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Excited states in stochastic electrodynamics
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We show that the set of Wigner functions associated with the excited states of the harmonic oscil-
lator constitutes a complete set of functions over the phase space. An arbitrary probability distribu-
tion can be expanded in terms of these Wigner functions. By studying the time evolution, according
to stochastic electrodynamics, of the expansion coefficients, we are able to separate explicitly the
contributions of the radiative reaction and the vacuum field to the Einstein A coefficients for this
system. We also supply a simple semiclassical explanation of the Weisskopf-Heitler phenomenon in

resonance fluorescence.

I. INTRODUCTION

Stochastic electrodynamics' (SED) is a revival of
Planck's second theory. Since it treats the electromag-
netic field as a c number, it may be considered as the old-
est semiclassical radiation theory. Reviews ' of such
theories have generally concentrated on the version of
Jaynes, in which there is no vacuum field. The con-
clusion has been reached that semiclassical theories are
inadequate, because of their inability to explain various
phenomena, including the coincidence counting of the
"photons" in an atomic cascade, the "anticorrelation" in
two channels of a beam splitter, and the "antibunching"
observed in resonance fluorescence. Recently it has been
demonstrated, however, that an optical theory based on
SED is capable of explaining all of these phenomena,
and hence this conclusion is incorrect.

Although the modern revival of SED preceded Jaynes's
theory, it has received little attention in the literature.
This is probably because, in its original conception, it was
overambitious. It treated the electron as a classical point
particle, and set out to explain the whole of nonrelativis-
tic quantum mechanics (QM) through the interaction of
such a particle with the zero-point electromagnetic field.
The program was remarkably successful for just one
quantum system —the harmonic oscillator —but 30 years
of study of nonlinear systems has given only one useful
result —a correct estimate of the size of the hydrogen
atom. '

At this point we may note that a certain convergence
has occurred between quantum electrodynamics in the
optical region and SED. Thirty years ago there was little
recognition in quantum electrodynamics that the zero-
point field was anything other than a source of "virtual
photons. " Now, with the emergence of quantum optics,
especially the study of the atomic equations of motion in
their Heisenberg form, the vacuum field has a much
more "real" status. The idea that the ground state of an
atom represents some kind of balance between radiative
reaction and vacuum-field effects certainly originated in
SED, but it is now being proposed as a respectable
quantum-mechanical description. Parallel with this is the
idea that "spontaneous" emission, which Einstein, its dis-

coverer, always considered so unsatisfactory, is actually
stimulated by the zero-point field. We shall show, in this
article, that by returning to the harmonic oscillator we
can make more precise the contributions, respectively, of
the radiative reaction and vacuum field to Einstein's A

coefficients. This may also cast some light on the general
problem of how frictional forces may be included in the
quantum formalism.

Our treatment will also show more clearly the status of
"negative probability" in physics. We shall argue that
non-positive-definite distributions can enter into the
description of physical systems only as a calculating de-
vice. They cannot be properly interpreted as distribu-
tions of probability and only those linear combinations
which have the property of positive definiteness may be
said to describe real physical states. This has a radical
consequence which has been recognized in SED long
ago no excited state of the harmonic oscillator is a real
physical state, and hence a statement that a given atom
"is" in a given excited state may not be correct.

One argument" in favor of "negative probabilities" in-
volves the classical diffusion of a particle between two
reflecting walls; the eigenfunctions of the diffusion opera-
tor are not positive definite. Since nobody questions that,
in this classical process, the particle is always in some
definite place, we infer that these eigenfunctions cannot,
on their own, represent physical states of the diffusing
particle. We shall show that the Wigner functions of the
excited states of the harmonic oscillator play a similar
role with respect to the Fokker-Planck operator, which
gives the time evolution of an arbitrary distribution in
phase space. None of these functions, except that
representing the ground state, is, however, positive
definite. We infer that only certain linear combinations
of these excited-state distributions, that is, certain rnix-
tures of the first kind, represent rea1 physical states.

II. COMPLETENESS OF THE EXCITED STATES
IN PHASE SPACE

A Hamiltonian H, for instance, a one-dimensional Her-
mitian operator, may, in certain cases, possess a complete
set of excited states (t „(x),such that
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HP„(x)=E„P„(x), (2.1) where a 'a„are constant and

P(x, t)= g a„(()„(x)exp( iE„—t/A),
n=p

where

(2.3)

where E„are the corresponding energy levels

(n =0, 1,2, . . . ) and the eigenfunctions P„(x) satisfy the
completeness relation

g P„'(x)(!)„(y)=5(x —y) . (2.2)
n=0

The time evolution, in quantum mechanics, of the Hamil-
tonian system speci6ed by H is then given by

W „(x,p}= P' (x +y}P„(x—y) exp(2ipy /fi) .d3' e

(2.7)

Real physical systems do not evolve in time according
to (2.6); all states, except the ground state (n =0), under-

go decays by spontaneous emission of radiation. We pro-
pose to study such processes also through the evolution
of W(x,p, t), substituting for (2.6) the more general rela-
tion

a„= x „x xO (2.4)

Consider now the Wigner function W(x,p, t) associated
with f(x, t),

W(x,p, t)= g g C „(t)W „(x,p) .
m=pn=p

(2.8)

W(x,p, t):J — f'(x+y, t)f(x y, t)—
X exp(2ipy/i)i) . (2.5)

The time evolution of W(x,p, t) is

W(x,p, t)= g g a'a„W „(x,p)exp[i(E —E„)t/fi],
n =pm =0

(2.6)
I

The explicit expressions for C~„(t) will be obtained
below, for the case of a free and forced harmonic oscilla-
tor, within the realm of SED.

In order to be sure that such an expansion is possible,
we need a completeness property for the I W „). This is
guaranteed through the following theorem.

Theorem 1. The set of functions W „(x,p) is complete
and orthogonal over the space (x,p).

Proof. According to the definition (2.5) we can write

g W'„(x,p) W „(y,q)
m =On =p

=(iraqi) J dg J di) exp (qadi pg) —g (!)—(x+g)(()' (y+m) g P„(y —rt)P„'(x —g)=00 00 2l 5(x —y}5(q —p)

m=0 n=p

(2.9)

dx dp 8"„x,p 8' x,p = mr ns

27' (2.10)

where we have used (2.2) and the Fourier integral repre-
sentation of the Dirac 5 function. This establishes the
property of completeness. The property of orthogonality
is obtained in a similar manner and we give only the re-
sult

where H„are Hermite polynomials.
In this case each function of the complete set of

Wigner functions W „(x,p), defined in (2.7), can be cal-
culated explicitly giving'

' 1/2
1)m2(n —m)/2

W „(x,p)=
nt

In Secs. III and IV we shall consider the special case of
the harmonic oscillator, for which the Hamiltonian is

mpmpx
2

g exp p
2

m pQ)pA

H=- +—,'mph)px
2mp

(2.11)

'1/2'' 1/4

where mp is the mass of the particle and cop the frequen-
cy. Then the excited-state wave functions can be ex-
pressed as

mpcop
x

' 1/2
lP

+rim, ru,

2m pcopx 2p
2

xL"
~ +

n —m

(2.13}

P„(x) = (2"n!)

m OQ3px
2

&( exp

H„x
m pcop

(2.12}

if m (n. Here L„are associated Laguerre polynomials.
In the case m ~ n we get a similar result, that is, we must
interchange m with n everywhere and also replace i by
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We shall see that for studying transitions induced by
thermal radiation, the diagonal subset of {W „} is
sufficient. The functions of this subset, which may be
termed "Wigner functions of the excited states, " are
given by

then, because of the linearity of (3.1), x(t) is also a
Gaussian process. In particular, the stationary phase-
space distribution is the ground-state distribution given
by Eq. (2.14),

W„„(x,p) = L„(2z)exp( —z):—U„(z),( —1)"
(2.14)

W(x,p) = Uo(z) =
7Th

(3.4)

where z =mocoox Ifi+p /macon% and L„=L„ is a
Laguerre polynomial. In this case it is possible to prove
another completeness result.

Theorem 2. The set of functions U„(z) is complete and
orthogonal in the sense that

In order to understand the role of excited states in
SED, we now consider the time-dependent case. It is
convenient to treat "spontaneous" ernissions along with
those stimulated by incident radiation. This means con-
sidering a general spectral density I(co) instead of just the
zero-point field Io(co). However, because the zero-point
field is not directly observable we write

f dz U (z) U„(z)=
2~'fi'

(2.15) I(co)=Io(co)+I,b, (co), (3.5)

and

U„(z)U„(z')= 5(z —z')

p 2mB
(2.16)

There has been a great deal of controversy about the
respective roles of the vacuum field and radiative reaction
in the spontaneous emission of radiation. Milonni has
shown, by making a suitable ordering of the operators in
the second-quantized formalism, that the contribution of
either of these fields may be reduced formally to zero.
Such a treatment suggests that there is no real difference
between the vacuum and radiative reaction fields.

In SED the electromagnetic field, instead of being an
operator, is a c number. A product of fields is indepen-
dent of its ordering, and "field commutators" are just a
coded way of specifying the various autocorrelations of
the zero-point field. We can therefore make an unambi-
guous distinction between the vacuum fields and the radi-
ation reaction.

The motion of a harmonic oscillator in SED is given by
a Langevin-type equation,

2 2
2

e Cup
max = —macon —m02yx+eE„(t), y —= , (3.1)

3mpc

where the term —2ympx in the equation of motion has
its origin in the radiation reaction force 2e x'/3c . The
random force eE„(t) is generated by the x component of
the fluctuating electromagnetic field, that is, E„(t) is a
Gaussian stochastic process with a spectral density given
by

These results follow directly from the standard ortho-
gonality and completeness properties of the Laguerre po-
lynomials.

III. EINSTEIN A AND B COEFFICIENTS IN SED

where I,»( co) is the observable part of the incident spec-
trum. The phase-space distribution W(x,p, t) satisfies the
Fokker-Planck equation'

and

m prop

fi

m pcop

' 1/2

cos(coot ) — p sin(coot ),
Qm, cook

sin(coot )+ cos(coot ),
m pcop

D = I(coo)
(ne)

mp~p
(3.7)

is the diffusion coefficient. Because g +g =z it is easy to
show that the stationary solution of (3.6) is
W= Uo(z) = exp(z)/(M) in the particular case in which

(~e ) Io(coo)
D =Dp= =y/2 .

m peep%

A further transformation is convenient,

g=&z cosy, ri=&z sing&, (3.8)

where z is the same as before [see (2.14)]. Then (3.6) be-
comes

aw-2 a~ w D4a'~ 4a~ 1a'~

c)W c) c) c)W c)W=y (gW)+y (rtW)+D
dt c) c)71 ay' a&'

(3.6)

where g and g are constants of the deterministic motion,
given by

1/2

Io(co) =j dw(E„(t)E„(t+r) ) exp(icos) . (3.2) (3.9)

Io(co)=%co /6m c (3.3)

Such a system differs from a Brownian harmonic oscil-
lator in only one respect: the noise E„(t) is not white, so
that Ip is not a constant function of co. If we choose for
Io(co ) the spectral density of the zero-point field

We observe that a system which, at t =0, is in equilib-
rium with the zero-point spectrum [W=UO(z)], and
which, for t &0, interacts with any field of thermal (that
is incoherent) radiation, is always homogeneous with
respect to the variable y. We may therefore, for such a
system, discard the derivative with respect to lp in (3.9),
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and consider JY as a function of z and t only. Then using
theorem 2 of Sec. II, we can put

C„(t)=2nA f dz U„(z)W(z, t), g C„(t)=1 . (3.11)
n=p

W(z, r)= g C„(r)U„(z),
n=p

where U„(z) was defined before in (2.14) and

(3.10)
The time evolution of the coefficients C„(t) can be ob-

tained by substituting (3.10) into (3.9). Using the re-
currence relations between the Laguerre polynomials
L„(2z) we get

i) 8
2y z +1+4Dz

Bz Bz2 Bz
U„(z)=y[ (n—+ 1)U„+,(z)+ U„(z)+n U„,(z))

+2D[(n +1)U„+,(z) —(Zn+1)U„(z)+nU„ i(z)]

for each term of the series on the right-hand side of (3.9).
Since the functions U„(z) are orthogonal we must have

C„(t)=(n +1)(2D+y)C„+i+ [y —2D(2n +1)]C„+(2D—y)nC„

=Pn+i, nCn+ i+Pn —i, nCn —i+(Pn, n Pn, n+ i
—Pn, n —i )Cn

(3.12)

(3.13)

With the above definition of P„„+&, Pn „,and Pn n, we
can interpret these as "transition probabilities, " per unit
time, from the mathematical ( not physical ) states n to
n+1, n to n, and n to n —1, respectively. The explicit
expressions for these transition probabilities are

P„„+i (n + 1——)( 2D —y ),
P„n =0,
P„„,=n(2D+y) .

(3.14)

Here, for instance, in the expressions for P„„+& and

P„„ i, we can easily identify the role of radiation reac-
tion due to the presence of y. In a "downward transi-
tion, " such as P„„j,we have a positive contribution of
radiation reaction as is expected on physical grounds.
However, in an "upwards transition, " such as P„„+&, we
obtain a negative contribution of radiation reaction.

To obtain the Einstein A and 8 coefFicients we substi-
tute (3.5) in the expression for D given in (3.7). Then

V„(x)=cos(nx), n =0, 1,2, . . . .

With respect to the diffusion problem,

(3.18)

BV i3 V

Bx

BV =0 at x =O, n
Bx

(3.19)

A„„& of "spontaneous emission" has equal contribu-
tions corning from these two sources (y and 2DO). The
equality between 8„„+&and 8„+, „also follows from
(3.16) and (3.17).

We note that these conclusions agree with those
reached by Milonni, ' though his arguments had a more
quantum-mechanical flavor. We also note that one of
these results, Eq. (3.17) for A„„ i, is a rather old result
in SED.'

We stress again, however, that the "states" given by
the "distributions" U„(z) are, in SED, nothing more than
a convenient complete set of functions. Their role with
respect to the Fokker-Planck equation (3.9) is very simi-
lar to that of the functions

Pn, n+ i n, n+ liobs(~0)+ n, n+1

nn+ I n, n —11obs (,~0 ) + ~nn —1,
where

(3.15) None of the solutions (3.18) derived from (3.19)
represents by itself a physical solution, with the sole ex-
ception of the "ground state, " n =0. We could describe
the solution

2(n +1)n e8„„+)—— , An „+)——0
7lm pcop

(3.16) V(x, t) = 1+a cos(x) exp( t)— (3.20)

as a decay of the "mixture" of states n =0 and n = 1 into
the state n =0 as t tends to infinity. But we would not, in
this context, allow such language to obscure the fact that
such a mixture may be a physical state only for those
values of u, namely, —1 & a & 1, for which V is positive
definite. The same considerations apply to the excited
states of the harmonic oscillator, and also, possibly, to
the excited states of atoms. The state n =1 is represented
by the Wigner function [see (2.14)]

and

2n& e
ns n —1 ~m p p

2ne coc
A„„

3mpC
(3.17)

These results are in full agreement with the formal cal-
culations of quantum electrodynamics. In particular, the
coefficient A„„+& of "spontaneous absorption" is zero
and we now see that this is because of a balance between
the effects of radiation reaction and vacuum fields
(y=2D0, as was seen before). Also, the coefficient

(2z —1)
W»(x, p}= exp( —z), (3.21}
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which is negative for z & —,. If we consider mixtures of
this with the ground state Wpo

Wpp(z)+a W„(z}
W(x,p}= 1+a (3.22)

then such states correspond to physical states only if
0&a & 1.

The language we are warning against is, of course,
strongly entrenched in the literature. It is now becoming
fashionable to describe resonance fluorescence as the ra-
diation emitted by an atom which is oscillating coherent-
ly between two states. We shall show in Sec. IV that such
language is no more justified than in the case we have just
been studying.

IV. RESONANCE FLUORESCENCE iN SED

Resonance fluorescence occurs when an atom is driven
by a coherent electromagnetic field whose frequency is
close to one of its transition frequencies. It was predict-
ed, long before sufficiently coherent sources became avail-
able, that the radiation emitted should have the linewidth
of the driving field, rather than the natural linewidth of
the transition. " ' Although the prediction was based
on quantum electrodynamics, it has always been con-
sidered somewhat paradoxical, though it is now well
verified experimentally.

In SED this Weisskopf-Heitler phenomenon receives a
very natural explanation. A driven harmonic oscillator
has a Langevin-type equation

Hence only the sharp line, at frequency co of the deter-
ministic force, is observed.

The phase-space distribution in the steady state,
characterized by (4.3), is easily obtained. Since x, is in-

dependent of xd, the joint distribution of x, and

p, =mpx, is simply the ground state, given by (3.4),

1
W(x„p, ) = exp x, — . (4.6)

mp~o

Hence the distribution of (x,p)=(xd+x„pd+p, ) is'

1
W(x,p) = exp

7Th

mpcop
(x —xd )—

mockup%

(4.7)

According to theorem 1 of Sec. II we may write this as

W(x,p, t)= g g C „(t)W „(x,p),
m =0 n =0

where

(4.8)

C „(t)=
' 1/2

(t)m+n

m!n!

C „(t)=f dx J dp W'„(x,p)W(x, p, t) . (4.9)

These expansion coefficients may be obtained most easily
by using the expression (2.7) for W „(x,p), together with
the generating functions for the Hermite polynomials.
The result is

x+2yx+copx = [E„(t) Fsin(cot )—] .
mo

(4.1)
X expI cr(t)+—i(m n)[cp—t+5(t)]], (4.10)

In the absence of the zero-point field E„(t) we have the
deterministic solution

where
1/2

xd ——Re
ieF exp(i cot )

m p ( cop
—~ +2i y co )

2 2
(4.2)

&cr(t) exp[i5(t)]=
m ocop

2A
xd(t)

1/2

In the absence of F we have the zero-point stationary
solution x, which is well known' in SED. Then the
steady-state solution of (4.1) is

+l
2copR

X exp( idiot), —

xd(t)

(4.11)

X =Xd +X (4.3)

Now the radiation emitted by this system at a given fre-
quency is obtained from the autocorrelation of x, that is,

and xd(t} is given by (4.2). In general o and 5 both have
a small periodic part, but for the case of resonance they
take the constant values

K(r)=(x(t)x(t+r)) . (4.4)
e2F2 5=0 (co=cop) .

8moy cop%
(4.12)

Because xd and x, are independent we have

K(r) = (xd(t)xd(t+r) )+ (x, (t)x, (t+r) ) . (4.5)

The first term on the right-hand side represents radiation
at the single frequency co (which is the frequency of the
deterministic motion xd), while the second term
represents a line of width y centered on the frequency cop,

as is well known in SED.' But we saw in Sec. III that
the ground state of the oscillator, which is represented by
the stochastic process x„ is an equilibrium state in which
the radiation emitted at a given frequency is equal, on the
average, to the radiation absorbed at that frequency.

For this resonance case, (4.8) with (4.10) is readily
recognized as the quantum-mechanical coherent state
it corresponds to the state (2.6) with the coefficients

1/2

a„= (4.13)
n! exp( —o/2) .

This is remarkable because such a state has no formal ra-
diative corrections, whereas the SED description corre-
sponds to that of quantum electrodynamics rather than
to QM. Just as the ground state of QM represents a bal-
ance between radiative reaction and zero-point field, so
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does the coherent state represent a balance between these
two fields and the driving field. Because of the time vari-
ation in 0 and 5, such an identification is not so simple
for the general, off-resonance case, so that (4.7), or,
equivalently, (4.10) and (4.11), give a SED generalization
of the coherent state, by the inclusion of the radiative
correction.

V. CONCLUSION

By a study of the harmonic oscillator in SED, we have
shown that, for this system at least, the only role of the
excited states is to provide us with a suitable complete set
of Wigner functions in terms of which an arbitrary
phase-space probability distribution may be expanded.
Consideration of both spontaneous emission and reso-
nance fluorescence leads us to the conclusion that these
states have no independent physical existence. There are,
of course, many elementary facts of atomic physics which
can not be described by a harmonic oscillator model; for
example, the Ritz combination principle for line spectra,
which gave birth to the excited-state concept, remains
unexplained in the completely classical version of SED.

Nevertheless, we think our results show that it is neces-
sary to treat the excited states with some care. In quan-
tum theory, and in SED, a harmonic oscillator driven by
a coherent field at resonance does not alternate between
its various excited states. The coeScients
a„exp( iE„t /A) of—(2.3) or C „(t)given by (4.10) have a

time-independent modulus; it is their varying phases
which give rise to the emission of radiation at the fre-
quency of the driving field. To be sure, quantum theory
asserts that a measurement of the energy causes a col-
lapse of P, leading to a discontinuous change in a„.
Furthermore, current descriptions of, for example, the
"shelved-state" experiment interpret as a "measure-
ment" the intervention caused by a second laser operat-
ing at a difterent resonant frequency. However, in view
of many acknowledged difficulties of quantum theory of
measurement, especially the nonlocal features associated
with the collapse of the wave function, we think it is
premature to conclude that this is the only possible ex-
planation of such experiments. Another possible ex-
planation may come from stochastic optics (a branch of
SED), which has already given a completely local
description for many phenomena for which it was previ-
ously thought displayed "quantum nonlocality. "

ACKNOWLEDGMENTS

We want to thank Professor Emilio Santos for many
valuable comments. One of us (T.W.M. ) acknowledges
financial support from the European Science Exchange
under the joint agreement between the Royal Society and
the Consejo Superior de Investigacion Cientifica. Work
of one of us (H.M.F.) was supported in part by Fundac5o
de Amparo a Pesqnisa do Estado de Sho Paulo (FAPESP)
and Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico (CNPq).

On study leave from Instituto de F&'sica, Universidade de Sio
Paulo, Sho Paulo, Brazil.

tOn study leave from Department of Mathematics, University
of Manchester, Manchester M13 9PL, England.

'T. H. Boyer, Phys. Rev. D 11, 809 (1975). See also T. H.
Boyer, in Foundations of Radiation Theory and Quantum
Electrodynamics, edited by A. O. Barut (Plenum, New York,
1980).

L. de la Pea, in Stochastic Processes Applied to Physics and
Other Related Fields, edited by B. Gomez, S. M. Moore, A.
M. Rodriguez-Vargas, and A. Rueda (World Scientific, Singa-
pore, 1982), p. 428.

P. W. Milonni, Phys. Lett. C 25, 1 (1976).
~L. Mandel, Prog. Opt. 13, 27 (1976).
5A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91

(1982).
P. Grangier, G. Roger, and A. Aspect, Europhys. Lett. 1, 173

(1986).
~M. Dagenais and L. Mandel, Phys. Rev. A 18, 2217 (1978).
8T. W. Marshall and E. Santos, Europhys. Lett. 3, 293 (1987);

Atm. N.Y. Acad. Sci. 480, 400 (1986); in Proceedings of the
Second International Symposium on Foundations of Quantum
Mechanics, edited by M. Namiki, Y. Ohmuki, Y. Murayama,
and S. Nomura, (Physical Society of Japan, Tokyo, 1986), p.
66; Found. Phys. 18, 185 (1988).

9T. H. Boyer, Phys. Rev. D 11,790 (1975).
&oT. W. Marshall; Proc. R. Soc. London, Ser. A 276, 475 (1963).
ttR. p. Feynman, Quantum Impiications Essays in Honour of

David Bohm, (Routledge and Kegan Paul, London, 1987) p.
235.

t21. S. Gradshteyn and I. M. Ryzhik, Table of Integrals Series
and Products, Academic, New York, 1965), p. 838, formula
7.377.
P. W. Milonni, Am. J. Phys. 52, 340 (1984).

i4T. W. Marshall, Izv. Vuz. Fiz. 11, 34 (1968).
P. L. Knight and P. W. Milonni; Phys. Lett. C 66, 21 (1980).
V. Weisskopf, Ann. Phys. (N.Y.) 9, 23 (1931).

'7W. Heitler, The Quantum Theory of Radiatiott (Oxford Uni-

versity Press, New York, 1954), pp. 348-353.
H. M. Franca and M. T. Thomaz, Phys. Rev. D 31, 1337
(1985). See also the interesting series of papers by G. H.
Goedecke, Found. Phys. 14, 41 (1984).

tsL. I. Schiff, Quantum Mechanics (McGraw-Hill, New York,
1965), p. 74.

R. G. Brewer and A. Schenzle, in Proceedings of the Second
International Symposium on Foundations of Quantum
Mechanics, edited by M. Namiki; Y. Ohmuki, Y. Murayama,
and S. Nomura (Physical Society of Japan, Tokyo, 1986), p.
257.


