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The onset of chaotic convection in large-Prandtl-number fluids has been found to occur in the

form of elongated cells with aperiodic boundary-layer instabilities.

The dynamics of this

phenomenon has been monitored in the physical domain, and also in the spectral and phase spaces.
In order to describe more precisely the underlying mechanisms of chaotic thermal convection, we
find it useful to introduce the notion of “‘thermal attractor” in the physical domain and to conduct a
systematic study of the evolution of the spectral energy surfaces. We propose here a relationship
between this thermal attractor and the presence of a strange attractor in the phase space.

Much progress has been made in the elucidation of the
onset of chaotic thermal convection."> The effects of a
large-aspect-ratio configuration on the transition process
have been demonstrated for low-Prandtl-number fluids.*>
A truncated modal model® has been used to study the
transition to time-dependent, large-scale flows for low
Prandtl numbers.

Large-Prandtl-number convection has been a topic of
intense study among geophysicists because of its applica-
tion to mantle convection. The appearance of chaotic
convection as a large-aspect-ratio, single-cell phe-
nomenon, punctuated with recurring boundary-layer in-
stabilities has been found in numerical solutions of large-
Prandtl-number convection.” It has been determined in
these convection flows that the transition to chaos occurs
via oscillatory convection with two frequencies and in-
volves a small number of relevant degrees of freedom.®
Spatial patterns in temporal chaotic Rayleigh-Bénard
convection are also of interest to physicists and remain an
open problem of great current interest.’

Convection with infinite-Prandtl-number fluids is in-
teresting in its own right because it contains only one
nonlinear term, that due to thermal advection, in the
Boussinesq regime. This facet permits one to focus on
the only source of producing time-dependent transitions,
leading to the chaotic stage. In this work we intend to
focus on the energy partitioning among the different
modes and to propose a mechanism responsible for pro-
ducing thermal chaos in high-Prandtl-number convec-
tion, in which inertial effects can be neglected in the
momentum equations.

The dimensionless equations representing infinite-

Prandtl-number, Boussinesq thermal convection are
given by
V-v=0, (1)
—Vp+V>v+R62=0, )
%g‘+(v-V)6=v-’i+V29, 3)

where ¢ is the time, v is the velocity, 6 is the thermal de-
viation from the conductive profile, p is the dynamical
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pressure, and Z is the unit vector aligned with gravity. In
nondimensionalizing the equations we have used the layer
depth d for the length, the thermal diffusion time across d
for the time, and the temperature drop across the layer
for temperature perturbations. The only parameter
which determines the convection flow is the Rayleigh
number R, the ratio between the buoyant energy liberat-
ed to the viscous dissipation. We will solve Egs. (1)-(3)
with stress-free boundaries for the top and bottom and
periodic boundary conditions along the horizontal.

We employ a spectral code in the numerical computa-
tions. The unknowns are expanded in a Fourier-
Chebyshev basis with the Fourier functions satisfying the
periodic boundary conditions. The tau method'® is used
for enforcing the vertical boundary conditions of the tem-
perature and momentum equations. We use the spectral-
transform method for calculating explicitly in time the
nonlinear thermal-advection term. Time stepping is done
by a second-order, Adams-Bashforth, Cranck-Nicholson
scheme. The principal reason for using the spectral
method is to study in greater detail energy partitioning
among the active modes in order to gain a better under-
standing of the nonlinear aspects of chaotic convection.

We have focused on one particular example in this pa-
per. It is for an aspect-ratio-6 box with R =3X10°,
which is about several hundred times supercritical. The
initial condition chosen is a single-cell pattern obtained
for a slightly supercritical Rayleigh number. We have
used 187 complex Fourier functions and 46 Chebyshev
polynomials. Increasing these to 335 Fourier and 82
Chebyshev functions does not cause any noticeable
changes in the solution. Kinetic energy is computed as
the average of the Euclidian norm of the velocity over the
Chebyshev spectral space.

In Fig. 1 we show the evolution of the stream function
¥ and temperature fields in the physical domain between
t =0.2256 and 0.2328. The stream function ¢ for in-
compressible flows is defined with u =—9v%/9dz and
w =0y /dx, where x and z are, respectively, the horizon-
tal and vertical coordinates. Long-wavelength cells,
punctuated by traveling boundary-layer instabilities, are
clearly illustrated. This event can occur sometimes after
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one or two overturn times (Fig. 2) at t =0.204. However,
this phase lasts only briefly and the elongated cell returns
at t =0.2016.

The presence of two cells in the physical domain comes
from the nature of the periodic horizontal boundary con-
ditions. We find that with the onset of chaotic convec-
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FIG. 1. Chaotic single-cell dynamics in the physical space.
(a) Stream function. Time steps are given in the figure. (b) Tem-
perature field. Evolution of the plume configuration in the
boundary layer. Time has been nondimensionalized by d?/x,
where « is the thermal diffusivity of the layer.

tion horizontal symmetry is broken and each cell assumes
a different configuration. Symmetry is also broken verti-
cally but is not discernible in the physical domain be-
cause the frequencies involved are too high.

We display the two-dimensional spectrum of the
nonlinear-source term v-V6 in Fig. 3 at 1t =0.204. The
presence of the bubble in the center of the spectrum
shows that both the horizontal and the vertical sym-
metries are broken. This perturbation propagates rapidly
toward large scales and eventually disappears. We note
that this perturbation is not related to numerical trunca-
tion effects because it appears near the center of the spec-
trum and not near the borders. This bubble occurs at the
instant, just before and during the disintegration of the
single-cell pattern. Thus it is the spectral signal of a true
physical event.

We will now introduce the concept of “thermal attrac-
tor” from the pictures shown in Fig. 1. We note that the
upper and lower boundary layers have mirror symmetry
about the midvertical plane. Therefore we will just focus
on the event of the lower boundary layer. In the temper-
ature fields of Fig. 1(b) we observe that the small plumes
associated with the center cell move toward the right and
those associated with the lateral cell move toward the left
(see arrows). They appear to be pushed by the two coun-
tercirculations. But we wish to take a different point of
view here and suppose that they are ‘““attracted” toward
one another. We take the thermal point of view because
the thermal mechanism is at the heart of nonlinear mech-
anisms in infinite-Prandtl-number convection. These
plumes are attracted by their common “centroid” inside
the boundary layer. This “center of mass” moves only
slightly, as the cells move relatively to one another [Fig.
1(a)]. It behaves like a thermal attractor in the physical
space.

A direct cascade occurs, when a plume is created
within the boundary layer, as the energy is transferred
from the large-scale flow to the smaller features with
thermal origins [see ¢t =0.2280 in Fig. 1(b)]. An inverse
cascade takes place when a small plume traveling along
the boundary layer reaches the thermal attractor and is
absorbed by it [see £ =0.2304 in Fig. 1(b)]. A direct cas-
cade seems to be occurring continuously, while an inverse
cascade seems to occur only when the attractor attains a
certain critical size.

It is important to consider the partitioning of energy
for the various modes. Figure 4 shows the comparative
evolution for the first five modes E (k) of the vertically
averaged kinetic energy, where k is the dimensionless
horizontal wave number. We have adopted this
definition for describing the energy because issues con-
cerning the stability of single cells are basically restricted
to the horizontal direction. This definition is more ap-
propriate than the classical averaging over a shell in the
case of turbulence studies. An inverse cascade occurs
when the ratio E(k =1)/E(k =3) is a maximum and
direct cascade takes place, when this ratio is a minimum.
The single-cell chaos is characterized by a competition
between the first and third harmonics (see Fig. 4). When
the ratio E(k =1)/E(k =3) reaches a maximum, the
most important portion of the total energy is concentrat-
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FIG. 2. Chaotic single-cell dynamics. Stream function and temperature are presented at given time intervals indicated in the
figure.
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FIG. 3. Spectrum of thermal advection at ¢t =0.204. The complex norm of each Fourier-Chebyshev harmonic is displayed here.
A bubble appears near the center of the spectrum.
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FIG. 4. Time evolution for the first five modes of the vertically averaged kinetic energy and for the second derivative of the Nusse-

It number.

ed in the single-cell phenomenon. This takes place when
all of the plumes have nearly disappeared by collapsing
into the thermal attractor [Fig. 1(b), t =0.2268]. In this
case energy is transferred from small to large scales or an
inverse cascade.

Adjacent to these curves is plotted the second deriva-
tive of the Nusselt number N, which is the ratio of the
convective to conductive heat fluxes and is a measure of
the efficiency of convection. Direct and inverse cascades
are observed to occur when d*N /dt? becomes, respec-
tively, negative or positive. However, there are periods
in time, between t =0.2290 and 0.2306, when the situa-
tion is less clear cut. The reason appears to be that the
two cells become out of phase [Fig. 1(a)]. Thus some time
is needed to reach this new equilibrium. Since the dy-

-13.0

namics of the boundary layer can be described approxi-
mately by direct and inverse cascades, which are in turn
correlated with the first two derivatives of N (¢), a phase-
space dimension of at least 3 is needed for a proper
description.

Next we consider the temporal evolution of the higher
modes in Fig. 5. For k greater than 10, these higher
modes behave nearly the same. Modes k =171, 172, and
173 are shown. Each maximum is surrounded by smaller
maxima. Higher-mode maxima represent direct cascades
in energy, while the minima correspond to inverse cas-
cades.

We display the evolution of the spectrum [E (k =1) to
E(k =185)] in Fig. 6(a) for t =0.2232 to 0.2272. The
long curved structures on this energy surface correspond
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FIG. 5. Time evolution for the vertically averaged kinetic energy. Modes k =1, 3, 173, 174, and 175 are shown here.



332

ALAIN P. VINCENT AND DAVID A. YUEN

(a)

inverse
cascade

¥ direct

cascade inverse
¥ cascade direct
¥ cascade

¥

0.0
57
.
4
g
(b) 1
&0
=}
=2
0.0
-17.1 B
C
-6.0
228
< ¥ 1.0 19.4 37.8 56.2 74.6 93.0 111.4 129.8 14821666 185.0
R \"\ . .
= W Fourier axis (k)
S -11.9 .
[=1)) W 4
2 M 00
i
-179 !
N -5.7
. i )
1.0 19.4 37.8 56.2 74.6 93.0 1114 129.8148.2166.6 185.0 foa)
. . S -114
Fourier axis (k) g0
-17.1 B
A

1.0 19.4 37.8 56.2 74.6 93.0 111.4 129.8 148.2 166.6 185.0

Fourier axis (k)

FIG. 6. Energy surface for time interval t =0.2232 to 0.2272. (a) Direct and inverse cascades in energy are indicated in the figure
(see arrows). (b) Cut of the energy surface at time 1 =0.2328. Energy is transported by wave packet (see arrows) from large scales to

small scales. (c) Direct cascade: Cuts of the energy surface at instants 4 and B. Inverse cascade: Cuts of the energy surface at in-
stants B and C. The arrows indicate the direction of energy propagation.
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FIG. 7. Phase space. The two-dimensional (N,N) topologi-
cal section of the strange attractor for the period of time ¢t =0.1
to t =0.2328 is shown here.

to direct cascades in energy, which seem to occur con-
tinuously (segment A4-A4'). In this way energy is trans-
ported continuously or by wave packets [Fig. 6(b)]. How-
ever, the direct cascading process seems to be interrupted
randomly when these long curved structures become
straight. Now the energy propagates nearly instantane-
ously from large to the smallest scales [Fig. 6(c)]. When
this takes place, one can observe the direct cascade in the
physical domain [Fig. 1(b)]. It is important to note that
these long structures belong to the last part of the direct
cascading process in the spectral space which is associat-
ed with the birth of a plume in the physical space.

333

At this time, the inverse cascade mechanism starts in
the spectral domain but cannot yet be observed in the
physical domain. This is shown by the cuts at instants B
and C in Fig. 6(c). These direct and inverse cascade
mechanisms begin to appear in the spectral domain some-
time before they are discernible in the physical space.
The underlying physical mechanism is found in the spec-
tral domain. This example, while illustrating the spectral
process, represents some inertia in the way the energy
propagates. These cascades result from continuous
mechanisms involving the entire spectrum. In the physi-
cal space, direct and inverse cascades can be observed
when the ratio E(k =1)/E (k =3) reaches, respectively,
minimum and maximum values.

Since d2N /dt? can be used to locate in time the direct
and inverse cascades of energy in the physical space, we
will attempt to describe these cascades in terms of a
three-dimensional phase space {N,N,N}. Such a
definition for the phase space is not the classical one com-
monly used in statistical physics. The definition used
here is often used in nonlinear dynamics and is close to
the expected fractal representation of the attractor. It is
completely consistent with the computation of the fractal
dimension using o_r}ly one time series, e.g., N (¢). In short,
the space {N,N,N} represents the renormalized axis of
the attractor. Using the algorithm of Grassberger and
Proccacia'' and 2900 points from N (t), a strange attrac-
tor with fractal dimension v=2.75£0.05 is found. This
value is characteristic of Rayleigh-Bénard convection.'?
At first one may suppose that v probably depends upon
different parameters: aspect-ratio, Prandtl number, and
Rayleigh number. However, a value'? of v=2.8+0.1 has
also been obtained with the Proccacia-Grassberger algo-
rithm. These determinations were based on experi-
ments'® done in fluids with Prandtl number 40 (silicone
oil) and aspect-ratios of 1.2 and 2. For infinite-Prandtl-
number fluids, Machetel and Yuen® found v to be
2.8+0.05 in numerical simulations of spherical-shell
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FIG. 8. Time evolution of the curvature C(¢) of the phase-space trajectory is shown here with the vertically averaged kinetic ener-
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thermal convection. Since the onset of the type of chaos
we are dealing with is characterized by the single-cell pat-
tern, the computed fractal dimension associated with
single-cell chaos seems to lie below 3 from these three
cases. Until now there has been no systematic study of
the dependence of the fractal dimension on the Rayleigh
number in thermal convection.

A view of this strange attractor is shown in Fig. 7.
Here we have shown a section of given thickness in the
center of this attractor. This vista allows the visualiza-
tion of the local topological structure. A degenerate
torus can be made out. This can be explained by the fact
the transition to chaos in this problem is obtained via a
transition from a torus with two incommensurate fre-
quencies.®

In order to demonstrate a relationship between the cas-
cading processes and the dynamics in the phase space, we
plot in Fig. 8 the fine details of the time history of the
highest modes (e.g., Kk =173) along side with the tem-
poral evolution of the curvature of the attractor solution
in the three-dimensional phase space. Curvature is
defined here as the inverse of the radius of curvature.
This quantity has been computed by using a classical for-
mula for geometry in three-dimensional space. We ob-
serve that there is indeed a correlation between the in-
verse cascade, as shown by the kinetic energy, and the

maxima in the curvature of the phase-space trajectory
(viz., Fig. 8). This has also been found by plotting the
temporal evolution of the highest modes and the time his-
tory of the associated curvature. We find that the maxi-
ma of the curvature occur when the inverse cascade
starts to appear in the spectral domain. The result is the
underlying focus of this work. We have thus identified
the thermal attractor in the physical space to be a
representative of the strange attractor in the phase space.

Up to now, chaotic convection cannot be explained ful-
ly from arguments drawn just from the physical domain.
On the other hand, we can understand chaos better from
considerations of a strange attractor in the phase space.
In this study we have shown that relatively few deriva-
tives of the phase-space solution are needed for a com-
plete description of thermal chaos associated with high-
Prandtl-number convection. In short, this strange attrac-
tor governs the dynamics of the thermal attractor in the
physical domain. This result leads to three ordinary
differential equations describing the trajectory of the
solution in the three-dimensional phase space.
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FIG. 6. Energy surface for time interval 1 =0.2232 to 0.2272. (a) Direct and inverse cascades in energy are indicated in the figure
(see arrows). (b) Cut of the energy surface at time ¢ =0.2328. Energy is transported by wave packet (see arrows) from large scales to
small scales. (c) Direct cascade: Cuts of the energy surface at instants 4 and B. Inverse cascade: Cuts of the energy surface at in-
stants B and C. The arrows indicate the direction of energy propagation.



