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DifFerential cross sections for electron capture: A comparison of three approximations
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Closed-form expressions for 1s-1s electron-capture amplitudes for H+ + H collisions in three
difterent approximations are compared. We find that all three approximations agree well in the re-

gion of the Thomas peak, but significant di8'erences are noted at the minimum in the angular distri-
butions of scattered neutral hydrogen atoms.

I. INTRODUCTION

Theoretical and experimental studies' of electron
capture over the past ten years have demonstrated that
the process proceeds via a second-order mechanism at
high energies. Qualitatively this mechanism, the Thomas
double collision mechanism, is well-described semiclassi-
cally and in the second Born approximation. A peak in
the angular distribution of scattered neutral particles at
the Thomas angle 6tT characterizes this mechanism. In
the second Born approximation with plane-wave inter-
mediate states this peak is predicted to be noticeable at
energies of the order of 50 MeV for incident protons. At
such high energies the cross section is so small that obser-
vation of the peak is precluded. An important advance
was made by Briggs and co-workers who predicted that
the peak was sufficiently distinct to observe at experimen-
tal energies of the order of 10 MeV. Their result followed
from a theory with better intermediate states than the
simple plane waves of the second Born approximation.
Observation of the peak at 2-10 MeV confirmed the in-
sights of Ref. 6 showing that the correct intermediate
states are essential to describe quantitatively the Thomas
peak.

Presently there are several second-order theories
which diFer from one another in the nature of the inter-
mediate states and in the peaking approximations em-
ployed to compute the capture amplitude. Quantitative-
ly, one of the most advanced approximations, the strong-
potential Born approximation (SPB), employs eigenstates
of the target as intermediate states. The impulse ap-
proximation (IA) of Briggs ' ' employs just such states
but introduces peaking approximations to evaluate the
amplitude. These peaking approximations are usually
valid at high energies, although their use in the neighbor-
hood of the Thomas peak is known to produce some er-
rors. Reference 4 obtains a more correct shape of the
peak by evaluating the exact IA numerically.

An improved peaking approximation has been intro-
duced in the context of the SPB approximation by
McGuire and co-workers, " and has been applied to the
Thomas peak at 3 MeV for proton-hydrogen collisions.
These improved peaking approximations also apply to
the IA and may remedy some of the defects of the full
peaking approximation. The objective of this study is to
investigate these improved peaking approximations for

II. NOTATION

We employ the notation of Macek and Shakeshaft.
Let M~ be the mass of a projectile P impinging upon a
one-electron ion or atom (e+'1), e the electron of mass
m, and T the target of mass MT. We define the mass ra-
tios

a =MT/(m +MT ) P=Mp/(m +M )

and the reduced masses,

V. =Mp(m +MT )/(m +MT +Mp )

vf MT(m +Mp )/(m——+Mr+Mp ) .

(2.1)

(2.2)

determinations of the Thomas peak in symmetric col-
lisions.

Throughout this work we use a new formulation of
perturbation series, referred to here as Coulomb-modified
perturbation series, which are applicable when there are
long-range Coulomb potentials acting in initial and/or
final channels. ' These new series are free of the singular-
ities in higher Born terms noted by Mapleton' and later
by Dewangen and Eichler. ' The modified SPB ampli-
tude obtained in Ref. 12 has a term in addition to the
conventional second-order term; this term is of order
1/v smaller than the dominant terms and is neglected in
our calculations. This new term has also been neglected
in all previous work, including the distorted-wave Born
(DWB) approximation of Burgdorder and Taulbjerg. ' '

Section II establishes the notation and in Sec. III we
compute the capture amplitude and differential cross sec-
tions in three different approximations. The first approx-
imation, called the fully peaked impulse approximation
(PIA1), was calculated by Briggs and co-workers. The
second approximation called the partially peaked impulse
approximation (PIA2) employs a peaking approximation
used by McGuire and co-workers in a different context. "
The third approximation, the peaked SPB, uses off-
energy-shell wave functions and was computed in Ref. 11.
We repeat this calculation using different techniques and
obtain a simpler, although equivalent, expression for the
amplitude. Differential cross sections for the reaction

H++ H~H+ H+

at 10 MeV are compared.

38 3327 1988 The American Physical Society



3328 JOSEPH MACEK AND X. Y. DONG 38

E =(—,'v;)k, +e, =(—,'v f)kf +sf (2.3)

Let e denote the electron and let ZT and Zz be the
charge of T and P, respectively. Let c; be the internal en-

ergy of (e +T} in the initial state i and ef be the internal
energy of (e+P) in the final state f. We work in the
center-of-mass frame of all three particles. In this frame
the total energy E of the system is, in a.u. which are used
throughout,

mvT /2

~ SPB
mK sinhmvT

Z7nZ3n
Bp p+J

x fd'p

K —v +p +2p.J—2lpv
X

4(p +J )(v +2v p+ir))

—IVT

(3.4)

where k, is the initial momentum of P and kF is the final
momentum of (e+P). With U the incident velocity of P
relative to the center of mass of (e + T), we have k, =v; v

and kf ——vf v. We define the average momentum transfer
vectors

A. Fully peaked impulse approximation (PIA1).

In this approximation the off-shell factor in Eq. (3.3}
and the p J term are omitted and one obtains

K=Pkf ——k;, J=ak; —kf . (2.4) '4 PIAl 32iZp Zr e I ( 1 i vr—)K
~ 5/2 5/2 T/ ~ —4

Let P, (rr) represent the initial internal state of (e + T)
and pf(rp) represent the final internal state of (e+P).
The initial- and final-state wave functions of the complete
system are

2 2 ~

' —IvTK —v —2iZTv

1 —tvT 1+ivT
K K —v —2&ZTv

2 + 2 2
(3.5)

(2.5)

where Ho denotes the kinetic energy of the electron,
Pz(rr) is the plane-wave function normalized on the
momentum scale, and c. is the energy.

We also set vr ——Zr lu and vp =Zp/U. The parameter

p is set equal to ZT after differentiation.

do sZ5Z5 M r r
&2ed QP1A& sinh&v T

X exp —2vTtan
—1

2VT

x —1+vT2 2

where it is understood that —m & arg(K —v

2iZ—T ) & n The co.rresponding differential cross section
1S

III. FORMULATION

We start with the approxin1ate SPB amplitude given by
Eq. (2.11)of Ref. 8; where

(2x —1) +vr
X

x ' (x —1) +4v
7 (3.6)

3 1
Aspn =47TZp d p Pf(p) x =K/v, x =—,'+M sin 6}, (3.7)

X & 11p+„,,(r) ~

e'" ""
~
y;(r) & .

(3.1)

In this paper we always employ the further approxima-
tions

and

i p —K i'=K', (3.2)

I VT
1 —2c./k 2

gq+, (r) =e I (1 ivT)gq+(r—) .

Here, kz ——p+v, and Pz+(r) is the momentum-
normalized Coulon1b wave function.

These approxin1ations give the approximate SPB am-
plitude Eq. (5.1) of Ref. 8, which we employ as the start-
ing point in our calculations here;

M is the heavy-particle reduced mass, and 8 is the
scattering angle. Equation (3.6) differs from Eq. (2.15b)
of Ref. 6 but agrees with the earlier result of Ref. 3. In
addition, we obtain agreement with the numerical results
of Ref. 6.

The shape of the Thomas peak is largely determined by
the factor in the second set of large parentheses on the
right-hand side of Eq. (3.6}. At x =1, corresponding to
the Thomas angle, this factor equals 1/4vT in the PIA1
approximation.

B. Partially peaked impulse approximation (PIA2).

As in the PIA1 approximation, we neglect the
coefficient of the Coulomb plane wave in the expression
for the approximate off-shell wave function of Eq. (3.3),
but retain the factor p J in Eq. (3.4). The integral over
momentum variables is evaluated using the general ex-
pression I(a, b, lm} for a =0 and 1=0 given in the Ap-
pendix. We have
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A ptAz = 32l'ZT Z e I ( 1 —i vT )K
~ 5/2 5/2 T/ 4

—U —2lZT U —2lZpK
X

K

1 —ivT 1+ivT
K2 K2 U2 2izTU —2izpK

The corresponding differential cross section is

(3.8)

22

b -25

Q-24
O

I I I

d Cr 28Z5Z5 ~ ~VT

dnA2
T sinhmvT

2VT
X exp —2vTtan '

2x2 —1+vT

(2x —1} +(vT+2vpx)
x' (x —1) +4(vT+vpx)

(3.9)

0.0 0.1 0.2 0.5 0.4 0.5
LAEI SCATTERING ANGLE (deg)

FIG. 1. Log&0 of the difFerential cross section in units of
cm'sr for electron capture in 10-MeV proton-hydrogen col-
lisions. , peaked SPB; ———,fully peaked impulse ap-
proximation (PIA1); —.——,partially peaked impulse approx-
imation (PIA2).

The expression for the cross section differs from the
PIA1 only by the second factor in large parentheses. At
the Thomas peak x = 1 this factor for ZT ——Zp is just
equal to —,', vT, a factor of 4 less than in the PIA1. This
reduction of the cross section at the peak is shown in Fig.
1 where the cross section in the two approximation are
plotted. This reduction was also found in the exact nu-
merical calculations of Ref. 8.

At the position of the minimum at x =—,
' the second

factor in large parentheses has the value of 4vT in the
PIA1 but has the value 4(1+2}vT for ZT ——Zp in the
PIA2. This large enhancement at the minimum disagrees
with the exact numerical calculations. We conclude that
the PIA2 is superior to the PIA1 at the Thomas peak and
will give better results for integrated cross sections but
does not correctly obtain the value of the cross section at
the minimum.

The transverse peaking approximation of Alston' also
gives a closed-form expression for the IA amplitude. The
magnitude at the Thomas peak is higher for this approxi-

mation than for the PIA2 but is lower than the PIA1.
For symmetric collisions, the transverse peaking approxi-
mation is not valid in the region of the Thomas peak, al-
though it represents an improvement over the PIA1 am-
plitude.

C. The peaked SPB approximation

For highly asymmetric collisions when Zz-&&Zp, the
p J term in Eq. (3.4) is much smaller than
8 =K + (piv) f, o—r all values of K and omission of the
p J term is warranted. In the symmetric case, we can
neglect p J only for values of K such that B is much
greater than ZTJ. At the Thomas peak B is of the order
of ZpJ and since Zp=ZT we can no longer neglect the
p J term. We still neglect p v compared with v in Eq.
(3.4) but make no further approximations. The ampli-
tude was evaluated in Ref. 11, but we use a simpler ex-
pression derived in the Appendix. We find

5/2 —2ivT 5/2 ~ T 2ivT ~ 2 2 2 —lvT32nZp ZT e u I (1+3ivT)vr K —u +ZT 2iZTv 2iZpK- —
K sinhn vT I (2+i v T )I (1+2i v T ) K'+ZT
1 —ivT 1+ivT

2 2 2 2 zF, (ivT&ivT&1+2ivT&z }
K +ZT K V +ZT —2lZTU —2lZpK

4ZpKvT(1+i vT )+
2 2 2 2 2F& (1+ivT 1 i v&T &2+—2i vT,&'z )(1+2ivT )(K v+ Zr —2iZrv 2iZp—K)— (3.10)

where

K —V +ZT —2iZTU+2iZpK
2 2 2K U +ZT —2lZz. v —2lZpK

(3.1 1}

Explicit expressions for the cross section are not given

since no simplifications emerge upon taking the magni-
tude of the SPB amplitude.

In the Thomas peak region K =v so that z =0, the hy-
pergeometric functions equals unity, and the second term
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in square brackets is negligible. The value of the ampli-
tude in this region is therefore almost identical to the
PIA2 amplitude. This is shown in Fig. 1 where the solid
curve represents the peaked SPB approximation. Note
the close agreement with the PIA2 cross section at the
Thomas peak, and, therefore with the exact IA (not
shown) of Ref. 8.

No simple analytic form has been obtained for the am-
plitude at the minimum where K =0/2. Rather, we have
evaluated the hypergeometric functions numerically.
The cross section at the minimum thus obtained agrees
with the PIA1 and the exact IA. Agreement with the
PIA1 at the minimum was also noted in calculations by
McGuire and co-workers. " Such agreement is purely
fortuitous, since the SPB, exact IA, and PIA1 approxi-
mations are quite different. The Coulomb-modified SPB
series of Ref. 12 includes a new term of order 1/v small-
er than the dominant terms in Eq. (3.10). Since the mag-
nitude of the cross section at the minimum depends upon
terms of the order of 1/U, these neglected terms will also
contribute at the minimum. The only significant con-
clusions that can be inferred from these results is that the
deep minimum does not disappear in the SPB approxima-
tion. This is important, since it indicates that the calcu-
lations of Refs. 8 and 11 do indeed give a shape for the
Thomas peak which is unchanged when less restrictive
approximations are used. Observations support these
conclusions. '

Figure 2 compares the SPB cross section using Eq.
(3.10) with experimental data of Vogt et al. ' for 5-MeV
proton-hydrogen atom collisions. The theory curve has
not been averaged over the experimental angular resolu-
tion. Agreement at the Thomas peak is not as good as
obtained in Ref. 17 using the peaked SPB approximation
of Ref. 8 which lies above the observations. In contrast,
the present approximation reduces the cross section at

the peak to values which lie below the experimental data.
The reduction obtained in our approximation is substan-
tiated by experiment but the value of the resulting cross
section at the peak is not. This is in qualitative agree-
ment with calculations of McGuire and Sil quoted in Ref
17. The SPB cross section we obtain is larger and in
better agreement with the data than the comparable SPB
cross sections quoted in Ref. 17.

The minimum occurs because of a cancellation of the
dominant terms in the expressions for the capture ampli-
tude. At the minimum, the amplitude is sensitive to
terms of order vz- or vz smaller than the dominant
second-order amplitude. Since some terms of this order
are neglected in the impulse approximation and in the
SPB amplitude, the value at the minimum is not yet accu-
rately known. Indeed, third Born terms are of this order,
and could affect the value at the minimum.

IV. CONCLUSIONS

We have reproduced, using somewhat difFerent analyti-
cal techniques, the SPB amplitudes of Sil and McGuire. "
Our methods give slightly simpler results for the 1s-1s
capture amplitudes, in that fewer parametric derivatives
are needed. We have also applied the less restrictive
peaking approximation to the IA amplitude of Briggs
and obtain a closed-form expression. The new IA ampli-
tude is more accurate at the Thomas peak but does not
adequately describe the minimum in the angular distribu-
tion. The SPB amplitude is in good agreement with the
exact IA amplitude, both at the Thomas peak and at the
minimum. The agreement at the peak is expected, but
the agreement at the minimum appears to be fortuitous.
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(B +2p J}
—b —

e + ix ( 8 2P+J )& b —1d&
(+i )

I'(b} o
(A2)

APPENDIX: EVALUATION OF AN INTEGRAL

Consider the integral,

I(a, b, lm)

= J(Zp+p )
' '(B +2p J) p Yi (p)d p . (Al)

With the representation,

FIG. 2. Log&0 of the differential cross section in units of
cm sr ' for electron capture in 5-MeV proton-hydrogen col-

lisions. The solid curve is the peaked SPB approximation of Eq.
(3.10) and the data is from Ref. 17. The theory is not averaged

over the experimental solid angle.

where the + sign in the exponential is taken if Im(B) is
positive, and evaluating the integrals over p in Eq. (A 1)
using standard Bessel function relations [Eqs. (10.1.47}
and (11.4.44) of Ref. 18] gives the result
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(+ . )0 + 1( 1 )l2 3/2Ja +1/2Z I —1/2 —a Y (I )

X x +' ' e+'" K (2JZ x)dx, 1&2Re(a+ —') .1 —1/2 —a P 2

The integral over x in Eq. (A3) is evaluated using Eqs. (6.621)—(6.623}of Ref. 19 to give the final result

I(a, b, lm) =2m ( —1)'(2JZP)'Yl (J)(2ZP }' ' '(B+ 2iJZP)

I (1+b)I (1—I +b +2a)
I (b)I'(1+b +a)I (2+a)

where

B+2iJZp

B+2iJZp

and

Re(b+a+ —,') ~Re(1 ——,
' —a) .

(A4)

The expression for the SPB amplitude employs B =(i2, iv} +—E and requires the derivative of I(a, b, lm} with

respect to p. We evaluate this derivative directly from Eq. (Al) noting that

BI(a,b, lm)
2b(p ——iv)I(a, b, +1,1m), (A6)

thereby expressing the derivative in terms of the generic integral I(a, b, lm). These results for I =0 were employed to
obtain Eq. (3.9) of Sec. III.

Note that I(a, b, lm) may be written in the alternative form, using Eq. (15.3.26) of Ref. 13

I(a, b, l) =2m. ( —1)'(2JZp)'Yl (J)(2Zp)' ' '(2B)

+ ( + + F, —,'(I+b), ,'(1+b—+1)1++b 1+.
4J2Z 2

I (b)I (1+b +z)I'(2+a) B2
(A7)

This form shows that the expression for I(a, b, Im) is independent of the sign in the exponential employed in the rep-
resentation of Eq. (A2). In transforming Eq. (A7) back to the form Eq. (A6) one chooses the sign such that the real part
of

( 4J2Z 2 /B 2
)
1/2 (A8)

is positive.
The vector J may be complex; J=J„+iJ, . Then our final result still holds although the evaluation procedure is more

complicated. We choose x such that xJ is real, and choose the sign in exponential of Eq. (A2) so that the real part of
+ix(B+2p J) is negative, and then employ Eq. (10.1.47) of Ref. 18 as before. The integral over the magnitude of p is
evaluated in the second step. Since the result is independent of the + sign, the integrals over the angular variables are
evaluated using orthogonality properties of the spherical harmonics. The result is identical to Eq. (A4), but the magni-
tude of J is understood to be given by

J=(J J)'

and

J=J/J .

The important case I =0 was evaluated earlier in Ref. 11. These authors obtained a rather complicated result involv-

ing several terms with two parametric derivatives. In contrast, our equivalent result is expressed directly in terms of
I (a, b, Lm), which itself has the relatively simple expression Eq. (A4).
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