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A general method for solving the stationary one-electron, two-center Coulomb problem with a su-

perimposed (uniform) strong magnetic field is described and applied. For arbitrary orientation of
the field with respect to the line connecting the centers, the pertinent Schrodinger equation is solved

by evaluating analytically the Hamiltonian matrix in a basis of (nonorthogonal) Hylleraas functions
and solving numerically the generalized eigenvalue problem for this matrix. A detailed study of the
properties of "magnetically dressed" (diatomic) one-electron molecular orbitals is performed by cal-

culating energies and wave functions for the H2+ and (H-He)'+ systems for field strengths up to
about 10 T. Molecular-orbital correlation diagrams are presented and discussed, in which
dressed-orbital energies are displayed as a function of internuclear distance R at fixed angle 9 be-

tween field direction and internuclear axis, and as a function of 0 at fixed R. Equilibrium internu-

clear distances and total binding energies are calculated as functions of field strength for the mag-

netically dressed H2+ system in its lowest gerade and ungerade states at 0=0 and t9=90'. The
influence of the magnetic field on molecular binding properties as well as on the separation behavior
of molecular orbitals at large internuclear distances is illustrated by means of wave-function plots.
Whenever possible, our results are compared to those of previous investigations. The convergence
properties of our method are discussed.

I. INTRODUCTION

The structure and dynamics of atomic systems exposed
to strong, external (static) magnetic fields have recently
attracted great interest. By definition, strong fields are
characterized' by magnetic interaction energies which
are comparable to, or larger than, typical Coulombic en-
ergies in the unperturbed system, i.e., by field strengths
substantially larger than those characteristic of the linear
Zeeman effect and of the Paschen-Back effect.

A great deal of motivation for studying the effect of
strong magnetic fields on atomic systems has arisen from
the established existence' ' of very strong magnetic
fields in the vicinity of degenerate astrophysical objects,
with field strengths B estimated to be of order 10 —10 T
for white-dwarf stars and 10 —10 T for neutron stars.
Fields of this magnitude are capable of considerably
modifying or even completely changing the properties of
ground states and low-lying excited states of atoms and
molecules, as is seen by comparing their strength to the
"critical" field strength Bo =2.35)& 10 T at which the os-

cillator energy associated with the field is equal to the
ground-state binding energy of the hydrogen atom. Fur-
ther impetus to the study of strong-field effects has been
provided in recent years by the possibility of prepar-
ing atomic systems in well-defined, highly excited Ryd-
berg states. These states are strongly perturbed already

by magnetic fields easily accessible in the laboratory.
Some interest in the general properties of atomic systems
exposed to strong magnetic fields has been advanced also
in solid-state physics. ' ' Aside from the interest in

strong-field studies arising in conjunction with specific
applications, there is a general interest in the theoretical

study' '" of simple atomic systems in strong magnetic
fields. These systems may serve as prototype systems for
investigating the consequences of nonseparability in (clas-
sical or quantum) Hamiltonian systems; in particular, the
transition from regular to irregular motion. "

Theoretical investigations dealing with effects of strong
magnetic fields have been restricted so far essentially to
the study of bound-state properties of the simplest atomic
and molecular systems, viz. , the hydrogen atom and the
hydrogen molecular ion. The study of continuum proper-
ties' ' and of scattering processes' ' appears to be still
in its infancy.

Many authors (see Ref. 16 and references cited therein)
have calculated properties of the "magnetically dressed"
hydrogen atom by solving, within different approxima-
tion schemes, the pertinent Schrodinger equation with
the diamagnetic interaction term included in the Hamil-
tonian. In the most advanced of these calculations, the
Hamiltonian is diagonalized in a space of suitably chosen
basis functions with a dimension so large that converged
results are obtained for energies and wave functions. Ex-
tensive tabulations of highly accurate energy eigenvalues
of the magnetically dressed hydrogen atom for field

strengths up to about 10 T can be found in Ref. 16. The
associated wave functions have been used in Ref. 17 to
calculate oscillator strengths and probabilities of elec-
tromagnetic transitions. Recent large-scale calcula-
tions' ' for magnetically dressed hydrogen Rydberg
states have given indications for the onset of irregularities
("quantum chaos") in the photoabsorption spectra, which
have been verified experimentally at B =6 T.

The influence of strong magnetic fields on the proper-
ties of (diatomic) molecular systems, which is the subject
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of the present paper, has been discussed first by Ka-
domtsev and Kudryavtsev. ' Subsequently, a variety of
detailed calculations has been performed, which has
almost exclusively dealt with the simplest molecular sys-
tem, viz. , the hydrogen molecular ion Hz+. For fixed in-
ternuclear separation, approximate solutions of the
Schrodinger equation describing the motion of one elec-
tron exposed to the Coulomb fields of two protons and to
a strong magnetic field were obtained mainly by means of
variational techniques.

In the first such calculation, de Melo et al. have as-
sumed the field to be parallel to the internuclear axis and
have studied properties of the magnetically dressed H2+
system in its electroriic log ground state. The trial wave
function used by de Melo et al. is a product of the lowest
Landau orbital corresponding to the actual field strength
8 and of a single-parameter function describing the
motion in the direction parallel to the magnetic field.
This specific form of wave function is expected to give ac-
curate results in the range of very strong fields (B & 10
T). The calculations of de Melo et al. were extended up
to 8 =10' T and established quantitatively that, while
the equilibrium internuclear separation of the H&+

ground state decreases with increasing field strength, the
binding energy and the frequency of vibrations about the
equilibrium position increase. Lai has improved the
calculations of de Melo et al. and extended them to
lower field strengths by allowing the range parameter in
the Landau orbital to be an additional variational param-
eter. A four-parameter trial wave function (including the
internuclear distance as a variational parameter) adapted
to the high-field regime was employed by Warke and Dut-
ta in a calculation of equilibrium binding energies of the
H2+ system in the 1o.

g and 1m „states.
Variational calculations on the magnetically dressed

H2+ system based on trial wave functions adapted
specifically to the low-field regime have first been per-
formed by Lai and Suen. To study the lo.

g state, they
used one-parameter as well as three-parameter trial wave
functions constructed from hydrogenic 1s and 2s wave
functions centered about the protons in the H2+ ion.
Similar wave functions have been adopted by de Melo
et al. Ozaki and Tomishima employed a two-
parameter trial wave function constructed from hydro-
genic functions to study the lo. and lvr„states; the 1m.„
state was found to become bonding at a field strength
8 BQ / 10. The low-field regime was particularly em-
phasized in the variational calculations of Peek and Ka-
triel who used the most general function separable in
prolate spheroidal coordinates as a trial wave function,
thereby assuring that the zero-field limit is treated exact-
ly.

Larsen has been the first to treat, within a variational
approach, the magnetically dressed H2+ system for the
case where the field is inclined with respect to the inter-
nuclear axis by an arbitrary, nonzero angle 8. In this
case, the orbital angular momentum component along
the internuclear axis is no longer a good quantum num-
ber. Larsen calculated, in particular, frequencies of
transverse vibrations (i.e., vibrations perpendicular to the
field direction) of the H2+ systein in its electronic ground

state for 8 ( 10 8Q. Khersonskij ' ' used a variational
approach to calculate the H2+ ground-state energy as a
function of internuclear distance and of the angle 0 for 8
values ranging between 10 and 10 T.

A number of methods other than the pure variational
method have been applied to study the magnetically
dressed H2+ system for the case where the field is parallel
to the internuclear axis. Bhaduri et al. assumed a
universal dependence of the wave function on a single
variable depending in a prescribed manner on the elec-
tronic coordinates and determined the functional form of
the wave function by solving a one-dimensional
(Schrodinger-like) differential equation. Kaschiev et al. o

used the finite-element method, while Ozaki and Tomishi-
ma ' employed Monte-Carlo techniques to solve the
Schrodinger equation. In the approach of Wunner
et al. ("adiabatic approximation"), the wave function is
written as a product of a Landau orbital corresponding to
the actual field strength and an arbitrary function
describing the motion in the direction parallel to the
magnetic field; the latter function is determined by solv-
ing a one-dimensional differential equation. Le Guillou
and Zinn-Justin have generalized the adiabatic approxi-
mation by treating the range parameter of the Landau or-
bital as a variational parameter. Vincke and Baye have
diagonalized the Hamiltonian of the magnetically dressed
H2 system in a basis of functions having Gaussian be-
havior perpendicular to the field and exponential behav-
ior in the direction parallel to the field. The values of the
parameters entering the basis functions were fixed a
priori. The calculations of Vincke and Baye include
states with orbital angular momentum projection
0, —1, . . . , —4 for field strengths ranging between 108Q
and 10 8Q.

Attempts to study the influence of strong magnetic
fields on diatomic molecular systems other than the H2+
system have been made in a few cases. Zaucer and Az-
man have applied a Hartree-Fock —type approach to the
H2 and LiH systems, while Turbiner '" and Basile
et al. ' ' used variational methods to treat the H2 sys-
tem.

In the present paper, we describe and apply a general
method for calculating magnetically dressed one-electron
molecular orbitals. Our method is based upon an expan-
sion of the Schrodinger wave function in terms of
(nonorthogonal) basis functions of the Hylleraas form, '

which contain a single parameter whose value is fixed a
priori. The solution of the Schrodinger equation for a
given set of symmetry quantum numbers is thereby re-
duced to the solution of a generalized eigenvalue problem
for the corresponding Hamiltonian matrix. In principle,
this method allows the immediate calculation of any
bound state of the magnetically dressed system at arbi-
trary values of the external parameters (i.e., of nuclear
charge numbers, field strength, internuclear distance, and
angle between field direction and internuclear axis), and
is therefore more flexible than variational methods which
usually require an ad hoc construction of a trial wave
function for each state separately. The basis expansion
method we use has the clear advantage that the conver-
gence of the results can be assessed by performing se-
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quences of calculations with progressively larger basis
size. The limitations of the method are determined essen-
tially by the limits set by computer storage and comput-
ing time.

The principal aim of this paper is to investigate, in a
broad range of the external parameters, general proper-
ties of magnetically dressed one-electron molecular orbit-
als, such as orbital energies and wave functions, total
binding energies, and equilibrium internuclear distances.
Specifically, we are interested in the behavior of the
dressed orbitals at large internuclear separations R and in
their dependence on the angle 0 between field direction
and internuclear axis. Most of the previous studies have
only marginally considered these cases. The knowledge
of the large-R behavior and of the full 0 dependence is
prerequisite to the study of vibrational and rotational
properties of magnetically dressed molecules and to the
quasimolecular treatment of (slow) ion-atom collisions
proceeding in the presence of a strong magnetic field.

The organization of the paper is as follows. In Sec. II,
we set up the Hamiltonian for the nonrelativistic two-
center Coulomb problem with superimposed strong mag-
netic field, and discuss some general properties of this
Hamiltonian. In Sec. III, we discuss the properties of the
Hylleraas basis functions and describe the diagonaliza-
tion procedure used to solve the Schrodinger equation.
Section IV is devoted to the study of properties of mag-
netically dressed one-electron molecular orbitals for the
case that the field direction is parallel to the internuclear
axis. The general case of an arbitrary angle between field
direction and internuclear axis is considered in Sec. V.
Section VI summarizes the contents of the paper and
presents our conclusions. Brief reports on specific appli-
cations of our method have been given elsewhere.

II. PROPERTIES OF THE HAMILTONIAN

The general problem we are concerned with is that of
the motion of one electron and two (bare) nuclei under
the influence of their mutual Coulomb interactions and of
an external, uniform (static) magnetic field. The full
quantum-mechanical solution of this three-body problem
is hardly feasible at present. Due to the nonzero net
charge of the system composed of one electron and two
positively charged nuclei, the total linear momentum of
this system is no longer conserved in the presence of an
external magnetic field, and the center-of-mass motion
can no longer be separated in the Hamiltonian. ' '

This feature increases the complexity of the three-body
problem far beyond that already encountered in the
field-free case. Consequently, previous at-
tempts ' ' ' to calculate properties of magnet-
ically dressed one-electron molecular ions have been
based throughout on the strict Born-Oppenheimer ap-
proximation in which the nuclear coordinates are kept
fixed, thereby reducing the three-body problem to a
quantum-mechanical one-electron problem involving the
nuclear coordinates as parameters. In the present paper,
we also adhere to the Born-Oppenheimer approximation.

In the nonrelativistic approximation, the Hamiltonian
describing the motion of an electron (with position vector
r) exposed to the Coulomb fields of two nuclei (with

charge numbers Z„Zz, and position vectors R„Rz, re-
spectively) and to a uniform, static magnetic field B is
given by

j. . 1H =——iV+ —A(r)
2 c

2
Z] Z2

+

(we use atomic units unless stated otherwise: e =m, =A'

=1; in these units, we have c =137.04 and Bo=c). The
position vectors r, R],Rz refer to an arbitrary, common
origin. In writing Eq. (1), we have disregarded the cou-
pling of the magnetic field to the spin of the electron,
which gives an additional contribution to the energy of
+8/2c ( B/2c—) if the spin is aligned parallel (antiparal-
lel) to the field direction. The vector potential A(r) satis-
fying B=VX A(r) is taken here in the "symmetric"
gauge,

A(r)= —,'(BXr) .

Thereby, the Hamiltonian H acquires the explicit form

(2)

H = ——,'V— Z] Z2
+

g2
+ (B I )+ [r —(B r) ],2c 8c

(3)

where I = i (rX—V) is the electronic orbital angular
momentum about the chosen coordinate origin, and
B=B/B.

It is appropriate to consider at this point the conse-
quences of a shift of the "center of gauge, " i.e., the conse-
quences of replacing the electronic coordinate vector r in
the vector potential A of Eq. (2) by r —s, where s is a
constant vector. This replacement induces a gauge trans-
formation

A(r)~ A(r) ——,'(BXs) —= A(r)+Vf (r),

f (r)= —
—,'(BXs) r,

(4)

under which the Hamiltonian H transforms according to

l lH ~exp — f H exp f- —
c c

P(r) ~exp — f g(r)—
c

1=exp (BXs) r g(r) .
2c

Z ] +
/r —R, f

g 2

(B I, ) — I(r —s) —[B.(r—s)] I, (6)
2c '

8c

where I, =I—sXp. The (exact) wave functions f(r) as-
sociated with the Hamiltonian H transform under the
gauge transformation (4) according to
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The transformation properties of the Hamiltonian and

the wave functions under a shift of the center of gauge
are of relevance to the discussion of the separation behav-
ior of magnetically dressed molecular orbitals at large in-

ternuclear distances, i.e., their dissociation into the orbit-
als of the separated atoms (cf. Sec. V). It should be men-

tioned that the observable quantities derived from a
(necessarily approximate) numerical diagonalization of
the Hamiltonian (8) in general depend on the choice for
the center of gauge. However, this dependence is expect-
ed to be weak for "numerically converged" results.

In order to specify completely the Hamiltonian used in

the present calculations, we choose the midpoint of the
internuclear line as coordinate origin and center of gauge,
and introduce coordinates x,y, z such that the z axis coin-
cides with the internuclear axis and that the y axis is per-
pendicular to the field vector B, i.e., B„=Bsin0, B =0,
B,=B cos8, where 8 is the angle between field vector and
z axis. The Hamiltonian (3) then reads

H = ——,'V— Z] Z2 B (cos0 l, +sin0 I„)
r, 2c

2

+ [(x +y ) —sin 0 (x —z ) —sin20xz],
Sc

(8)

where r, 2=
~

r+R/2
~

are the distances of the electron
from the centers labeled 1 and 2, respectively, and
R=R2 —R& is the internuclear vector.

In specific cases, the Hamiltonian (8) possesses certain
symmetry properties which may be exploited in its diago-
nalization by restricting the basis set to functions of
well-defined symmetry character. In charge symmetric
systems, the parity operator P evidently commutes with
the Hamiltonian (8),

[H, P]=0 if Z, =Zz, 0 arbitrary . (9)

(Note that this symmetry is destroyed when the center of
gauge is shifted away from the midpoint of the internu-
clear line. ) When the magnetic field is parallel to the in-
ternuclear axis, the angular momentum component l, is a
good quantum number,

[H, l, ]=0 if 0=0, Z„Z2 arbitrary . (10)

If P and l, are good quantum numbers, the z-parity
operation P, which reverses the sign of the z coordinate is
evidently also a good quantum number and can be used
instead of P to label the eigenfunctions of H. When the
field is perpendicular to the internuclear axis, H com-
mutes with the operator P which reverses the sign of the
x coordinate:

[H,P„]=0 if 0=90', Z&, Z~ arbitrary .

In a representation in which the angular momentum
component l, (quantum number m) is diagonal, the selec-
tion rules for the field-dependent terms in the Hamiltoni-
an (8) are b, m =+1 for the terms proportional to sin0 I„
and sin20 xz, and Am =0, +2 for the term proportional
to sin 0x (the remaining terms are diagonal in m).

For arbitrary Zt, Zz, and 0& 0 & n. /2, the Hamiltonian
(8) can be easily shown to obey the relation

H(m/2+0)=P H(n/2 . 0—)P„' . (12a)

Since the P operation is equivalent to a change from a
right-handed to a left-handed coordinate system, the ei-
genvalues c of H must be invariant under this operation,

E(vr/2+0) =e(~/2 0)—, (12b)

and the wave function g(m/2+0) is related to P(n/2 0)—
through

f(~/2+0) =P„g(~/2 0) . — (12c)

and

p(r;R, 0;B;Z„Z2/Z, )

=Z, p(Z, r;Z, R, 0;BIZ|,Z, =1,Z2IZ, ) (14)

hold.

III. DIAGONALIZATION OF THE HAMILTONIAN

The Schrodinger equation Hg=ef with the Hamil-
tonian (8) is separable only in the limiting case B =0, i.e.,
for the pure two-center Coulomb problem (which is
known to be separable in prolate spheroidal coordinates).
When attempting to solve the nonseparable problem
posed for B & 0 by diagonalizing the Hamiltonian in a
fixed basis, the selection of the basis functions will be
mainly guided by the desire to construct functions which
allow the problem to be adequately solved in as broad a B
range as possible. If one excludes the possibility that the
full range 0 &B & ~ can be covered simultaneously with
one and the same type of basic functions, it is advisable to
look for functions that are specifica11y adapted either to
the low-B or to the high-8 regime. In the latter regime,
where the magnetic interaction prevails over the
Coulomb interaction, appropriate basis functions must be
required to adequately represent the limiting case of pure
Landau orbitals. In the low-B regime, the choice of the
basis functions is determined by the dominance of the
two-center Coulomb potential.

The Hylleraas basis functions ' which are used in the
present work to calculate magnetically dressed one-
electron molecular orbitals are particularly adapted to
the low-8 regime. Their definition in terms of prolate
spheroidal coordinates allows the efficient diagonalization

To obtain the energies and wave functions in the full
range 0& L9(m., we may therefore restrict the diagonali-
zation of H to the range 0 & 0 & m /2.

We conclude the discussion of the properties of the
Hamiltonian by considering the scaling behavior of its ei-
genvalues and the associated wave functions. By subject-
ing the electronic coordinates r in the Schrodinger equa-
tion Hg=eg to the scale transformation r~r/Z~, it is

easily shown that for arbitrary values of R, O, B,Z], and
of the "asymmetry" Zz/Z, , the scaling relations

E(R, 0;B;Z„Z~/Z, )

=Zi E(Z, R, 0;B/Z, ;Z, = I,Z~/Z, ) (13)
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A. Properties of the Hylleraas basis

The (nonorthogonal) Hylleraas functions 1(„1 are
defined in terms of prolate spheroidal coordinates
g=(r, +r2)/R, ri=(r& r2)/—R, /=azimuthal angle
about the z axis, as

g„&(g,ri, P) =(2m) '~ exp — (g —1)
8—1

2a

XL„
—1

PI (ri) exp(imP) (1Sa)

for m &0 and

'P.I ' (4 rid') (1sb)

for m &0 (n =0, 1, . . . ; l =
~

m ~, ~

m
~

+1, . . . ). The
functions L„and PI are generalized Laguerre polynomi-
als and associated Legendre functions, respectively, and
the quantity a is a dimensionless parameter which is as-
sumed to be independent of the labels n, I, and m. The
functions g„& are eigenfunctions of the angular momen-
tum component l, (with eigenvalue m ) and of the parity
operator P [with eigenvalue ( —1)']. Eigenfunctions of
the reflection operator P, may be constructed from the
functions g„& by defining, for m & 0,

(16)

of the pure two-center Coulomb problem as well as of
more general (nonseparable) two-center problems involv-

ing screened two-center potentials. In fact, the motiva-
tion to use the Hylleraas basis in the calculation of mag-
netically dressed molecular orbitals arose from the pos-
sibility of using, in the special case 0=0, a trivially
modified version of a computer code devised for the diag-
onalization of screened two-center problems.

UA

(Z, +Z~)R
(18)

which indeed turns out to be an adequate choice for a at
not-too-large R values (a somewhat modified prescription
to calculate a is appropriate in cases where R is so large
that the separated-atom character of the orbitals dom-
inates).

No simple prescription for the calculation of a can be
given if the Hylleraas basis is used in the solution of the
two-center Coulomb problem with superimposed strong
magnetic field. The main effect of the field is to elongate
the electronic wave function in the field direction and to
constrict it in the direction perpendicular to the field.
The behavior of the tail of the wave function in the latter
direction changes from exponential to Gaussian when the
field strength increases. Such a behavior can be hardly
simulated by a single exponential, so that, in order to
achieve convergence of the Hylleraas expansion, a large
number of Laguerre polynomials and Legendre functions
will have to be included, in general. Any optimum value
for a thus reflects the complicated interplay of exponen-
tial and nonexponential parts of the basis, and an a priori
determination of this value seems prohibitively compli-
cated. In our calculations, we employ the prescription
(18) but allow the quantum number n to become a
field-dependent, effective parameter n,a(8) whose value
can be roughly optimized by performing sequences of cal-
culations with different values of n,z and looking for the
minimum energy of particular states.

One can, of course, increase the flexibility of the Hyl-
leraas basis by allowing the parameter a to be dependent
on the labels n, I, and m. It appears, however, a difficult
task to develop an efficient strategy for determining the
optimal dependence of a on n, l, and m. We therefore
defer the development and application of such a strategy
to future investigations.

the functions Q„I'+', as well as the functions g„&=, are
even under P„, while the functions P„I' ' are odd under
this operation. This behavior is exploited in the diagonal-
ization of the Hamiltonian (8) in the case 8=90', in
which H commutes with P„[cf.Eq. (11)].

We note here that the elements of the overlap matrix

B. Solution of the generalized eigenvalue problem
for the Hamiltonian matrix

The Schrodinger equation Hg=ag with the Hamil-
tonian (8) is solved by expanding the wave function g in
terms of the Hylleraas functions P„& as

N, 0= & &.(4.i (19)

(17)

can be evaluated in closed form. Details of the evalua-
tion are given in the Appendix.

The convergence properties of the Hylleraas basis are
decisively influenced by the choice of the value of the pa-
rameter a. In the case of the pure two-center Coulomb
problem, the value of a can be fixed by requiring the ex-
ponential factor exp[ —(g —1)/2a] to match asymptoti-
cally, i.e, for r„r2~ ~, the exponentially decaying tail of
the wave function of a specific united-atom orbital with
principal quantum number n (note that for arbitrary,
finite internuclear distance R, an electron at infinity
"sees" a united-atom nucleus with charge number
Z, +Z2 ). This criterion leads to the prescription

Hc=cNc (20)

for the (real and symmetric) Hamiltonian matrix H. The
overlap matrix N is real, symmetric, and positive definite,
and the vector c comprises the expansion coefficients c„I.

A major advantage of the Hylleraas basis is that it al-
lows a completely analytic evaluation of the elements of
H and N. All matrix elements can be expressed in terms
of two types of basic integrals which can be easily evalu-
ated in closed form by means of recurrence relations.
Details of this procedure are given in the Appendix.

n, l, m

where n =O, l, . . . , n,„; 1 =
~

m ~, [m ~+1, . . . , l,„;
m =0,+1, . . . , +m, „. This leads to the generalized ei-
genvalue problem
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For the numerical solution of the eigenvalue problem
(20), we use standard methods. We first calculate the full

set of eigenvalues and eigenvectors of the overlap matrix
N, so that N may be written as

N =O~NDO~, (21)

for the matrix H given by

H =N —1/20 TH ONND
1/2

The vector 0 is related to c by

C=ND 0&c .1/2 T

(23)

(24)

We solve the problem (21) for the full eigenvalue spec-
trum and for selected eigenvectors by using standard di-
agonalization routines. In the actual calculations, limita-
tions with respect to computer storage restrict the largest
total dimension of the basis space to be less than about
500. A substantial improvement of the efficiency of the
procedure used to solve the problem (20) is presumably
possible. One possibility, which will be the subject of fu-
ture investigations, is the exploitation of the band struc-
ture of the Hamiltonian matrix as determined by the
selection rules (A48). We note that we have not found
any indications of numerical instabilities in our calcula-
tions. However, a careful investigation of possible insta-
bilities seems necessary if the dimension of the basis space
is increased far beyond the present maximum value.

IV. GENERAL PROPERTIES OF MAGNETICALLY
DRESSED ONE-ELECTRON MOLECULAR ORBITALS:

THK CASK 8=0

A separate discussion of the case 0=0 is advisable for
several reasons. (i) The Hamiltonian (8) contains four pa-
rameters [Z2/Z„R, B,8; note the scaling relations (13)
and (14)] whose values can be independently varied
within their physical boundaries. Therefore, in a first ap-
plication of our method, it is appropriate to keep the
values of one or two of these parameters fixed in order
not to get lost in the full complexity of the problem. (ii)
The case 0=0 is distinguished by the fact that the angu-
lar momentum projection m is a good quantum number
and that, accordingly, at a given level of accuracy, the
effort spent to diagonalize the Hamiltonian is drastically
smaller than in the case 0&0. Alternatively, for a given
maximum basis size, the accuracy of the 8=0 results can

where ND is the diagonal matrix built up from the eigen-
values of N, and O~ is the (orthogonal) matrix composed
of the associated eigenvectors (Oz denotes the transpose
of Oz ). The diagonalization of N is substantially
simplified by the fact that this matrix is diagonal in the
label m and that its elements are independent of the sign
of m [cf. Eq. (A15)). For the construction of the matrix
Oz, it is therefore sufficient to diagonalize separately
the overlap matrices in the m subspaces with m

=0, 1, . . . , m, „. Having obtained ND and ON, the
problem (20) can be transformed into the standard eigen-
value problem

(22}

be pushed to a much higher degree. (iii) Previous calcula-
tions dealing with magnetically dressed molecular orbit-
als have considered almost exclusively the H2+ system at
0=0. To establish our method, a systematic comparison
of our results for this specific case with those of the previ-
ous investigations seems indicated.

The calculations for the case 0=0 can be restricted to
non-negative m values, since the Hamiltonian matrix for
fixed m is, after subtraction of the diagonal Zeeman term
(B/2c)m, independent of the sign of m. The wave func-
tions |( for m &0 are expressed in terms of those
for m ~0 as g =(—) ~ ~P~

~

[cf. Eq (1.5b)]. The mag-
netically dressed molecular orbitals are labeled
lo, 2cr, . . . , lm. (m =+1 ), 2n(m =+1), . . . , 15(m =+2),
25(m =+2), . . . , with an additional subscript g or u
(corresponding to "gerade" and "ungerade, " respectively)
to indicate the parity of the orbital in the charge sym-
metric case Zt ——Z2 [note that some authors ' use the
labels g and u to denote the quantum number associated
with the z-parity operation z ~—z,' this quantum number
differs from the quantum number of the full parity opera-
tion, which we label g or u, by a factor ( —) ]. In the
limiting case B =0, we use the usual united-atom nota-
tion Iso. , 2po, , 2pm, . . . to label the molecular orbit-
als.

In the following, we present and discuss our results for
the magnetically dressed H2+ and (H-He) + systems. In
particular, we consider the effect of the magnetic field on
the electronic orbitals energies, on equilibrium internu-
clear distances, and on the electronic wave functions.

A. Orbital energies and molecular-orbital
correlation diagrams

At fixed field strength B and angle 6I, the influence of a
strong magnetic field on molecular orbitals can be visual-
ized by drawing correlation diagrams in which electronic
orbital energies are plotted as a function of internuclear
distance R.

Figure 1 shows the correlation diagram for the mag-
netically dressed H2+ system at B =Bo and 8=0 (includ-
ing the lowest orbitals of given symmetry up to

~

m
~

=2) in comparison with the diagram for the field-
free case. In order to emphasize the overall behavior of
the energy curves, we have suppressed the Zeeman split-
ting of the curves for nonzero m values, i.e., each of the
drawn solid curves gives the centroid energy of Zeeman
doublets corresponding to m =+

~

m
~

. Three obvious
effects of the magnetic field can be identified in Fig. 1. (i)
The field causes an increase of the orbital energies, which
becomes larger with increasing value of

~

m ~. This
feature reflects the decrease of the Coulomb interaction
and the linear rise of the purely magnetic (Landau) ener-

gy with increasing
~

m ~. (ii) The united-atom (R =0)
degeneracy of levels with different

~

m
~

values is re-
moved (compare, e.g., the behavior of the lcr„and lm„
curves to that of the 2po and 2pn curves). (iii) At large
internuclear distances, the field tends to reduce the g-u
splitting of energy curves which are degenerate in the
separated-atom (R = oo } limit. This effect is related to
the field-induced increase of the electronic binding ener-
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O

u +igf(He 'i

+' 345~
3d(He )-——

3dm

-3d(H)
—2p(H)

--1s(H)

c 1 0

-1.5

-2.0 1s(He+)—

H,
+

—B=O

B = Bo,e=0

5 10
internuclear distance (a u )

FIG. 1. Orbital energy correlation diagram for the H2+ sys-
tern. Dashed curves: B =0; solid curves: B =Bo, 0=0. The
Zeeman splitting of the energy curves for B =80,

~

m
~

& 0 has
been suppressed. The united-atom and separated-atom energies
correspond to B =0, and the usual united-atom designation is
used to label the B =0 energy curves.

gy, which is associated, at large internuclear distances,
with an increased localization of the wave function in the
vicinity of either nuclear center (cf. Secs. IV C and V D).

Numerical values corresponding to the dressed energy
curves of Fig. 1 are given in Table I. The quoted num-
bers for R & 0 have been calculated by taking throughout
a value of 1.0 for the parameter n,z and including up to
231 functions in the Hylleraas basis [the largest dimen-
sion of the basis space corresponds to n,„=20,
1,„=

~

m
~
+20; note the parity selection rule (A48d) for

the label 1]. The numbers given for R =0 have been ob-
tained by extrapolating energies calculated for very small
R, assuming a quadratic R dependence of the energies in
this range (note that our diagonalization procedure
breaks down at R =0). Within the given acLuracy, the
results of Table I are converged results in the sense that
they remain unchanged under a further extension of the
basis space as well as under a variation of the value of n,z
within rather broad limits. We have not attempted to
find, separately for each orbital and each R value, the
minimum basis set that allows the energies to be calculat-
ed to a prescribed accuracy. To achieve the accuracy of
the numbers given in Table I, the maximum basis size of
231 is required only for the calculation of the m and 5 or-
bitals at the largest R values. In the small-R range, basis
sets with dimension less than 100 are sufficient
throughout.

The main use of molecular-orbital correlation dia-

grams, both in the field-free case and in the magnetically
dressed case, is in the investigation of electronic transi-
tions in quasimolecules formed transiently in ion-atom
collisions. Diagrams appropriate to the discussion of this
situation have to display the total electronic orbital ener-

gy on a scale which places the ionization threshold at
zero energy. Equivalently, one may plot the electronic
binding energy E,b, which for the magnetically dressed
case is given by

E'b E'th E (25)

0.5

I I I I I I

I f5 -3d(H)
Of{He')-- ———---- ------ ——————:=====-2p(H)3g~
3d(He )

3dK
2pK

2p{He+)-
15U :-1s(H)

cj

~~ 1.0
CLI

C:

C:

1.5

O

LJ

2.0 1s(He+)-

2, 5
I I I I I I I I I I

5 10
internuclear distance (a.u. )

FIG. 2. Binding-energy correlation diagram corresponding
to the orbital energy correlation diagram of Fig. 1. The energy
curves for 8 =8O,

~

m
~

&0 include the Zeernan splitting and
all refer to m = —

~
m

~

.

where e is the total electronic orbital energy [including
the contribution (8/2c)m of the linear Zeeman term] on
the scale defined by the Hamiltonian (8). On this scale,
the threshold energy E.,z for arbitrary m values is given by
the lowest energy which an (otherwise free) electron can
have in a magnetic field, i.e., by the energy of the lowest
Landau state, e,s

——8 /2c:—8 /28o.
In Fig. 2, we show the binding energy correlation dia-

gram for the magnetically dressed H2+ system at B =Bo
and 8=0, in comparison with the field-free diagram. The
dressed energy curves for

~

m
~

&0 all refer to the case
m = —

~

m
~

. In comparison with the latter curves, the
curves for m =+

~

m are, on the scale of Fig. 2, shifted
upwards by the Zeeman splitting (which, for 8 =Bc,
amounts to

~

m
~

a.u. ). Hence at 8 =Bo all orbitals with
m =+

~

m
~

&0 are formally unbound [except for the
le „(m = + 1) orbital which crosses the ionization thresh-
old at R = 1.25 a.u.].

A noteworthy feature of the correlation diagram of
Fig. 2 is the appearance of real crossings (at R & 0) of en-

ergy curves whose field-free counterparts merge at R =0,
viz. , the 10.„-1~„crossing at R = 1.6 a.u. and the
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1~ -15 crossing at R =4.5 a.u. When assessing the
influence of these crossings on electronic excitation pro-
cesses, one has to keep in mind, of course, that the real
crossings (of one and the same parity) at 0=0 turn into
avoided crossings when 0&0, and progressively lose their
identity with increasing 0. We return to a discussion of
this point in Sec. V.

The orbital-energy correlation diagram and the
binding-energy correlation diagram for the asymmetric
(H-He) + system at 8 =80 and 8=0 are shown in Figs. 3
and 4, respectively, in comparison with the field-free dia-
gram. The Zeeman splitting has been suppressed in Fig.

3, and the dressed energy curves of Fig. 4 all refer to
m = —

i
m ~. Numerical values corresponding to the

dressed curves of Fig. 3 are presented in Table II. These
values have been calculated by using up to 441 basis func-
tions (the latter number corresponds to n,„=20,I,„=

i
m

i
+20; note the absence of a parity selection

rule for asymmetric systems). As in the H2+ case, the
maximum dimension of the basis space is required only
for the largest R values. With regard to the qualitative
influence of the magnetic field, the remarks made in con-
junction with the H2+ system also apply to the (H-He) +

case.

TABLE I. Energies (in a.u. ) of the lowest orbitals of the magnetically dressed H2+ system at B =Bo
and 0=0, for different values of the internuclear distance R (in a.u. ). The contribution of the linear
Zeeman term to the energy of the m&0 orbitals has been omitted. For accuracy of the numbers, see
text.

0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.25
2.5
2.75
3.0
3.25
3.5
3.75
4.0
4.25
4.5
4.75
5.0
5.25
5.5
5.75
6.0
6.25
6.5
6.75
7.0
7.25
7.5
7.75
8.0
8.25
8.5
8.75
9.0
9.25
9.5
9.75

10.0

—1.9412
—1.83448
—1.661 51
—1.498 42
—1.357 23
—1.236 94
—1.134 37
—1.04642
—0.970 54
—0.904 73
—0.847 42
—0.797 34
—0.753 51
—0.715 11
—0.681 45
—0.651 95
—0.626 11
—0.603 48
—0.583 66
—0.566 29
—0.551 05
—0.537 64
—0.525 82
—0.515 35
—0.506 05
—0.497 74
—0.490 27
—0.483 53
—0.477 42
—0.471 84
—0.466 73
—0.462 02
—0.457 66
—0.453 62
—0.449 85
—0.446 33
—0.443 02
—0.439 91
—0.436 98
—0.434 21
—0.431 59

—0.2756
—0.282 97
—0.304 68
—0.338 72
—0.380 24
—0.422 85
—0.461 23
—0.492 60
—0.516 33
—0.533 04
—0.543 84
—0.549 94
—0.552 39
—0.552 10
—0.549 78
—0.546 01
—0.541 22
—0.535 75
—0.529 86
—0.523 74
—0.517 54
—0.511 36
—0.505 28
—0.499 36
—0.493 64
—0.488 14
—0.482 86
—0.477 83
—0.473 04
—0.468 49
—0.464 16
—0.46006
—0.456 17
—0.452 49
—0.448 99
—0.445 67
—0.442 53
—0.439 54
—0.436 70
—0.43400
—0.431 43

0.0832
0.078 77
0.066 52
0.048 61
0.027 01
0.003 27
0.021 53
0.046 63
0.071 54
0.095 92
0.11954
0.142 29
0.16407
0.184 83
0.204 57
0.223 28
0.24096
0.257 64
0.273 33
0.288 08
0.301 90
0.314 82
0.326 89
0.338 14
0.348 59
0.358 30
0.367 29
0.375 61
0.383 30
0.390 39
0.396 94
0.402 98
0.408 55
0.413 69
0.418 43
0.422 82
0.426 89
0.430 66
0.434 16
0.437 42
0.44047

0.4375
0.436 81
0.434 68
0.431 29
0.426 89
0.421 78
0.416 30
0.410 76
0.405 45
0.400 60
0.396 37
0.392 85
0.39009
0.388 09
0.386 82
0.386 23
0.386 26
0.386 83
0.387 89
0.389 35
0.391 17
0.393 27
0.395 61
0.398 14
0.400 81
0.403 59
0.406 44
0.409 34
0.412 26
0.415 18
0.418 09
0.420 97
0.423 81
0.426 60
0.429 32
0.431 98
0.434 58
0.437 10
0.439 54
0.441 92
0 AHA 22

0.7059
0.707 02
0.710 57
0.71628
0.723 85
0.732 94
0.743 25
0.75448
0.766 38
0.778 74
0.791 38
0.804 13
0.816 89
0.829 56
0.842 05
0.854 30
0.866 26
0.877 91
0.889 20
0.900 11
0.91063
0.920 75
0.93047
0.939 77
0.948 66
0.957 13
0.965 20
0.972 86
0.980 12
0.986 99
0.993 49
0.999 61
1.005 38
1.010 80
1.015 89
1.020 66
1.025 14
1.029 33
1.033 26
1.036 93
1.040 37

1.0290
1.028 79
1.028 23
1.027 25
1.025 95
1.024 39
1.022 66
1.020 84
1.01901
1.017 24
1.015 59
1.014 13
1.012 90
1.011 93
1.011 23
1.010 81
1.01067
1.010 81
1.011 22
1.011 87
1.012 75
1.013 83
1.015 10
1.016 54
1.018 11
1.019 81
1.021 62
1.023 50
1.025 46
1.027 48
1.029 53
1.031 61
1.033 70
1.035 81
1.037 91
1.040 00
1.042 07
1.044 12
1.046 14
1.048 13
1.050 08
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tance R, for the dressed H2+ system in the 10. state is

shown in Fig. 6. Numerical values pertaining to our cal-
culations are given in Table III. The results obtained by
our method are in very good agreement with those of
Peek and Katriel in the limit of small field strength.
This was to be expected since Peek and Katriel use the
most general function, which is separable in prolate
spheriodal coordinates (in these coordinates, the pure
two-center Coulomb problem is separable), as a trial wave
function in their variational calculations. The results ob-
tained by Vincke and Baye in the range 2.35)&10
T&8 (4.7)&10 T agree with our results within the ac-
curacy of Fig. 6. Beyond B =5)(10 T, our values for R,
begin to depart from those of de Melo et al. and of

Wunner et al. The latter two calculations use trial
wave functions which approach the lowest Landau orbit-
al in the high-field limit and which are therefore superior
to our wave functions in this limit.

The breakdown of our method in the high-field limit
becomes more apparent in the total energies E, at the
equilibrium internuclear distance R, and in the corre-
sponding total binding energies E,' ' =c.,h

—c, —1/R, .
Numerical values for these quantities for different values
of the field strength 8 are given in Table III. The total
binding energies are compared in Fig. 7 to the results of
de Melo et al. , Peek and Katriel, and Wunner et al.
While the agreement of our results with those of Peek
and Katriel in the low-field limit is again very good, our

TABLE II. Energies (in a.u. ) of the lowest orbitals of the magnetically dressed (H-He) + system at
8 =8& and 8=0, for different values of the internuclear distance R (in a.u. ). The contribution of the
linear Zeeman term to the energy of the m &0 orbitals has been omitted. For accuracy of the numbers,
see text.

0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.25
2.5
2.75
3.0
3.25
3.5
3.75
4.0
4.25
4.5
4.75
5.0
5.25
5.5
5.75
6.0
6.25
6.5
6.75
7.0
7.25
7.5
7.75
8.0
8.25
8.5
8.75
9.0
9.25
9.5
9.75

10.0

—4.4724
—4.102 07
—3.627 42
—3.256 99
—2.983 82
—2.784 73
—2.639 81
—2.533 57
—2.454 37
—2.393 88
—2.346 44
—2.308 25
—2.276 82
—2.25046
—2.228 01
—2.208 65
—2.191 76
—2.176 89
—2.163 70
—2.151 91
—2.141 32
—2.131 74
—2.123 04
—2.115 10
—2.107 82
—2.101 13
—2.094 96
—2.089 25
—2.083 94
—2.079 00
—2.074 40
—2.070 25
—2.066 05
—2.062 25
—2.058 68
—2.055 32
—2.052 14
—2.049 13
—2.046 28
—2.043 58
—2.041 02

—0.9889
—1.011 89
—1.076 17
—1.16079
—1.233 66
—1.27441
—1.281 15
—1.261 55
—1.224 97
—1.179 16
—1.12940
—1.079 10
—1.030 19
—0.983 80
—0.940 50
—0.900 53
—0.863 92
—0.830 60
—0.80044
—0.773 22
—0.748 70
—0.726 64
—0.706 78
—0.688 86
—0.672 65
—0.657 93
—0.644 51
—0.632 22
—0.620 92
—0.61049
—0.600 82
—0.591 79
—0.583 44
—0.575 60
—0.568 24
—0.561 33
—0.554 81
—0.548 66
—0.542 85
—0.537 34
—0.532 12

—0.8648
—0.852 50
—0.82047
—0.777 40
—0.729 57
—0.680 87
—0.633 52
—0.588 73
—0.547 14
—0.509 07
—0.474 59
—0.443 64
—0.416 05
—0.391 59
—0.369 97
—0.350 87
—0.333 99
—0.31903
—0.305 73
—0.293 84
—0.283 17
—0.273 54
—0.264 81
—0.256 85
—0.249 58
—0.242 90
—0.236 74
—0.231 04
—0.225 76
—0.220 84
—0.216 26
—0.211 97
—0.207 95
—0.204 17
—0.200 62
—0.19727
—0.194 11
—0.191 12
—0.188 28
—0.185 59
—0.18304

0.0000
—0.001 40
—0.005 21
—0.010 82
—0.017 27
—0.023 56
—0.028 72
—0.032 00
—0.032 89
—0.031 11
—0.026 61
—0.019 51
—0.01003

0.001 49
0.014 71
0.029 26
0.044 76
0.060 91
0.077 41
0.094 02
0.11054
0.126 83
0.142 76
0.158 24
0.173 20
0.187 59
0.201 37
0.214 53
0.227 05
0.238 92
0.250 14
0.260 71
0.270 64
0.279 94
0.288 59
0.296 64
0.304 05
0.31081
0.31691
0.322 32
0.327 06

0.2080
0.21045
0.217 73
0.229 10
0.243 70
0.260 68
0.279 28
0.298 85
0.318 86
0.338 88
0.358 60
0.377 76
0.396 15
0.413 63
0.430 12
0.445 53
0.459 86
0.473 11
0.485 31
0.496 50
0.506 75
0.516 14
0.524 74
0.532 62
0.539 86
0.546 53
0.552 68
0.558 37
0.563 64
0.568 55
0.573 13
0.577 41
0.581 41
0.585 18
0.588 71
0.592 05
0.595 20
0.598 18
0.601 00
0.603 67
0.606 21

0.6881
0.687 85
0.687 11
0.686 00
0.684 68
0.683 35
0.682 20
0.681 43
0.681 23
0.681 74
0.683 07
0.685 30
0.688 48
0.692 62
0.697 71
0.703 72
0.710 57
0.718 20
0.726 50
0.735 38
0.744 73
0.754 43
0.764 38
0.77448
0.784 65
0.794 80
0.804 87
0.814 79
0.824 52
0.834 00
0.843 21
0.852 10
0.860 65
0.868 84
0.876 62
0.883 99
0.890 91
0.897 37
0.903 34
0.908 81
0.913 80
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TABLE III. Equilibrium internuclear distance R„ total ener-

gy E„and total binding energy E,' ' of the magnetically dressed
H~+ system in the electronic 1o.

g state at 0=0, for different

values of the magnetic field strength B.

B
(T)

0
10'

2X10'
5X10'

10'
2X10'
5 X 10'

10
2X10'
5X10'

10'
2X10'
5 X 10'

7.5X 10
10'

R,
(a.u. )

1.997
1.924
1.795
1.503
1.246
1.008
0.747
0.593
0.472
0.350
0.278
0.220
0.159
0.138
0.125

E,
(a.u. )

—0.602 635
—0.575 359
—0.505 980
—0.174 751

0.545 154
2.208 50
7.744 76

17.5214
37.7019
99.6574

204.283
415 ~ 124

1051.46
1583.31
2115.91

E(b)
e

(a.u. )

0.602 635
0.788 125
0.931 513
1.238 60
1.582 51
2.046 83
2.893 74
3.7552
4.8513
6.7276
8.483

10.409
12.40
12.42
11.76

H, '(e =O)

1gg

106 108 109

FIG. 7. Total binding energies E,'") corresponding to the
equilibrium internuclear distances of the H2+ system shown in

Fig. 6.

calculated binding energies are slightly larger than those
of de Melo et al. and of Wunner et al. (and also those of
Vincke and Baye in the range 10 T & B & 5 X 10 T).
Beyond B = 10 T, our results become progressively
smaller than those of the methods which are specifically
adapted to the high-field limit.

Our results given in Table III and displayed in Fig. 6
have been obtained by employing a basis space with

n,„=20, l,„=20 throughout. Within this space, we
have optimized the value of the parameter n, ff by minim-

izing the total energy E, with respect to it. In Fig. 8 we
show the dependence of b,E, =E, —E,' '"' (where E,'
is the minimum equilibrium energy) on n, tr for different
values of the field strength. It is seen that E, is virtually
independent on n, z in a "window" that narrows with in-

creasing field strength. This behavior corresponds to the

I I I I I I I

1.0 —
8-10

O. S—

a

~~ 0.6—

107T

04-

0.2-

10
"eff

20

FIG. 8. Difference hE, of total equilibrium energy and the
corresponding minimum energy (obtained by optimizing the
value of the parameter n, &) for the magnetically dressed H2+
system at 0=0, plotted as function of n, & for various values of
the field strength B. For B & 0, only the right-hand branches of
the curves are shown. The left-hand branches of these curves
virtually coincide with the corresponding branch of the B =0
curve.

field-induced increase of the binding energy which re-

quires the wave function to decrease more rapidly at
large distances (note that smaller n, tt values imply a
larger decay constant in the exponential part of the Hyl-
leraas functions).

Using the same basis size as in the calculations on the
lo. state, as well as the optimized n, ff values obtained for
this case, we have calculated total binding energies for
the magnetically dressed H2+ system in the lowest states
with m = —1, —2, —3, and —4 and euen z parity. The
field-induced decrease of the equilibrium internuclear dis-
tance and the gain in binding energy are expected to be in
the even-z-parity states considerably more pronounced
than in the odd states, since the field-induced accumula-
tion of the electron density between the two protons will

be larger in the even states. The equilibrium distances R,
and binding energies E,' ' of the lowest states of even z
parity have been calculated by Vincke and Baye for
field strengths ranging between 10BO and 10 Bo (note
that Vincke and Baye do not explicitly specify the z pari-
ty of the states they calculate; from an inspection of their
basis function it follows, however, that the basis is re-
stricted to function of even z parity). For a close cornpar-
ison of our results to those of Vincke and Baye, we have
calculated E,'"' at the equilibrium distances R, given by
these authors. The results (including E,' ' values for the

los state; cf. Fig. 7) are given in Table IV. For B & 20BO,
our binding energies are seen to be consistently larger
than those of Vincke and Baye. Starting with the orbitals
of largest

~

m
~

value, our results become gradually
smaller than those of Ref. 40 for higher field strengths.
From a variation of the internuclear distance about the
values given in Table IV, no substantial improvement of
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TABLE IV. Total binding energies E,' ' of the lowest states of even z parity of the magnetically

dressed H&+ system at 0=0, calculated at the equilibrium internuclear distances R, given by Vincke
and Baye (Ref. 40).

B/Bp

10

20

50

0
—1

—2
—3

4

0
—1

—2
—3

4

—0

—2
—3

4

Parity

Q

0

R, (a.u. )

0.950
1.510
1.880
2.162
2.404

0.756
1.164
1.428
1.630
1.802

0.559
0.827
1.006
1.144
1.258

0.446
0.645
0.778
0.881
0.971

0.357

0.269

0.219

Ref. 40

2.1673
1.3431
1.0653
0.9135
0.8141

2.8192
1.7958
1.4369
1.2382
1.1069

3.9804
2.6120
2.1126
1.8317
1.6446

5.1389
3.4387
2.8029
2.4418
2.1996

6.5904

9.0475

11.3847

E(b) (a.u. )

Present work

2.1750
1.3523
1.0748
0.9226
0.8222

2.8268
1.8049
1.4454
1.2442
1.1088

3.9878
2.6177
2.1090
1.8129
1.6062

5.1446
3.4274
2.7550
2.3486
2.0599

6.5845

8.9234

10.8344

our binding energies is obtained. We expect, however, a
considerable gain in binding energy from an individual

optimization of the parameter n,z for the different
~

m
~

values.

C. Wave functions

The structure of the electronic wave functions of mag-
netically dressed molecular orbitals is intimately related
to the effect which the magnetic field has on the binding
properties of molecules, i.e., on binding energies and

equilibrium internuclear distances. In order to illustrate
this effect, we consider in the following a few examples of
wave functions for the H2+ system at L9=0.

Figure 9 shows the z dependence of the lo. wave func-
tion along the internuclear line (x =y =0). If the inter-
nuclear distance is kept fixed at 2.0 a.u. (this value is vir-
tually identical to the zero-field internuclear distance),
the wave function on the z axis is seen to become increas-
ingly enhanced when the field strength increases. While
the enhancement in the vicinity of the nuclear centers is
responsible for the increase in binding energy (cf. Fig. 2),
the field-induced accumulation of electron density be-
tween the centers causes an increased screening of the nu-
clear charges, which tends to lower the equilibrium inter-
nuclear distance (cf. Table III). The field-induced con-
striction of the 1o. wave function about the z axis be-

comes apparent from Fig. 10 in which the x dependence
of the wave function for y

—=z —=0 is shown.
The z dependence of the lo.„wave function along the

internuclear line is shown in Fig. 11 for R =2.0 a.u.
While the field-induced enhancement of the wave func-

H,
' te=0)

1gg

lip(Z)

', 100BG
I --0.0I \

-1.5 -1.0 -0.5
z(a u)

0.5 1.0 15

FIG. 9. Wave functions of the 1crg orbital of the magnetical-
ly dressed H&+ system at 0=0, plotted along the z axis
(x =—y—:0) for various values of the field strength B. The solid
curves refer to R =2.0 a.u. , the dashed curve to the equilibrium
internuclear distance at B = 100Bp.
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V. GENERAL PROPERTIES OF MAGNETICALLY
DRESSED ONE-ELECTRON MOLECULAR

ORBITALS: THE CASE OF ARBITRARY ANGLE 0

%hen the magnetic field is inclined with respect to the
internuclear axis by an arbitrary, nonzero angle 0, the
mixing of different m quantum numbers in the wave func-
tion leads, at a given level of accuracy, to a substantial in-
crease of the basis size in comparison with the case 0=0.
Correspondingly, if we confine the maximum basis size to
about the same size as in the 0=0 calculation, we expect
our method to provide accurate results only in a much
more limited B range. To illustrate this point, we begin
this section by considering explicitly, for a few typical ex-
amples, the m-mixing in magnetically dressed molecular
orbitals.

FIG. 10. Wave functions for the case of Fig. 9, plotted along
the x axis (y —=z =0).

tion in the vicinity of the nuclear centers is about the
same as that of the 10. wave function, the requirement
that the 1'„wave function has to vanish in the plane
z =0 prevents the magnetic field from achieving a sub-
stantial accumulation of electron density between the
centers. Accordingly, the effect of the field on the 10„
equilibrium internuclear distance is small: the very shal-
low minimum of the potentia1 curve, which shows up
roughly at R =12 a.u. in the field-free case, remains shal-
low when the field strength increases. A field-induced
shift of the minimum towards smaller R values is barely
discernible in the range B &Bo. In Sec. V, we show that
the effect of the field on the lowest ungerade state is much
more pronounced when the field is oriented perpendicular
to the internuclear axis.

A. m mixing in magnetically dressed molecular orbitals

Probabilities P for finding the component with good
angular momentum projection m in the wave function of
the lowest gerade orbital (1 ) of the dressed H2+ system
are shown in Fig. 12 as a function of the angle 0. The 1

orbital develops continuously from the 10. orbital at
8=0 and merges into the 1+ orbital at 8=90' [the super-
script + or — indicates the x parity of orbitals at
8=90'; cf. Eq. (11)].

At B =B and R =2.0 a.u. , the admixture of m&0
components in the 1 wave function is seen to be about
2% at 8=90'. To achieve for these parameter values an

—5accuracy in the 1 orbital energy ofbetter than 10 a.u. ,g
basis functions with

~

m
~

values up to 4 have to be in-
cluded in the expansion of the wave function (the proba-
bility P4=P 4 amounts to 0.3X10 ). The admixture
of m &0 components increases rapidly with increasing in-
ternuclear distance R, as is seen from the results for
B =B and R =5.0 a.u. shown in Fig. 12. In this case,
an accuracy of better than 10 a.u. in the orbital energy

Hp'ie=o)

u

R=2 Oau

IIg(z)

1.0

P

08—

I I I I I I

0,6—

-1.5 -1.0 -0.5

—-1.0

0.5 1.0
I

15 z{a u)
0.4—

0.2—

————B = B0, R = 2.0a.u.

B= Bo, R=5.0a u.

——B=10B0,R =1.0a.u.

--2.0

--3.0

FIG. 11. Same as Fig. 9, for the 1o.„orbital of the H2+ sys-
tern. A11 curves refer to R =2.0 a.u.

+ 3

I a I

10 20 30 EO 50 60 70 80 90
etdeg)

FIG. 12. Probabilities P to find the component with angu-
lar momentum projection m in the 1g wave function of the rnag-

netically dressed H2+ system, plotted as function of the angle 0
for various values of field strength B and internuclear distance
R.
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is obtained if basis functions with
~

m
~

(7 are kept in

the expansion of the wave function. For 8 =108p and

R =1.0 a.u. , the m mixing in the 1 orbitals is substan-

tially smaller than for 8 =Bp and R =5.0 a.u. The small

m mixing in the lg orbital for small internuclear dis-

tances, which is observed even at 0=90, reflects the

strong binding of this orbital in the united-atom limit.
This binding causes the magnetically dressed united-atom
wave function to have (independent of the orientation of
the field) large angular overlap with an I =0 orbital.

The m mixing in higher orbitals is more involved than
in the 1 orbital. For large angles 6, the mixing is de-
cisively influenced by the x parity assigned to the orbital
in the limit 8=90'. For even x parity, the wave function
is allowed to be nonzero on the internuclear axis and ac-
cordingly can have a nonvanishing m =0 component; no
such component is present in the wave function of an or-
bital having odd x parity. Whether an orbital develops,
with increasing 0, into a + orbital or into a —orbital
depends on the internuclear distance. For example, the
1o „orbital at 0=0 in the H2+ system develops into the
l„orbital at 8=90' if R =0; for R ~ ao, the lo „orbital
develops into the 1+ orbital (a discussion of the "correla-
tions" of magnetically dressed molecular orbitals between
the limits 8=0 and 90' will be given in Sec. V B).

Strong m mixing, even at very small angles 0, occurs in
the vicinity of real crossings of orbitals of like parity, but
with different m quantum numbers at 0=0. An example
for this situation is the crossing of the 10 „and 1~„
(m = —1) orbitals at R =1.573 a.u. in the Hz+ system
(cf. Figs. 2 and 14 below). For 8&0, the real crossing
turns into an avoided crossing of the l„and 2„orbitals
which eventually, at 0=90', merge in the 1+ and l„or-
bitals.

In the calculations whose results are presented in the
following subsections, we restricted the Hylleraas basis to
functions with

~

m
~

(7 and adjusted the maximum
values of the labels n and I in such a way that the max-

imum dimension of the basis set was not larger than 530.
For the parameter n, ff, the values obtained by minimizing

I

the lo. energy of the H2+ system at 0=0 were used
throughout (cf. Fig. 8).

B. Molecular-orbital correlation diagrams

8—8 I+ (x —z)
4c ' 8c' (26)

The corresponding energies, evaluated in second-order
(nondegenerate) perturbation theory, ' are

The dependence of the electronic orbital energies E (as
well as of the total energies E =e+Z)Zz/R) on the pa-
rameters R and 0 can, in principle, be visualized by
representing the energy surfaces s(R, 8) or E(R,8) in the
form of contour diagrams or projected "landscapes. " It
appears, however, that the amount of information con-
tained in a complete energy surface is too large to be
made visible in a single two-dimensional plot. We there-
fore resort to old-fashioned correlation diagrams showing
the 0 dependence of the energies at fixed R and 8, or the
R dependence at fixed 0 and 8.

In the correlation diagram of Fig. 13, the 8 dependence
of the electronic energies of the lowest gerade and
ungerade orbitals of the dressed H2+ system is shown for
8 =Bp and R =2.0 a.u. The most interesting piece of in-
formation that can be gained from diagrams like this is
the position of the minima of the energy curves [note Eq.
(12b) and the relation s( —8)=e(8)]. These minima
determine the equilibrium positions about which the
magnetically dressed molecule may perform transverse vi-
brations. According to Fig. 13, the equilibrium posi-
tions for 8 =Bp and R =2.0 a.u. are 8=0 for the 1 and
2„orbitals and 8=90' for the l„and 2g orbitals.

The behavior of the energy curves of Fig. 13 in the
small-8 range can be elucidated in the following way.

Expanding the Hamiltonian (8) to order 8z about 8=0,
one obtains

8 8H(8) =H(8=0)+8 l„— xz
2c 4c2

(m)+ g2

' 1/2
8 8 m Q(m)+

m'&m I'=1,2. . .

82
2c 4c 2

(m) (m')
l l

(27)

= —(5j4m)' (f', '~x —z ~P', ') . (28)

In the following, we refer to the first, second, and third
terms in the square brackets of Eq. (27) as the (magnetic)
dipole term, the (electric) quadrupole term, and the

where s'; ' (i =1,2. . . ) are the eigenvalues of H(8=0)
(corresponding to given parity if Z, =Zz), and g'; ' the
associated eigenfunctions. The quantity Q,

' ' is the elec-
tric quadrupole moment of g(

Q( ) (q( )~r2y ~q )

second-order term, respectively.
For the lowest of the gerade orbitals shown in Fig. 13,

the 1 orbital, the dipole term is zero and the second-
order term negative. The rise of the 1 energy curve
therefore signals a positive quadrupole moment Q() ' at
8 =Bp and R =2.0 a.u. This result can be anticipated
from the z and x dependence of the lcm' wave function
shown in Figs. 9 and 10. From the behavior of the l„en-
ergy curve in Fig. 13, the sign of the lo „quadrupole mo-
ment cannot be uniquely determined. It is likely, howev-
er, that the rather rapid decrease of the curve is caused
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FIG. 13. Electronic energies of the lowest orbitals of the
magnetically dressed H&+ system at B =Bo and R =2.0 a.u. ,
plotted as a function of the angle 8. Solid curves, "gerade" or-
bitals; dashed curves, "ungerade" orbitals.

mainly by the second-order term in Eq. (27), which must
be negative anyhow and should be of fairly large magni-
tude because of the small 10„—lm„(m = —1) energy
difFerence. The positive ln„(m = —1) dipole term and a
presumably large, positive second-order term make plau-
sible the rapid rise of the 2„energy curve in the small-8
range. Since the dipole term for the 15 (m = —2) orbital
is positive, the decrease of the 2 energy curve apparently
refiects a large negative 15 quadrupole moment and/or a
large negative second-order term.

The qualitative behavior of the energy curves in the vi-
cinity of 8=0 may, of course, change as function of B
and R. At B=BO, it turns out that the maximum-
minimum properties of the orbitals shown in Fig. 13 do
not change when R is varied between very small values
and 10 a.u. (cf. also Fig. 15 below). In other cases, it has
to be decided by explicit calculation whether or not 8=0
is an equilibrium position of the magnetically dressed
Hz+ system.

The behavior of the energy curves in the vicinity of
8=90' is not as easy interpreted as that for 8=0. Per-
forming an expansion similar to Eq. (27), one sees that
the correction to the energy at 8=90' involves, apart
from a second-order term, expectation values of the
operators l„and x —z in states of good x parity (and of
good fuli parity if Z, =Zz). These expectation values
can neither be evaluated in closed form nor be rewritten
in terms of multipole moments.

The energy curves shown in Fig. 13 establish "correla-
tions" between magnetically dressed molecular orbitals
with the field parallel and perpendicular to the molecular
axis, respectively, i.e., they connect in a continuous way
an orbital at 8=0 to an orbital at 8=90. As in the case
of the usual correlations between united-atom and
separated-atom orbitals, one has to distinguish in the
present case between "adiabatic" and "diabatic" correla-
tions.

The adiabatic correlations are established by following
the energy curves obtained from the complete diagonali-
zation of the Hamiltonian (8) all the way from 8=0 to
8=90 (the assignment of a definite x parity in the limit
8=90' is easily accomplished by comparing orbital ener-
gies and wave functions calculated in the full basis to the
corresponding quantities calculated in the basis sets with
even and odd x parity, respectively). For the case of Fig.
13, the adiabatic correlations can be schematically writ-
ten as

1g log~ lg

2„: 1o.„—+ 1+,

1„: lm„(m = —1)~2+

2: 15(m = —2)~2+

0.5—
( 1 I I ( I I I I I

1')u(m = -3)

0

Cf

~~ -0.5
cj

D

—-1.0
o
LJ
OJ

OJ

1Kg

u

g

0

900

gu(H)

-1z„(m= -1)(H)

-2.0—
I ( I I 1 I 1 l I

5 10
internuclear distance (a.u. )

FIG. 14. Electronic energies of the lowest orbitals of the
magnetically dressed H&+ system at 8 =80, plotted as function
of internuclear distance for 8=0 (dashed curves) and for (9=90'
(solid curves), respectively. The separated-atom energies refer
to the dressed H atom.

Since in the strictly adiabatic case, energy curves of one
and the same spatial symmetry [parity is the only spatial
symmetry of the Hamiltonian (8) for 0 & 8 & 90' and

Z&
——Zz] are not allowed to cross, the adiabatic correla-

tions are solely decided by the ordering of the levels of a
given symmetry in the limits 8=0 and 8=90', i.e., the
lowest gerade orbital at 8=0 correlates to the lowest
gerade orbital at 8=90', etc.

Diabatic energy curves are usually constructed from
adiabatic energy curves by ignoring the splitting of the
latter curves at "close" avoided crossings. An example
for such a crossing is the 2„-3„avoided crossing at
8=70. The small splitting at this crossing indicates that
the 2„and 3„orbitals (which correlate adiabatically to
the 2+ and l„orbitals, respectively) have, at 8=70', al-

ready "almost pure" x parity. Ignoring the 2„-3„split-
ting, one may construct a diabatic energy curve connect-
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ing the ln.„(m = —l) orbital at 8=0 to the l„orbital at
8=90.

To illustrate further the effect of the magnetic field for
nonzero angles 8, we display in Fig. 14 the R dependence
of the energies of the lowest magnetically dressed H2+ or-
bitals at 8=90'. Numerical values of these energies are
given in Table V. Also shown in Fig. 14 are the energy
curves of those 8=0 orbitals which are degenerate with
the 8=90 orbitals at R =0. It is evident that the degen-
erate orbitals can be transformed into each other by ro-
tating the coordinate system through 90' about the y axis.
Accordingly, the x parity of a 8=90' orbital at R =0 is
identical to the z parity of the 8=0 orbital with which it

is degenerate; this rule is easily verified for the orbitals
shown in Fig. 14.

The adiabatic correlations among the united-atom
(R =0) and separated-atom (R = 00 ) orbitals at 8=90'
are governed by the conservation of x parity. In a sym-
metric system like H2+, pairs of energy curves of oppo-
site parity and one and the same x parity correlate to a
separated-atom orbital of just that x parity. In the strict
separated-atom limit, the orbital energies are independent
of the orientation of the magnetic field with respect to the
internuclear axis (the only preferred direction in the
separated-atom problem is the field direction), and the x
parity of a 8=90' orbital agrees with the z parity of the

TABLE V. Energies (in a.u. ) of the lowest orbitals of the magnetically dressed H2+ system at B =BD
and 8=90', for different values of the internuclear distance R (in a.u.). For accuracy of the numbers,
see text.

0.0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.25
2.5
2.75
3.0
3.25
3.5
3.75
4.0
4.25
4.5
4.75
5.0
5.25
5.5
5.75
6.0
6.25
6.5
6.75
7.0
7.25
7.5
7.75
8.0
8.25
8.5
8.75
9.0
9.25
9.5
9.75

10.0

—1.9412
—1.833 85
—1.65902
—1.492 90
—1.347 67
—1.222 53
—1.11452
—1.020 84
—0.939 28
—0.868 23
—0.806 52
—0.753 31
—0.707 91
—0.669 68
—0.637 87
—0.611 60
—0.589 92
—0.571 90
—0.556 71
—0.543 70
—0.532 36
—0.522 32
—0.513 31
—0.505 16
—0.497 71
—0.490 85
—0.484 50
—0.478 60
—0.473 07
—0.467 88
—0.462 97
—0.458 32
—0.453 88
—0.449 63
—0.445 54
—0.441 58
—0.437 72
—0.433 95
—0.43024
—0.426 57
—0.422 92

—0.5832
—0.585 56
—0.592 96
—0.605 25
—0.620 61
—0.63600
—0.648 51
—0.656 35
—0.659 01
—0.656 84
—0.650 65
—0.641 40
—0.629 99
—0.61726
—0.603 87
—0.590 37
—0.577 15
—0.56449
—0.552 56
—0.541 46
—0.531 18
—0.521 73
—0.51303
—0.505 03
—0.497 65
—0.490 83
—0.484 50
—0.478 60
—0.473 07
—0.467 88
—0.462 98
—0.458 32
—0.453 89
—0.449 63
—0.445 54
—0.441 58
—0.437 73
—0.433 96
—0.43026
—0.426 60
—0.422 97

—0.2941
—0.294 63
—0.29647
—0.299 44
—0.303 41
—0.318 14
—0.31327
—0.31828
—0.322 51
—0.325 21
—0.325 61
—0.323 05
—0.31705
—0.307 43
—0.294 37
—0.278 43
—0.260 37
—0.241 09
—0.221 46
—0.202 23
—0.18404
—0.167 39
—0.152 57
—0.13964
—0.128 45
—0.11868
—0.11002
—0.102 19
—0.094 96
—0.088 19
—(M81 77
—0.075 63
—0.069 69
—0.063 92
—0.058 28
—0.052 72
—0.047 21
—0.041 73
—0.036 22
—0.030 66
—0.025 02

—0.1594
—0.15974
—0.160 85
—0.162 47
—0.164 58
—0.167 12
—0.16999
—0.173 10
—0.176 28
—0.179 35
—0.182 12
—0.184 34
—0.185 79
—0.18625
—0.185 57
—0.183 63
—0.18040
—0.175 91
—0.17029
—0.163 72
—0.15642
—0.148 62
—0.140 54
—0.13240
—0.124 35
—0.11652
—0.108 98
—0.101 74
—0.094 82
—0.088 20
—0.081 84
—0.075 71
—0.069 78
—0.06400
—0.058 35
—0.052 80
—0.047 30
—0.041 84
—0.036 38
—0.030 89
—0.025 33

—0.0625
—0.06101
—0.059 89
—0.058 03
—0.055 41
—0.052 03
—0.047 88
—0.042 96
—0.037 28
—0.030 88
—0.023 80
—0.016 12
—0.007 91

0.000 74
0.009 76
0.01904
0.028 53
0.038 14
0.047 82
0.057 52
0.067 21
0.076 87
0.08648
0.09604
0.105 58
0.115 10
0.124 62
0.134 19
0.143 82
0.153 53
0.163 37
0.173 33
0.18344
0.19371
0.204 12
0.214 67
0.225 28
0.235 85
0.245 99
0.254 65
0.261 30

—0.2756
—0.272 06
—0.262 14
—0.247 46
—0.229 57
—0.209 68
—0.188 69
—0.167 24
—0.145 76
—0.124 59
—0.103 93
—0.083 94
—0.064 74
—0.046 38
—0.028 93
—0.012 39

0.003 23
0.01793
0.031 75
0.04474
0.05700
0.068 59
0.079 64
0.09026
0.10057
0.11065
0.120 61
0.13050
0.140 37
0.15028
0.16024
0.17027
0.18037
0.19052
0.200 64
0.21060
0.220 10
0.228 69
0.236 15
0.242 71
0.248 68
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orbital obtained by rotating the former orbital through
90' about the y axis of a coordinate system centered about
the nucleus to which the orbital is attached. In the corre-
lation diagram of Fig. 14, it is therefore sufficient to label
the separated-atom orbitals by their m quantum number
and parity. The lowest pair of "+"orbitals (ls+, 1+)
correlates to the lo (H) orbital which has even z parity
and, upon rotation through 90, even x parity. Similarly,
the pair 2~+, 2+„correlates to the lm „(rn = —1 }(H}orbital.
The lowest pair of "—"orbitals (1„,1 ) correlates to the
lo „(H) orbital which has odd z parity.

From Fig. 14 and from the numerical values of Table
V, it is seen that the splitting of the l~+ and 1+ energy
curves decreases, for large internuclear distances R, more
rapidly with increasing R than does the 10g-1o „splitting
[note that for R values larger than the crossing distance
1.573 a.u. of the lo „and lm„(m = —1) orbitals, the lz+

and 1+ orbitals develop continuously from the 1o and
lo „orbitals, respectively, when 8 varies from 0 to 90'].
We shall discuss the reduced g-u splitting in the 0=90'
orbitals in Sec. VC, in conjunction with a discussion of
the behavior of the associated wave functions.

The departure of the 1+ and 1+ energy curves from the
10. and lo„curves in the range R &7 a.u. apparently
reflects the gradual onset of inaccuracies in the absolute
values of the orbital energies for t9=90'. For R ~~, the
energies are expected to vary as 1/R; such a variation is
observed for the 10. and lo„curves in that R range
where these orbitals are almost degenerate, but not for
the 1+ and 1+ orbitals (cf. Tables I and V; note that the
energies given in Table I are "exact" within the quoted
accuracy).

Major inaccuracies in the large-R range are observed
in the absolute energies of the 2g+ and 2+ orbitals, which
should converge monotonically towards the lm„(m
= —1)(H) energy (we exclude here the possibility of
avoided crossings of the 2g+ and 2+„orbitals with higher
orbitals in the range R & 10 a.u. , which might cause the
2+ and 2+ energy curves to decrease again in that range).
From a mere inspection of Fig. 14, we estimate the 2g+

and 2+ energies up to R =6 a.u. to be accurate to better
than 10 a.u. The 2s+ —2+„energy difference is clearly
much more accurate; the monotonic decrease of this
difference up to R =7.25 a.u. (cf. the numbers given in
Table V) indicates an accuracy of better than 10 a.u. in
this range. A considerably worse accuracy can be in-
ferred for the l„and 1 energies from their rapidly in-
creasing splitting in the range R & 7.75 a.u. The accura-
cy of the results shown in Fig. 14 can apparently be in-
creased by individual optimization of the parameter n,z.

C. Potential curves and equilibrium
internuclear distances

In Fig. 15, total energies as function of internuclear
distance (potential curves) are shown for the dressed H2+
system in the lowest g and u states at 8 =Bp, both for
0=0 and 0=90', in comparison to the field-free energies.
For the lowest g state, the minimum of the potential
curve is seen to become more pronounced and its position

1.0—

C$

0.8—
I

I

I

0.6— =90'

5
I

I

R(a.u. )

-0.2—
(ru

-0.6—

pg

1scr
I I I I

FIG. 15. Total energies E of the magnetically dressed H2+
system in its lowest electronic states, plotted as function of in-
ternuclear distance for B =Bo, I9=0 and for B =Bo, 0=90'.
Curves pertaining to the field-free case are shown for compar-
ison.

is seen to be shifted to a smaller R value when 8 changes
from 0 to 90. Under this change, the potential curve of
the lowest u state tends to become rather flat in the range
R (5 a.u. This feature indicates that the l„state (whose
potential curve has a very shallow minimum at R =12
a.u. in the field-free case, which is not much affected by a
magnetic field parallel to the internuclear axis, cf. Sec.
IV C) possibly has a somewhat small equilibrium internu-
clear distance in a sufficiently strong field oriented per-
pendicular to the internuclear axis.

Figure 16 shows the B dependence of the equilibrium
internuclear distance R, for the dressed H2+ system in
the 1+ and 1+ states at 8=90', in comparison with R, -

values for the 1o g state at 8=0. Numerical values for R,
as well as for the total binding energies of the 1g+ and 1+
states are given in Table VI. The equilibrium distance in
the 1+ state is seen to be consistently smaller than the
corresponding distance in the 1' state. For the 1+ state
beyond B =5)& 10 T, R, values can be located which de-
crease rapidly with increasing 8 and possibly converge in
the high-8 limit towards the R, values for the 1g+ state.

Our R, values for the 1+ state are in good agreement
with those of Larsen for B(10Bp ~ At 8 =10 Bp,
Larsen's value is about 30%%u~ larger than the value we ob-
tain by roughly extrapolating the values of Table VI.
Our total binding energies for the 1+ state agree well with
those of Larsen for 8 =Bp and 8 = 108p ~ At 8 = 10 Bp,

g
2

our value is about 10% smaller than Larsen's value.
Beyond 5)&10 T, the slope of our 1+ binding energy
curve becomes negative. This effect apparently parallels
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FIG. 16. Equilibrium internuclear distances R, of the mag-
netically dressed H2+ system in the 1g+ and 1+ states at 8=90',
plotted as function of field strength 8. R, values for the 1m~

state at L9=0 are shown for comparison.

the behavior of the total binding energy of the 10g state
at 8=0 in the range B & 10 T (cf. Fig. 7), which, by com-
parison with definitively more accurate calculations, has
been identified as being caused by inaccuracies in our cal-
culations. We therefore ascribe the departure of our re-
sults from those of Larsen in the range B & 10 T mainly
to the inaccuracies of our results.

The accuracy of the equilibrium internuclear distances
and total binding energies we have calculated for the 1+

state is estimated to be of the same order as that for the
1g+ state. Accordingly, we assume the rapid decrease of
the 1+ equilibrium distance down to values smaller than
the log distance to be a real effect.

To complete the discussion of the total energies of the
magnetically dressed H2+ system, we consider briefly the

0 dependence of these energies at fixed R. This depen-
dence determines the frequencies of small, transverse vi-
brations about equilibrium positions as well as the rota-
tional properties of the molecule in the magnetic field.

For the examples shown in Fig. 15, the total energy at
arbitrary, fixed R changes montonically when 0 varies be-
tween 0 and 90. The energy minimum of the 1 state is
at 8=0 throughout, the minimum of the 1„state is at
8=90'. The difference in total energy of the 1g state at
0=90' and at 8=0, i.e., the lg+-log energy difference
(which is identical to the height of the potential barrier
"seen" by the dressed molecule when it performs "hin-
dered" rotations ), refiects the difference of the corre-
sponding orbital energies (cf. Sec. V B), i.e., the potential
barrier has zero height in the limits R =0 and 00 and a
maximum at R =3 a.u. A similar behavior is observed
for the 1„potential barrier height which reflects the
ln „(m = —1)-1+ orbital energy difference in the R range
below the ln„(m = —1)-1+„crossing, and the 1cr„-1+„en-
ergy difference for R values larger than the crossing dis-
tance.

The 8 dependence of the total energies of the 1 and 1„
states at 8 =80 and R =2.0 a.u. is shown in Fig. 17.
The results of the numerical calculation are compared to
fit curves of the form [E(90')—E(0)]xsin 8. The good
agreement between numerical result and fit curve for the
ls state is a consequence of the small admixture of m &0
components in the lg wave function (cf. Fig. 12), which
entails the 8 dependence of the energy to be dominated
by the term proportional to B sin 8 in the Hamiltonian
(8). The l„energy is less well fitted by the sin28 curve,
but can be shown to be accurately approximated, at the
given B and R values, if a sin 8 term is included in the fit
function. In general, simple and accurate approximations
to the 8 dependence of the energy are highly useful since
they may help to reduce the computing effort in studies
of the rotational properties of magnetically dressed
molecular system and of electronic processes in field-
affected ion-atom collisions.

TABLE VI. Equilibrium internuclear distances R, and total binding energies E,' ' of the magnetical-

ly dressed H2+ system in the electronic 1g+ and 1+„states at 8=90', for different values of the magnetic
field strength 8.

0
1O4

2x10'
5 x104

1O'

2x 1O'

5x10'
10

2x10
5X 106

10
2x 10'
5x 10'

1O'

R, (a.u. )

1.997
1.996
1.991
1.962
1.879
1.698
1.343
1.067
0.826
0.575
0.428
0.313
0.204
0.148

1+
E(b' (a.u. )

0.602 64
0.623 55
0.643 75
0.700 17
0.781 92
0.912 31
1.1747
1.4496
1.7961
2.3620
2.8409
3.2685
3.3406
2.2790

R, (a.u. )

3.520
2.284
1.606
0.952
0.645
0.441
0.271
0.192

1+
E'b) (a.u. )

1.0402
1.2965
1.6158
2.1135
2.4930
2.7497
2.4080
0.7717
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FIG. 17. Total energies of the magnetically dressed H2+ sys-
tern in the 1g and 1„states at B =Bo and R =2.0 a.u. , plotted
as function of the angle 8. Solid curves, result of numerical cal-
culation. Dashed curves, fit curve assuming a sin'8 dependence
of the energy.
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FIG. 18. Wave function of the 1g+ orbital of the magnetically
dressed H2+ system at B =10BO, R =2.0 a.u. , 0=90', plotted
along the z axis (x =y—:0). Solid curve, wave function corre-
sponding to the full Hamiltonian (8); dotted curve, wave func-
tion corresponding to a Hamiltonian obtained from that of Eq.
(8) by omitting the1 term. The lsd wave functionat B =Oand
the lo.

g wave function at 10BO, 0=0 are shown for comparison.

D. Wave functions

To conclude the discussion of general properties of
magnetically dressed molecular orbitals, we consider now
the structure of the wave functions at 8=90' in compar-
ison to that at 8=0 and discuss the separation behavior
of the dressed orbitals for large internuclear distances.

The z dependence of the 1g wave function of the
dressed H2+ system at 8 =2.0 a.u. and 8 =108p is
displayed in Fig. 18. The comparison of the 0=90' and
8=0 wave functions reveals that the magnetic field, when
rotated from parallel to perpendicular orientation with
respect to the internuclear axis, tends to produce a locali-
zation of the wave function about the nuclear centers,
with a corresponding decrease of the wave-function am-
plitude midway between the centers. This behavior ap-
parently is nontrivial and requires same explanation.

Considering the Hamiltonian (8) at 6I=90', one sees
that the magnetic field gives rise to a two-dimensional os-
cillator term centered about the x axis as well as to an I
term. One may argue now that the oscillator term will,
for sufficiently large field strength, cause a compression of
the wave function about the x axis. This view gets sup-
port from a plot of the z dependence of the total static po-
tential V(z) (i.e., the sum of two-center Coulomb poten-
tial and oscillator potential}, as shown in Fig. 19. For
8 = 108p this potential exhibits a "pocket*' midway be-
tween the nuclear centers. If it were not for the I term
in the Harniltonian, the wave function would become
indeed localized in this pocket, as is seen from the dotted
curve in Fig. 18, which has been calculated by "switching
ofF' the l term. The comparison of the dotted curve
with the solid curve in Fig. 18 reveals the crucial role
which the l term plays for the localization properties of
the wave function. In a sense, one may interpret the l
term as a centrifugal term that causes the wave function
to be pushed towards the nuclear centers.
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FIG. 19. Static potential V included in the Hamiltonian (8)
for the magnetically dressed H2+ system at 0=90 and R =2.0
a.u. , plotted along the z axis (x —=y

—=0) for B =Bo and
B =10Bo. The z dependence of the pure two-center Coulomb
potential (B =0) is shown for comparison.

The strong localization of the 8=90' wave functions
about the nuclear centers at sufficiently large internuclear
distances may be understood in a different way by consid-
ering the Hamiltonian (1} in the symmetric gauge cen-
tered on one of the nuclei It fol. lows from Eq. (6) that in
this gauge the oscillator term in the 8=90' Hamiltonian
is centered about an axis which is parallel to the x axis
and passes through the nucleus on which the gauge is
centered. The static potential V(z) then no longer con-
tains a pocket midway between the centers, and is not
symmetric under the reflection z~ —z [note also that the
Hamiltonian no longer commutes with the full parity
operator P when the center of gauge is located off the
midpoint of the internuclear line, cf. the remark follow-
ing Eq. (9)]. It is easily visualized that the potential ex-
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hibits a broad pocket centered about the gauge center
and a narrow "chimneylike'* pocket centered about the
other nucleus. One might therefore argue that the wave
function (and, accordingly, the density) is predominantly
localized in the vicinity of the gauge center, in seeming
contradiction to Fig. 18 which shows that the wave func-
tion is centered symmetrically about both centers. The
resolution of this contradiction is apparently hidden in
the action of the angular momentum operator I, in Eq.
(6), which serves to "distribute" the wave function in
such a way about the centers that the gauge condition (7)
is fulfilled, i.e., the wave function corresponding to the
gauge centered on one of the nuclei differs from the func-
tion calculated in the midpoint cente-red gauge only by a
(plane-wave) phase factor. Thereby, it is guaranteed that
the density remains invariant under a shift of the center
of gauge.

The behavior of the z dependence of the 1„wave func-
tion under a change of 8 from 0 to 90', as exemplified by
the case of Fig. 20, is characterized by a more rapid de-
crease beyond the nuclear centers and a slight increase of
the wave-function amplitude between the centers. This
increase is apparently responsible for the tendency of the
1+ state to exhibit a much smaller equilibrium internu-
clear distance than the 1o „state.

In order to illustrate the behavior of magnetically
dressed molecular orbitals at large internuclear distances,
we display in Fig. 21 the z dependence of the wave func-
tions of the lowest H2+ orbitals at B =80 and R =5 a.u.
Considering the 8=90' wave functions, one sees that in
the range z

~
& 1.5 a.u. the lg+ and 1+ functions are vir-

tually identical in shape. This signals that the wave func-
tions have attained almost complete separated-atom char-
acter in this range. The separated-atom character of the
wave functions is reflected in the near degeneracy of the
1+ and 1+ orbitals (cf. Fig. 14). As can be anticipated
from their fairly large energy splitting at R =5 a.u. (cf.
Fig. 14), the 10 and lv„wave functions at this R value
still show some discrepancies in their shape even in the

v+
2

u)

FIG. 20. Wave function of the 1+ orbital of the magnetically
dressed H2+ system at B =10Bo, R =2.0 a.u. , 0=90', plotted
along the z axis (x:—y=—0). The 2po wave function at B =0
and the 1o„wave function at B =10BO, 0=0 are shown for
comparison.

H 2 R = 5.0a.u

'(gt z)
--0.6

u. )

FIG. 21. Wave functions of the lowest "gerade" an a
"ungerade" orbitals of the magnetically dressed H2+ system at
B =Bo and R = 5.0 a.u. , plotted along the z axis (x—:y =0) for
8=0 (dashed curves) and 8=90' (solid curves).

vicinity of the nuclear centers. Nevertheless, one may
infer from Fig. 21 that our method is able to describe
properly the behavior of magnetically dressed molecular
orbitals at large internuclear distances.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have described and applied a general,
flexible method for calculating "magnetically dressed"
one-electron molecular orbitals. We have shown that this
method, while being specifically adapted to the range of
not-too-high magnetic fields, is capable of giving reliable
results even at field strengths at which the magnetic in-
teraction energy is by orders of magnitude larger than the
Coulomb energy in the unperturbed molecular system.
Particular emphasis has been placed in our investigation
on the study of the dependence of the dressed orbitals on
the angle between field direction and internuclear axis
and on the study of the behavior of these orbitals at large
internuclear distances. These studies are expected to
form a point of departure for detailed investigations of
the influence which strong magnetic fields have on elec-
tronic processes in quasimolecular ion-atom collisions
and on the vibrational and rotational properties of mole-
cules.

In obtaining the results presented here, we have not
made any attempt to optimize the numerical procedure
underlying our calculations. By employing more sophis-
ticated methods for solving the generalized eigenvalue
problem for the Hamiltonian matrix, it will be possible to
achieve a considerable reduction of the computing time
and to extend the calculations into parameter ranges not
covered by the present results. A refined strategy for
finding, at given values of the external parameters, op-
timum values for the parameters specifying the Hylleraas
basis will be also helpful. In order to improve the conver-
gence properties at large field strengths, one may, of
course, think of augmenting the basis set by Landau or-
bitals aligned along the field direction. In this case, how-
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ever, a closed-form evaluation of overlap and Hamiltoni-
an matrix (which constitutes one of the major advantages
of using the pure Hylleraas basis) will not be possible in

general.
As long as we adhere to the framework of the present

calculations, it will be advisable to restrict future applica-
tions of our method to the H2+ molecular ion and the
quasimolecular H+-H collision system in the range
8 (80. This range covers the field strengths estimated to
be present in the vicinity of magnetized white-dwarf
stars, and so it might be appropriate to envisage specific
applications which are relevant to the physics of these ob-
jects.

—(n '+ l )L„.+, (X) (A7)

into Eq. (A5), and which allows I„ for a.) 1 to be ex-
pressed in terms of

Io(n, n ', m ) = f dX exp( X)X—L„(X)L„(X)
0

nn'
(n +I}!

(AS)

[I„(n,n';m)=0 if n' &0], which follows directly by in-
serting the recurrence relation

XL„(X)=(2n'+m +1)L„(X)—(n'+m)L„, (X)

APPENDIX: CLOSED-FORM EVALUATION
OF THE ELEMENTS OF THE OVERLAP MATRIX

AND OF THE HAMILTONIAN MATRIX

A necessary condition for the integrals I„ to be nonzero
is max [ n —a.,O I & n

'
& n +a. The corresponding condi-

tion for the integrals J reads

The elements of the overlap matrix N, max [ n —m —a, 0 I & n
'

& n +m +a . (A9)

(Al)

and of the Hamiltonian matrix H,

H. i,''i =&4.l IH l4. i & (A2)

with the Hylleraas functions g„i given by Eqs. (15) and
the Hamiltonian H given by Eq. (8), can be expressed in
terms of two types of basic integrals, J (n, n';m;a) and
Kp(l, l', m) involving the generalized Laguerre polynomi-
als L„and the associated Legendre functions P&, respec-
tively.

The integrals J are defined as

The symmetry of I„(n,n', rn) and J (n, n', m;a) with

respect to an interchange of the indices n and n is obvi-
ous.

The integrals K& are defined as

Kp(l, l', ~)=f dririPPI (ri)PI (9)—1

(P=0, 1,2. . .;m &0). By means of the recurrence rela-
tion

Kp(l, l', m) =, [(l' —m +1)Kp, (l, I'+1;m)2I'+1
+(l'+m)Kp, (i, I' —1;m)] (Al 1)

J (n, n', m;a)= f dgexp ( g2 1 )
ltf [Kp(l, l', m)=0 if l'&0], which follows by inserting the

relation

XPL ~ L
a " a

(A3) riPP ( ri) =, [(I' —m + 1 )PI +, (71)21'+1

(a=0, 1,2. . . ;m &0) and can be reduced, by introducing
X=(g—1)/a as a new integration variable, to

J (n, n', m;a)

+(l'+m)PP, (ri)] (A12)

into Eq. (A10), the integrals Kp for p& 1 can be expressed
in terms of

where

m
2m +o.+ 1

pp=0

XI „+ „(n,n'; )m,

(A4)

Ko(l 1', m)= f driPt (v1)PI' ('9)
—1

2 (I +m)!
2!+1 (l —m)!

The integrals K& can be nonzero only if

max[i —P, OI & l' & I +P
and

(A13)

(A14a)

I„(n,n', m)= f dXexp( —X)X +"L„(X)L„(X)
0

(A5) I + l'+P even, (A14b)

(x =0, 1,2. . . ). A closed-form evaluation of the integrals
I„is readily achieved by means of the recurrence relation

and are obviously symmetric with respect to an inter-
change of the indices I and l'.

I„(n,n';m)=(2n'+m +1)I„,(n, n';m) Overlap matrix

(n'+m)I, , (n—, n' —1;m)

(n '+ 1)I„—
&
(n, n '+ 1;m ) (A6)

Upon inserting the three-dimensional volume element
dr=(R /8)(g q)d(dridP an—d performing the P in-

tegration, the overlap matrix elements (Al} can be im-
mediately written as
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+m m +m m
nl, n'1' = n'1', nl

~—m, —m'
nl, n'1'

R
mm 2("')Ko( +ii o("'}K2(l'}]

m'=m, (A16a)

maxIn —
~

m
i

—2, 0] &n'&n+
~

m
i +2, (A16b)

max I 1 —2, 0I & I' & l +2,
I + I' even .

(A16c)

(A16d)

(A15)

where we have introduced the shorthand notation
J (n'}:J—(n, n',

~

m i;a) and K&(l')= K&—(l, l',
i

m
~

).
The selection rules for these matrix elements are

%hen inserting this expression into the matrix element

Tnln i ,
''( Pnl I

T
I Wn i )'' (A18}

the denominator g rl —is seen to cancel out against the
corresponding term in the volume element. After per-
forming the P integration, the differential equation for
the associated Legendre functions can be used to elimi-
nate the g derivatives. The g derivative can be evaluated
explicitly by using the relation

Hamiltonian matrix: Kinetic energy part L„.(g)=n'L„(X) (n'—+m)L„&(X) . (A19)

The operator of the kinetic energy T = ——,'V is ex-

pressed in terms of prolate spheroidal coordinates as
The resulting expression for the matrix elements of the
kinetic energy operator reads

Tm, m Tm, m
nl, n'1' = n'1', nl

T —m, —m'
nl, n'I'

R
4

f}mm'~ii Ko(l)
n 1+ + l (l +1)—(n'+m)(m + 1) Jo(n')
a 4a

+(n'+m)(m +1)Jo(n' —1)+ (n'+m—+1)J,(n') — Jz(n')
a 4a

(A20)

m'=m, (A21a)

[J,(n, n', m;a) =0 if n' &0]. The selection rules are Vam =0 Z] Z2

I'2

B+ cos8 I,
2c

m [anx—
~

m
~

—20) &n'&n+ m
~
+2, (A21b)

(A2lc)

Hamiltonian matrix: Potential-energy part

B2
+ 2 I(x +y ) —sin 8([x ]

~= —z }I,
(A23)

V Vhm =0+ Vbm =+1+ Vhm =+2 (A22)

The potential-energy part V =H —T of the Hamiltoni-
an H can be decomposed into a sum of terms correspond-
ing to different selection rules for the angular momentum
projection m:

Vhm =+2

B2

sin6I I — sin28 xz,
2c 8c2

B2
sin2g [x 2]hm =+2

Sc

(A24)

(A25)

(hm =m' —m), where and

r, =—(g+g),R
2

(A26)

r2= —(g—g),R
2 2

(A27)
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x =—[(g —1)(1—ri }]' cosP,
2

(A28)

y =—[(g —1)(1—2) }]' sing,
2

R
Z =—g2),

2

R
[ 2]hm =0 (g2 1 }(1 2)

8

R
[x ]

=+— = (g —1)(1—rI )cos2$,
8

(A29}

(A30)

(A31)

(A32)

[(g2 1 )( 1 $2)]l/2 a a . g~(g2 —~2) a—
Y/ sing —

2 2
cosp (A33)

/ = i-z (A34)

(note that we have taken the midpoint of the internuclear line as the origin to which the Cartesian coordinates x,y, z
refer). The matrix elements V„'&'„ I' of V

= are readily evaluated with the result

R
I = V„' t,./ =5 — [(Zi+Z2)J1(n )Ko(l)5» +(Z2 —Z, )J0(n')K, (l')]

B R B+ cosOm — (1——'sin 8) N, ™,
2c 4 8C2 & nl, n'I'

R B
(1——,

' sin 8)[J4(n')K0(l)511.—J0(n')K4(1')]
32 8c2

R B
(1 ——,'sin 8)[J4(n')K2(l') —J2(n'}K4(l')]

32 8c2
(A35)

the selection rules being

m'=m, (A36a)

the xz operator are easily transformed, by using the rela-
tions

max[ad —
I
~

I

—4 oI & n' & n + I
~

I
+4

max[i —4, 0) &I'&1+4,
I +l' even, if Z1=Z2

L„'(X)=L„(X)—L„1(X)

(A36c)
(21'+1)(1 ri )' PI '(7—))

(A38)

In the evaluation of the matrix elements V„'l"n.l'. corre-
sponding to the term V = +—', the g and 2) derivatives
appearing in the I operator can be performed by using
Eq. (A19) and the relation

(1—2) ) P( (r))=(l'+1)r)P, (ri)

—(i' —m+1)PI+, (2)) . (A37)

The remaining integral as well as the integral involving

=PI 1(2) ) Pp+1(ri), —(A39)

into integrals which are diagonal in the quantum number
m and which therefore can be expressed in terms of the
integrals J and K&. The result for the nonzero matrix
elements of V™= —+I with m ) l is

gg(1)m, m —1 V(1)m —1,m U(1)m, m —1, $y(1)m, m —1" nl, n'I' = n'l', nl nl, n'l' + nl, n'l'

(A40)

U{1)m,m —1

nl, n'l' sino {@7 I &„ I 1'„ 1
')

2c

R B
16 2c

sinO [J&
( n ') —J

&
( n

' —1 ) ]K0(1)5» —,[J (0n ') +J0(n
' —1 ) ][K &

( I ' —1 ) —K1(1'+ 1 ) ]2a (2l'+ 1)

(A41)
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and

~(1)m, m —1

nl, n'I'
g2

8c

sin20, {[J3(n') —J3(n ' —1)][K&(l'—1) K&(—I'+ 1)]
R 8 . 1

64 8g 21'+1
—[J, (n ') —J, (n ' —1)][K3(I' —1)—K3(l'+ 1)] ] . (A42)

For m & 0, the nonzero matrix elements of V™=+I are
given by

m'=m+1, (A44a)

max{n —
f

m
/

—4, 0I &n'&n+
/

m /+4, (A44b)
V(1)—I

m I, —(
I

m
I
+1) V(1)—(

I
m

I +1),—
I

m
I

nl, n'I' n'I', nl

U(1)jm I+1, fm I ~(1) fm I+1, fm I

max{ I —4,0I & I' & I +4,
1+1' even .

(A44c)

(A44d)
(A43)

[note the phase convention inherent in Eq. (15b)]. The
selection rules for the matrix elements V„'I'„ I' are

Finally, the nonzero matrix elements of V™=*2 can
be expressed, by repeated application of Eqs. (A38) and
(A39), as

V(2)m, m —2 V(2)m —2, m
nl, n'I' = n'I', nl

5 2
V(2) —m, —m+2 ~ ~ 2g

128 8c~ 21'+1

X [Jz(n') —2Jz(n' —1)+Jz(n' —2)]

1X, Ko(1+2)5I (21' —1

1 1

21' —1 21'+ 3

1+, Ko(l 2)5t, r'+—z2l'+3

—[Jo(n') —2Jo(n' —1)+Jo(n' —2)]

X, K, (l' —2)—,+, K,(1')+, K,(l'+2)1, 1 1, 1

(A45)

for
~

m
~
&l, and

rr(2)1, —1 rz(2) —1 1 —rz(2) —1 1"nl, n'l' = n'I', nl = nl, n'I'

R 8
128 8g2

sin 8{[J4(n') —Jz(n')][Ko(l)511 —Kz(l')) —[Jz(n') —Jo(n')][K&(l') —K4(l')]I .

(A46)

m'=m+2, (A47a)

max{n —
~

m
~

—4, 0] &n'&n+
~

m
~
+4, (A47b)

The selection rules for the matrix elements V„'I 'n. l' are
I

The selection rules for the elements H„l'n I of the com-
plete Hamiltonian matrix follow from conditions (A21),
(A36), (A44), and (A47):

max{1 —4, 0I & I' & I +4,
1+1' even .

(A47c)

(A47d)

m'=m, m+1, m+2, (A48a)

max{n —
]

m
[
—4, 0I &n'&n+

)
m

) +4, (A48b)
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maxIl —4, 0) (I'(1+4,
I+I' even, if Z, =Z2 .

(A48c)

(A48d)

where 3 = 1, T, V™=0, V™=~1, or V™= ~2. The ex-
ceptional case is that where m =m ' = 1 and
3 = V™=+2, in which we have

The case 0=90

In the case 0=90, the Hamiltonian matrix is diagonal-
ized separately in the spaces I f„t=,g„t'+ ]

("plus"
space) and I1ij„t' 'I ("minus" space), respectively, where
(for rn &0) the functions 1b„t'

+—' are defined by Eq. (16).
The elements of the overlap matrix and of the Hamiltoni-
an matrix referring to the plus and minus spaces can be
immediately expressed in terms of the matrix elements
corresponding to the basis functions g„(. Except for one
case, we have

(ql(+)
~

ya =+2
~

ql(+)) (ql( —)
~

yh =+2
~

yl( —))

(yl
~

Vhm=+2~ y
—1)

(A50)

The matrix elements connecting the functions g„t + with
the functions f„.t=. are given by

(ym(+)~ A ~@0 ) (qo
~

A ~@m(+))

(A51)

(A49) wherenow A =V =+—'or V
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