en-
ergy of 2.0 Ry, we added Coulomb-Born contributions up
to L =60 to the IMFAcT results.

The second method by which the partial-wave sum was
completed exploited the fact that, for sufficiently high
partial waves, the partial cross sections form a geometric
series. If there exists a value of L, e.g. , Lo, such that for
L)LO,
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mation. Recently, Burke and Seaton described the use

of this method in conjunction with close-coupling calcu-
lations, and for comparison with the other two methods,
we also completed the partial-wave sum for the 4s-4p
transition using this form of the Burgess sum rule.

IV. EXCITATION OF THE RESONANCE
TRANSITION

Total cross sections for the Ca+ 4s-4p transition are
given in Table III for a large variety of different theoreti-
cal approaches. We have taken the liberty of interpolat-
ing previously published cross section data for presenta-
tion in Table III. One feature is immediately apparent
from even a cursory glance. All of the present calcula-
tions which use polarization potentials and semiempirical
wave functions (i.e., excluding the CC3 results) yield
lower total cross sections than any of the previous calcu-
lations. The comparison of CC3 and CCV3 results pro-
vides a dramatic illustration of the importance of includ-
ing the polarization potentials. The CCV3 cross sections
are some 20% lower at all energies at which a compar-
ison has been made. It is readily apparent that this is not
a feature that is peculiar to the present calculations; the
three-state close-coupling calculations of Burke and
Moores give cross sections which agree reasonably well
with the CC3 results and are also much larger than the
CCV3 results.

A pleasing feature of Table III is that all techniques for
completing the partial-wave sum for the CCV6 calcula-
tions yield very close results for the total cross sections.
Only at the highest energy, where the partial waves above

L=20 add from 16% to 17%%uo to the total cross section,
are the differences of any significance. The larger
discrepancy between CCV6 and CCV6** could be due to
coupling effects which are not included in the Burgess
sum rule, as well as to the inclusion of only the long-
range part of the interaction between the continuum and
valence electrons in deriving the Burgess sum rule from
the Bethe approximation. Finally, in order to test the
completeness of the partial-wave sum up to L=60 in
CCV6 at 2.0 Ry, we employed the Burgess sum rule to
complete the sum from L=61 to ~, and found that it
added only 0.02ma0 to the total cross section.

Comparison of the perturbation theory results, i.e., the
UCBAV6 and UDWV6 cross sections, with each other
and with the CCV6 results, reveals that these conceptual-
ly simple and computationally inexpensive approxima-
tions do a surprisingly good job of reproducing the close-
coupling calculations. At the highest energy considered,
the UCBAV6, UDWV6, and CCV6 cross sections differ

by less than 2%. Even at the lowest energy, just above
the 4p threshold, the UCBAV6 and UDWV6 cross sec-
tions exceed the CCV6 cross section by less than 20%
and because they include polarization effects are smaller
than the close-coupling calculation of Burke and Moores.

A detailed look at the individual partial cross sections
at incident energies of 1.0 and 2.0 Ry (Table lV) provides
further insight into the comparison between perturbation
theory and the close-coupling approach. One fact is im-
mediately obvious —the good agreement between the
UCBAV6 and UDWV6 partial cross sections for the
higher partial waves indicates that distortion is relatively
unimportant in this region. This is to be expected since

TABLE III. Comparison of total cross sections (in units of

mao�

) for the 4s-4p transition in Ca+ com-
puted in a variety of different approaches. The* is used to denote close-coupling calculations for which
the partial-wave sum was completed using the power-series extrapolation technique. The** is used to
denote close-coupling calculations for which the partial-wave sum was completed using the Burgess
sum rule. (The calculations without an asterisk used the unitarized Coulomb-Born approximation to
complete the partial-wave sum. )

CDWII'
CBOIIb
DWPOII'
CBIId
CDWII2'
BMf
UCBAV6
UDWV6
CC3*
CCV3
CCV6
CCV6*
CCV6**

0.25

68.4
64.3
49.5
44.3
43.6
39.95
37.46
37.94
37.13
30.82
31.52
31.50
31.50

0.35

62.4
58.2
46.4
42.3
44.2
41 ~ 34
37.12
37.72
39.64
32.23
31.38
31.38
31.38

0.50

41.4
50.1

42.0
39.2
42.4
40.98
34.94
35.44
39.77
31.80
27.63
27.63
27.63

Energy (Ry)
0.70

38.91
29.44
29.84
38.25
30.13
25.64
25.64
25.64

1.00

37.5
37.5
33.4
31.7
34.2
35.47
26.20
26.71
35.47
27.37
24.42
24.42
24.41

1.40

22.95
23.49

24. 17
22.20
22. 18
22. 15

2.00

24.4
28.7
24. 1

21.7
23.8

19.47
19.69

20.47
19.27
19.20
19.11

'Unitarized
Unitarized

'Unitarized
Unitarized

'Unitarized
'Three-state

distorted-wave calculation, Ref. 8.
Coulomb-Born-Oppenheimer calculation, Ref. 9.
distorted-wave polarized-orbital calculation, Ref. 9.
Coulomb-Born calculation, Ref. 10.
distorted-wave calculation, Ref. 10.
close-coupling calculation, Ref. 2.
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TABLE IV. Comparison of partial cross sections {in units of mao) for the 4s-4p transition at incident
electron energies of 1.0 and 2.0 Ry.

I CCV3
E=1.0 Ry

UCBAV6 UDWV6 CCV6 CCV3
E=2.0 Ry

UCBAV6 UDWV6 CCV6

1

2

3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

0.035
0.609
0.925
1.344
2.452
3.729
3.629
3.166
2.540
2.008
1.571
1.222
0.946
0.731
0.564
0.435
0.335
0.258
0.198

0.229
0.365
0.356
0.874
2.795
3.528
3.379
2.958
2.488
2.033
1.623
1.275
0.991
0.766
0.590
0.453
0.348
0.267
0.205
0.157
0.121

0.038
0.568
0.917
1.473
2.497
3.455
3.282
2.898
2.457
2.011
1.605
1.259
0.978
0.757
0.583
0.449
0.344
0.265
0.203
0.156
0.120

0.032
0.506
0.780
1.156
2.040
3.340
3.155
2.686
2.229
1.822
1.467
1.162
0.912
0.712
0.553
0.428
0.331
0.255
0.196
0.151
0.116

0.039
0.177
0.577
0.529
0.483
1.190
1.520
1.686
1.617
1.474
1.321
1.171
1.034
0.910
0.801
0.704
0.619
0.544
0.478

0.103
0.046
0.071
0.181
0.790
1.274
1.522
1.570
1.502
1.386
1.258
1.130
1.010
0.899
0.797
0.705
0.623
0.549
0.484
0.427
0.376

0.027
0.182
0.548
0.527
0.486
1.176
1.478
1.543
1.484
1.372
1.251
1.122
1.001
0.890
0.788
0.697
0.615
0.542
0.477
0.420
0.369

0.035
0.167
0.521
0.492
0.453
1.093
1.458
1.543
1.475
1.341
1.214
1.080
0.962
0.853
0.758
0.671
0.593
0.525
0.464
0.409
0.362

the incident energies are not sufficiently large in either
case for the incident electron to penetrate into the cen-
tripetal barrier at large L values. However, there are
large differences between the UCBAV6 and UDWV6 par-
tial cross sections at lower L values. The UDWV6 cross
sections are in much better agreement with the CCV6
cross sections, indicating that the inclusion of distortion
is important here. Therefore, not too much significance
should be attached to the fact that the UCBAV6 total
cross section is generally in better agreement with the
CCV6 cross section than the UDWV6. The UCBAV6
calculation is lower than the CCV6 cross sections at low
L values, this partially compensates for the error made
for larger L values where the UCBAV6 calculation
overestimates the partial cross sections.

A comparison of the present calculations with the ex-
perirnental 4p3/2 emission cross section data of Refs. 1

and 6 is depicted in Figs. 1 and 2. The error limits
(roughly 10%) of Taylor and Dunn are at the 98%
confidence level. Taylor and Dunn also measured emis-
sion cross sections for the 4p, /2-4s transition. They
found the ratio of the 4p3/2..4p&/2 emission cross sections
to be equal to 2.0 within experimental error. The emis-
sion data of Zapesochnyi et al. have much larger abso-
lute errors. There is an overall calibration uncertainty of
16% and a statistical error of about 4%. Furthermore,
the data of Zapesochnyi et al. that we depict have not
been corrected for anisotropy effects that result from the
fact that the Auorescence radiation is polarized. Two
figures are used for the comparison in order to resolve the
resonance structure below the 5s, 4d, and 5p thresholds.
Since Figs. 1 and 2 depict emission cross section data for
only the K line (i.e., 4p3&2-4s} it is necessary to multiply
the calculated 4p multiplet cross sections by a factor of 3.

A further multiplicative factor of 0.946 comes from the
fact that the 4p3&2 level can also decay into the 3d meta-
stable state as well as the ground state with a ratio of ra-
diative rates of 1:17.6.

At incident electron energies below the Ss, 4d, and Sp
excitation thresholds the CCV6 calculation is in good
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FIG. 1. Absolute emission cross section (in 10 ' cm ) for

electron-impact excitation of the Ca+ 4@3/2 state as a function
of incident energy (in Ry). The following calculations are de-
picted: CCV6 ( ), CCV3 ( —-—-), UCBAV6 {———),
and the CCV6 convoluted with an energy resolution function of
full width 0.023 Ry (- - .). The experimental data of Pefs. 1

and 6 are depicted as &( and 0, respectively.
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emitted by the 4p»z state is isotropic and will not be con-
sidered further. Since 99.85%%uo of the Ca isotopes have
zero nuclear spin the percentage polarization of the
4p3/2 4s, /2 decay is given by

P =300(QO —Q, )I(5QO+7Q, ) .
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FIG. 2. Absolute emission cross section (in 10 ' cm') for
electron-impact excitation of the Ca+ 4p3/2 state as a function
of incident energy (in Ry). The following calculations are de-
picted: CCV6 ( ), CCV3 ( —- —-), the CCV6 cross section
with cascade corrections ( ———), and the three-state close-
coupling calculations (. ~ ) of Ref. 2. The experimental data
of Refs. 1 and 6 are depicted as )& and , respectively.

agreement with experiment. The experimental energy
resolution (0.023 Ry in the experiment of Taylor and
Dunn) precludes a detailed comparison with the reso-
nances, although the data of Ref. 1 do show signs of
structure which are consistent with the CCV6 results. To
demonstrate the effect that finite-energy resolution will
have on the experiment we have convoluted the CCV6
calculation with a normal probability distribution of full
width 0.023 Ry and plotted the results in Fig. 1. The res-
onance structure of the convoluted cross section has been
greatly smoothed. The remaining fluctuations are rough-
ly the same size as the fluctuations of Taylor and Dunn,
and moreover the positions of the peaks and valleys of
the convoluted cross section seem to be consistent with
those seen experimentally. The convoluted cross section
also does a good job of reproducing the gradual decrease
of the experimental cross section at threshold. The
CCV3 cross section naturally shows no sign of any reso-
nance structure and generally exceeds the cross section
data of Taylor and Dunn in the low-energy region. The
error limits of Ref. 6 are too large to discriminate be-
tween the accuracy of the CCV3 and CCV6 calculations.
At incident energies above the Sp threshold the CCV6
calculation gives smaller cross sections than the CCV3
calculation, once again in good agreement with the exper-
iment of Taylor and Dunn. However, cascades from ex-
citations to the Ss, 4d, and Sp levels wi11 have an influence
on the emission cross section in this region. A detailed
discussion of this effect is postponed until Sec. VI.

A further test of these calculations can be made by ex-
amining the polarization of the radiation emitted in the
decay of the 4p state. It is possible to resolve the radia-
tion emitted by the 4p3/2 and 4p, /2 states. Radiation
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5
0.2 5s ~as' o6

E (Ry)

0.8

FIG. 3. Percentage linear polarization of the Ca+ 4P&&2-4s
fluorescence radiation emitted perpendicular to the scattering
plane as a function of incident energy (in Ry). The following
calculations are depicted: CCV6 ( ), CCV3 ( ———), and
UCBAV6 ( —- —-). The experimental data of Refs. 1 and 6 are
depicted as &( and ~, respectively.

In this expression Qo is the cross section for exciting the
4p M=O substate and Q, is the cross section for exciting
the M= 1 substate.

Saraph ' used the E matrices computed by Burke and
Moores to first compute the polarization of the 4p-4s de-
cay. Unfortunately, an expression for the scattering am-
plitude which omitted the Coulomb phase was used to
compute the excitation cross sections of the different
magnetic sublevels. Since it is not possible to evaluate
what effect this omission would have had on the polariza-
tion we do not make any comparison with these results.

Values for the polarization computed in the UCBAV6,
CCV3, and CCV6 models are compared with each other
and with experiment in Figs. 3 and 4. The use of this uni-
tarized Coulomb-Born approximation was an essential
element in the evaluation of Qo and Q&, as the Burgess
sum rule is inapplicable. It is clear that the most sophis-
ticated calculation (i.e., the CCV6 model) provides the
best agreement with experiment at nearly all energies. At
threshold, the CCV6 calculation predicts a lower value of
the polarization than the CCV3 calculation, in better
agreement with experiment. At higher energies the
CCV6 calculation gives a larger value of the polarization
than the CCV3 calculation, again in better accord with
experiment. The UCBAV6 calculation does a uniformly
poor job of reproducing the experimental polarization.
This is perhaps a consequence of the poor job the
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UCBAV6 calculation does of modeling of low partial
waves. One of the interesting features of the CCV6 cal-
culation seen in Fig. 3 is the strong resonance structure
seen below the 5s, 4d, and 5p thresholds. It is somewhat
unfortunate that no experimental data points were taken
suSciently close to the deep minimum at 0.4-Ry incident
energy.

V. EXCITATION OF THE 3d STATE

Since the 3d level is located within 2 eV of both the 4s
and 4p levels, almost midway between them, we would in-
tuitively expect that the 3d state will couple strongly with
both of these levels. There are two dominant reaction

FIG. 4. Percentage linear polarization of the Ca+ 4p3~z-4s
fluorescence radiation emitted perpendicular to the scattering
plane as a function of incident energy (in Ry). The following
calculations are depicted: CCV6 ( ), CCV3 ( ———), and
UCBAV6 ( —- —-). The experimental data of Refs. 1 and 6 are
depicted as X and ~, respectively.

mechanisms for exciting the 3d state. One can have a
direct excitation of the 3d state via the quadrupole in-
teraction coupling it with the 4s ground state. Alterna-
tively, it is possible to conceive of a two-step process in-

volving the coupling of the 4s state to the 4p state which
then couples to the 3d state.

Comparisons of 3d cross sections computed in a num-
ber of different approximations are given in Table V. Un-
like the situation for the 4p excitation, the UCBVA6 and
UDWV6 calculations do not do a very good job of repro-
ducing the CCV6 calculation. For example, at an in-
cident energy of 0.25 Ry the UCBAV6 calculation
exceeds the CCV6 result by a factor of 2.5 while the
UDWV6 cross section is 50%%uo larger. At the highest in-

cident energy considered, the UCBAV6, and UDWV6
models are in much closer agreement with the six-state
close-coupling results, although differences of 7 —11 %
remain.

The excitation cross section for the 3d state is depicted
in Fig. 5. Very strong resonance structures occur below
the Ss and 4p thresholds. Below the 4p threshold the res-
onances would cause a considerable increase in an
energy-averaged 3d cross section. Indeed the maximum
value of the 3d cross section, achieved at an incident en-

ergy of 0.17 Ry, is about twice the size of maximum value
attained for the dipole-allowed 4p transition.

Further examples of the inadequacy of perturbation
theory for this transition are seen in the comparison of
the individual partial cross sections given in Table VI.
There is poor agreement between the UCBAV6 and
UDWV6 calculations at small L values. As expected the
differences essentially disappear at larger values of L.
However, there are large differences between the pertur-
bation theory and close-coupling cross sections for almost
all L values. The most notable feature of this is the fact
that the UCBAV6 cross sections are still twice as large as
the CCV6 cross sections at L=20. This emphasizes the
strength of off-shell coupling effects for this transition.

Detailed comparisons of the partial cross sections for
the CCV6 calculation reveals that the ratio, QL /QL, is
still increasing slowly at L =20 for energies above 0.9 Ry.
Therefore the power series extrapolation, Eq. (6), should

TABLE V. Comparison of total cross sections (in units of ~ao) for the Ca+ 4s-3d transition comput-
ed in a variety of approximations. (The calculations without an asterisk used the unitarized Coulomb-
Born approximation to complete the partial-wave sum. )

0.15 0.25 0.35
Energy (Ry)
0.50 0.70 1.00 1.40 2.00

CBII'
CDWII2b
BM'
UCBAV6
UDWV6
CC3*
CCV3
CCV6
CCV6

32.94
22.51

18.52
17.78
17.78

10.9
10.05
12.90
21.86
12.94
14.56
10.44
8.50
8.51

9.09
8.67
8.39

14.04
8.97
9.48
6.75
6.07
6.08

5.60
6.78
5.37
8.28
5.99
6.02
4.34
4.48
4.48

4.03
5.02
3.63
4.86
3.77
4.09
3.02
2.57
2.59

2.77
3.48
2.54
2.89
2.48
2.86
2.19
1.96
1.95

1.87
1.76

1.66
1.55
1.52

1.41
1.68

1.26
1.26

1.23
1.18
1.14

'Unitarized Coulomb-Born calculation, Ref. 10.
Unitarized distorted-wave calculation, Ref. 10.

'Three-state close-coupling calculation, Ref. 2.
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tween the two methods occurs at an incident energy of
2.0 Ry and is only 4%.
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underestimate the actual cross section at these energies.
Since the use of the UCBAV6 cross sections will obvious-
ly overestimate the contribution from the high partial
waves, these two diff'erent means of accounting for the
higher partial waves should provide a lower and upper
bound to the true cross section. Values of the total 4s-3d
excitation cross section obtained by these two methods
are in reasonable agreement. The largest difference be-

FIG. 5. Total cross sections (in units of ~ao ) for excitation of
the Ca+ 4s-3d transition as a function of the incident energy (in
Ry). The CCV6 ( ) and UCBAV6 ( ———) calculations
are depicted.

VI. CASCADE CORRECTIONS
TO THE 4p EMISSION CROSS SECTION

Since the experimental 4p cross sections come from an
emission experiment it is possible, and indeed quite likely,
that the results could be affected by cascades from excita-
tions of higher levels. For instance, excitations of the Ss,
4d, and 5p levels from the ground state will result in cas-
cades into the 4p state, thus causing the effective emission
cross section to exceed the actual 4p cross section. In this
section we report cross sections for exciting the 5s, 4d,
and 5p states in order to get some estimate of the cascade
correction.

Cross sections for the Ss state are given in Table VII.
It can be seen that the differences between the CCV6,
UCBAV6, and UDWV6 calculations are relatively large.
This is not surprising since this is monopole transition
with a relatively large excitation energy. Hence the dom-
inant contributions to the cross section will come from
the low partial waves where both distortion and coupling
effects are quite substantial.

Total cross sections for exciting the 4d state are given
in Table VII. The excitation cross sections for this state
are relatively large. At threshold the 4d cross section is
about 15%%uo the size of the 4p cross section and is actually
larger than the 4s-3d cross section. The agreement be-
tween the UCBAV6, UDWV6, and CCV6 cross sections
improves with increasing energy and the spread between
the three calculations is only 10% at 2.0 Ry.

Emission cross sections for excitation of both the 5s
and 4d states are given in Ref. 6. The fluorescence radia-

TABLE VI. Comparison of partial cross section (in units of 7rao) for the 4s-3d transition at an in-
cident energies of 1.0 and 2.0 Ry.

I. CCV3
E=1.0 Ry

UCBAV6 UDWV6 CCV6 CCV3
E=2.0 Ry

UCBAV6 UDWV6 CCV6

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0.025
0.185
0.262
0.331
0.607
0.286
0.164
0.094
0.055
0.034
0.022
0.016
0.012
0.009
0.008
0.006
0.005
0.005
0.004

0.021
0.160
0.631
0.536
0.393
0.271
0.210
0.159
0.117
0.086
0.063
0.048
0.037
0.029
0.023
0.018
0.015
0.012
0.010
0.009
0.007

0.040
0.117
0.264
0.482
0.397
0.283
0.215
0.165
0.121
0.088
0.065
0.049
0.037
0.029
0.023
0.018
0.015
0.012
0.010
0.009
0.007

0.025
0.165
0.258
0.318
0.466
0.279
0.149
0.086
0.051
0.032
0.022
0.015
0.012
0.009
0.007
0.006
0.005
0.005
0.004
0.004
0.003

0.007
0.037
0.088
0.130
0.251
0.162
0.131
0.098
0.070
0.049
0.035
0.025
0.019
0.014
0.011
0.008
0.007
0.006
0.005

0.014
0.090
0.058
0.153
0.152
0.138
0.121
0.102
0.082
0.065
0.050
0.039
0.031
0.025
0.020
0.016
0.014
0.011
0.009
0.008
0.007

0.014
0.038
0.063
0.168
0.178
0.142
0.122
0.105
0.085
0.067
0.052
0.040
0.032
0.025
0.020
0.017
0.014
0.011
0.010
0.008
0.007

0.007
0.038
0.090
0.127
0.233
0.167
0.123
0.092
0.066
0.047
0.034
0.024
0.018
0.014
0.011
0.008
0.007
0.005
0.005
0.004
0.003
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TABLE VII. Total excitation cross sections (in units of m.ao) for electron-impact excitation of the
Ca+ 5s, 4d, and 5p states from the ground state.

0.6 0.8 1.0
Energy (Ry)

1.2 1.4 1.7 2.0

UCBAV6
UDWV6
CCV6

0.883
1.10
1.37

0.656
0.879
1.19

0.527
0.761
0.993

5s
0.453
0.690
0.867

0.407
0.642
0.785

0.360
0.588
0.669

0.328
0.543
0.634

UCBAV6
UDWBV
CCV6

2.59
2.23
3.35

2.35
2.51
3.18

2.07
2.20
2.65

4d
1.83
1.96
2.23

1.64
1.74
1.92

1.41
1.48
1.59

1.22
1.30
1.36

UCBAV6
UDWV6
CCV6

0.593
0.782
0.479

0.587
0.712
0.524

0.499
0.660
0.506

5p
0.418
0.593
0.481

0.360
0.529
0.448

0.298
0.446
0.395

0.257
0.379
0.347
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FIG. 6. Emission cross sections {in 10 ' cm ) for excitation
of the 5s (5s-4p3/p decay) and 4d (4d-4p3/Q decay) states of Ca+.
The emission cross sections for the 5s ( ) and 4d ( ———)

levels resulting from the CCV6 calculation are depicted. The
experimental emission cross sections of the 5s (~ ) and 4d ()& )

states (Ref. 6) are also presented.

tion for decay into the 4p3/p level has been measured for
both of these transitions. A comparison of the experi-
mental emission cross sections with calculated emission
cross sections is shown in Fig. 6. To convert the calculat-
ed excitation cross sections for the Ss and 4d levels into
the appropriate emission cross sections we have rnulti-
plied by the factor —', . While the CCV6 calculation agrees
with the Ss emission cross section, it is about a factor of 4
times larger than the 4d emission cross section.

Excitations into the 5p state do not result in direct cas-
cade into the 4p state. The 5p state must first decay into
either the 4d or 5s states, which then feed into the 4p
state. However, the 5p state can also decay directly into
the 3d or 4s states. We have determined the branching

ratio for the Sp state to cascade into the 4p state by con-
verting the oscillator strengths given in Table II into
transition rates. We find that an excitation of the Sp level
will eventually decay into the 4p state 91%%uo of the time.
Using this number we can now write down an expression
for the effective emission cross section of the 4p3/p state:

Q, =2X0.946(Q4p+Q~, +Q4d+0. 91Q5~)/3 . (8)

A comparison of the effective emission cross section, Eq.
(8), with the experimental data is given in Fig. 2. Adding
the cascade corrections to the 4p3/p cross section results
in a 20% increase in the emission cross section just above
the Sp threshold. At the highest energy (2.0 Ry) cascades
cause a 12% increase in the cross section. It is clear from
Fig. 2 that the inclusion of cascade corrections results in
a significant degradation of the agreement between the
CCV6 calculation and experiment.

Although another recent six-state close-coupling calcu-
lation also suggests a cascade correction of roughly 20%
near the 5p threshold, the available experimental evi-
dence indicates that CCV6 calculation overestimates the
cascade contribution. There is a small increase in the
emission cross section of Zapesochnyi et al. in the
threshold region of the 5s, 4d, and 5p states. However,
the size of the increase in the cross section is a factor of 2
smaller than the calculated increase due to cascades. The
cross section data of Taylor and Dunn show no indica-
tion of an appreciable cascade contribution to the emis-
sion cross section. The absence of any significant struc-
ture in the resonance emission cross section at the 5s and
4d thresholds (see Fig. 9 of Ref. 1) suggests that the com-
bined cascade contribution from these two levels is prob-
ably less than 5%. Finally, the dominant contribution to
the calculated cross section comes from the decay of the
4d state. The direct comparison of the calculated and
measured cross sections shown in Fig. 6 suggests that this
contribution may be greatly overestimated.

Although our final result, with the cascade correction,
overestimates the 4p3/7 emission cross section above the
Sp threshold it is possible that a larger calculation, with
coupling between more states, will result in better agree-
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ment with experiment. Experience with calculations on
other systems suggests that increasing the number of
states in the close-coupling expansion will result in small-
er cross sections for exciting the 4p as well as the 5s, 4d,
and 5p states. While these additional states can potential-
ly cascade into the 4p level, other decay routes are possi-
ble. Unlike excitations to the 4d and 5s levels the branch-
ing ratio for an eventual cascade into the 4p state for
these higher states will be less than unity.

VII. CONCLUSIONS

We have performed extensive close-coupling, unitar-
ized Coulomb-Born, and unitarized distorted-wave calcu-
lations of the electron-impact excitation of the valence
electron in Ca+. Theoretical six-state close-coupling re-
sults for the emission cross section and polarization asso-
ciated with the 4s-4p3/2 excitation are in good agreement
with experiment if the effects of cascading are ignored.
When the calculated cross sections for excitation of the
5s, 4d, and Sp levels are used to estimate the effects of
cascading, the theoretical emission cross section exceeds
the experimental cross section by about 20% at incident
energies just above the 5p threshold. It is apparent that
our calculated cross sections for excitation of these
higher states (especially 4d) are too large, and that a
more extensive calculation involving coupling with
higher-lying states (especially 4f) will be needed to prop-
erly account for cascade effects.

Comparison of our calculations with the results of ear-
lier theoretical work reveals that the effects of core polar-
ization and dielectronic polarization on the valence and
continuum electron work to significantly reduce the mag-
nitude of both the 4s-4p and 4s-3d excitation cross sec-
tions. This comparison is strongly reinforced by compar-
ison with the results of a recent six-state close-coupling
calculation, in which polarization effects were not in-
cluded. Such polarization effects should be large in all al-
kalilike systems that have an underlying core with a
moderately large dipole polarizability. These effects par-
tially explain the large discrepancy between experiment
and theory for the 6s-6p excitation in Ba+.

Continuum-coupling effects are also seen to be quite
significant. The fact that the distorted-wave and
Coulomb-Born results for the 4s-4p excitation exceed the
six-state close-coupling results by less than 20% near
threshold would indicate that, for this transition, one can
obtain reasonable estimates of coupling effects by simple
unitarization of the K-matrix elements calculated from a
perturbation approach. Nevertheless, coupling effects are
still quite large, since we have found that the distorted-
wave and Coulomb-Born cross sections without unitari-
zation exceed the unitarized cross sections by a factor of
at least 50% near threshold. Other authors ' have also
found that unitarized calculations give much smaller
cross sections than nonunitarized calculations. In the
case of the 4s-3d transition, the coupling effects are even
stronger. For this transition both the unitarized
Coulomb-Born and distorted-wave cross sections are
much larger than those obtained from the six-state close-
coupling calculation. In addition, these coupling effects

persist to very high partial waves, and even for L=20,
the perturbation approaches yield partial cross sections
that exceed the close-coupling results by more than a fac-
tor of 2.

It is expected that polarization effects as well as
continuum-coupling effects wi11 disappear as the ioniza-
tion stage is increased. This latter argument has been
used to justify the use of the distorted-wave approxima-
tion for the calculation of electron-impact excitation of
highly ionized systems. However, detailed comparisons
between a perturbation approach and the close-coupling
approximation as a function of ionization stage, such as
that performed for hydrogenic systems, is needed to
determine when and if this hypothesis regarding coupling
effects is valid for complex ions. As has been done in the
present work, it is essential that such comparisons be
made between calculations in which the same bound-state
wave functions are employed; otherwise it is impossible
to distinguish between coupling and structure effects.

In addition to the excitation of the valence electron in
Ca+ there is also interest in transitions involving excita-
tion of the core electrons, e.g., 3p 4s-3p 4s3d. These ex-
citations are known to contribute significantly to the total
ionization cross section of Ca+, through a two-step pro-
cess involving excitation followed by autoionization.
Both distorted-wave and close-coupling calculations
have been performed on this transition; however, large
discrepancies between experiment and theory exist. The
results of the present calculation may shed some light on
the difficulties associated with the calculation of these
complicated inner-shell processes. First, all of the effects
of polarization should be important in the 3p-3d excita-
tion; however, the actual calculation of these effects will
be more complicated because of the complexity of the
final configuration. In addition, the coupling effects be-
tween the valence states are very strong in this ion, so the
limited couplings that have been included in calculations
to date are not nearly sufficient to obtain an accurate
cross section. It appears that a very large calculation will
be required to yield reliable 3p-3d excitation cross sec-
tions.
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