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Moment-method analysis of the ground state of discretized bosonic systems
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The eigenvalue moment method for bosonic systems, recently developed by C. R. Handy and D.
Bessis [Phys. Rev. Lett 55, 931 (1985)], is extended to discrete quantum mechanics. The relevant
formalism is described and applied in the context of the discretized harmonic and sextic anharmon-
ic potentials. Rapidly converging bounds to the associated ground-state energies are obtained for
fixed lattice spacing a satisfying a & O(1).

INTRODUCTION I. GENERAL PRINCIPLES

The formulation of lattice models for quantum
mechanics and field theory has been an ongoing concern
for some time, particularly in regards to understanding
strong-coupling physics. ' One particular approach inau-
gurated by Bender and et al. focused on the singular-
perturbation aspects of a lattice-regulated strong-
coupling field theory. The issues addressed by them
motivated a similar analysis of quantum mechanics, and
in particular, on the relevance of a moments formulation
for a lattice-regulated quantum mechanics. In this re-
gard, it has been established for continuum multidimen-
sional bosonic systems that a moments' perspective
can achieve important results in the strong-
coupling —singular-perturbation regime. In particular,
rapidly converging bounds to ground-state energies are
attainable. The objective of this paper is to demonstrate
that the same holds for discretized quantum mechanics,
although we shall limit this presentation to two one-
dimensional problems.

Besides the physical motivation for understanding
discretized quantum systems, there are also practica1 con-
siderations. Firstly, from a numerical standpoint lattice
approximations usually allow one to practically address
continuum systems through a computer. Secondly, lat-
tice models may allow for a better understanding of con-
tinuum systems, as was the case when Case and Kac
developed their discrete ana1ysis for the inverse scattering
problem. The same will hold here. Indeed, an impor-
tant theorem on the non-negativity of the bosonic
ground-state wave function can be readily appreciated
within the lattice context; whereas in the continuum, the
analogous theorem is not so obvious. ' This will be one
of the first issues to be discussed. Afterwards, we discuss
the application of the eigenvalue moment method to two
one-dimensional polynomial potential problems: the har-
monic and the sextic anharmonic oscillator. The multidi-
mensional generalization of our results follows in a
manner similar to that for one-dimensional systems.
Much of the necessary formalism has already been ex-
plained elsewhere. Accordingly, some of the subse-
quent discussion will be brief.

The continuum eigenvalue moment method utilizes the
exponential falloff and non-negative property of the bo-
sonic ground-state wave function in order to define a mo-
ments problem. These issues are also relevant to the
discrete formulation. We outline the important features
of one-dimensional lattice Hamiltonians that allow for
the application of the moment method.

Consider the discretized one-dimensional Schrodinger
equation (s =A' /2m)

6'%(L)=4(L+1)+%(L—1)—2%(L) . (1.2)

The lattice Hamburger moments are

u(p)=a g (aL)t'+(L) . (1.3)

As for the continuum case, the finiteness of the lattice
moments is insured by the exponential falloff of the phys-
ical discrete wave-function solution to Eq. (1.1). An ex-
cellent discussion of this may be found in the text by
Bender and Orzag. " They argue that the asymptotics of
solutions to Eq. (1.2) is determined by the asymptotics of
the corresponding continuum solution. For complete-
ness, we include a somewhat different analysis pertaining
to polynominal potentials. In the subsequent presenta-
tion, we restrict our remarks to the positive limit
L~+Oo, for brevity. The extension to the negative
direction follows similarly, and is implicitly assumed.

Let RL =4(L+1)lqt(L). We are primarily interest-
ed in "bounded" lattice solutions for which
limL „RL =—R„exists and

~
R„~ & l. If the latter

holds and R &0, then the lattice configuration has an
exponential behavior

f

qt(L)
/

=exp( L/ ln
/
R„/ /

) . —

—(Ela) b, 4(L)+ V(aL)4(L)=E%'(L),

where a is the lattice spacing, V(aL) is the continuum po-
tential function evaluated at the site x =aL, L is an arbi-
trary integer, E is the energy, and the finite-difference
second-order operator is taken to be
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—(e/a ) [RL +(RL, )
' —2]+V(aL ) =E . (1.4)

Assuming that in the asymptotic limit L ~~ we may re-
place RL & by RL, it then follows that RL takes on the
functional dependence

If R „=0,then the falloff of %(L} as L ~ ao is even more
rapid than this and in either event, all moments of 4' are
finite. Lattice quantization corresponds to determining
the E values for which such bounded solutions exist.

The existence of bound-state solutions for well-behaved
potentials can be established by analyzing the nonlinear
recursion relation satisfied by RL,

E„&(%'~H ~% ) . (1.9)

We will prove that the ground state has a uniform signa-
ture and can be taken to be non-negative. This rests upon
showing that given any normalized configuration 4, the
expectation value (%~H

~

4) is decreased by using a
suitably defined non-negative configuration. It can be
readily argued that the ground state can be taken to be a
real configuration; accordingly, we will restrict our
analysis to real configurations only.

The proof of uniform signature and non-negativity
proceeds as follows. Let %(L) be of nonuniform signa-
ture and nonpositive on the integer set

R+(z) = 1+[z+z(1+4K,/z )'~ ]/(2A, ), (1.5) S=(L iI&L&J], (1.10)

where VL
——V(QL). For asymptotically finite and positive

potentials the latter is always true because

lim [V(aL )/V(aL+a )]=1 .
1 —+Do

For asymptotically infinite and positive potentials the
dominant term in Eq. (1.5) (i.e., R =A, /z) yields the lim-
it behavior

R (VL } VL+,
R ( V~+)) VL

(1.6)

for bound-state lattice solutions. If the right-hand side
approaches unity, then the assumptions leading to Eq.
(1.5) are valid. For polynomial potentials, such is the
case. These are the kinds of potentials considered in this
work.

We now focus on establishing the non-negativity of the
discrete bosonic ground-state lattice solution. We will be
working within the space of normalized lattice
configurations, ( 0

~

0 ) = 1. The self-adjoint lat-
tice Hamiltonian operator will be denoted as
H= —(e/a) 6 + V(aL}. For potentials having a lower
bound V(aL ) & V;„, the Hamiltonian is bounded from
below,

(1.7)

This follows from the simple relation for the kinetic ener-

gy

q"«}~"P«)= X I
'P«+1}—+«}

I

'
L = —oo L, = —ao

from which ensues

[V(«}—V;.] I
q'«}

I

'+ V;.

& ~miII

Realizing that the normalized 4's which extremize
(4'

~

H
~

4') are eigenstates of H and conversely, it fol-
lows that the ground-state energy must satisfy

where A, =(s/a) and z= V(aL) E. The—nature of Eq.
(1.5) is consistent with the assumption limi „(RL/
RL+))=1 tf

lirn [Rz(VL E)/R+—(VL+, —E)]=1,

where I and J are integers or+00, —ao &I &J & ~, with
the additional requirements that %(L) & 0 for some L ES
and %(I—1) & 0 (absent if I= —oo ) and %(L + 1) & 0 (ab-
sent if J= ao ). Note that since 4 has nonuniform signa-
ture I= —00 and J= 00 is not a possibility and thus one
or the other of these latter two conditions is always
present.

Let 4(L) correspond to %(L) for LES and 4(L)
4(L) & 0—for L ES. We want to show that

(4/Hf4)&(%[H/4).
If L& and L2 simultaneously lie in S or in the comple-
ment of S, Cz, we have the product equality
4(L~)@(L )z=%'(L~)%(L2). Thus the only terms re-
sponsible for Eq. (1.11) come from the kinetic energy,
%(L)b %', at L =I—1, I, J, and J+ 1. The relevant con-
tribution to Eq. (1.11) is the relation

—2(e/a ) [4(I—1)4(I)+4(J+1)4(J)]
& —2(s/a ) [%(I—1)%(I)+4(J+1)%(J)], (1.12)

which follows from 4(I —1)=%(I —1) & 0, 4(J + 1)
=%(J+1)&0, 4(I)= 4(I) &0, and—4(J)= —%(J)&0.

As long as either of 4(I) and 4(J) is not equal to zero,
Eq. (1.11) is a strict inequality; otherwise, the energy is
not decreased. Thus, assuming that 4' is a ground-state
wave function, the argument above shows that 4(I)

%(I) and 4(J—) = —4(J) must both be 0 (for other-
wise 4 would yield a lower total energy, a contradiction).
In this case 4 and 4 must both be ground-state wave
functions. This follows from the variational characteriza-
tion of minirnizers of the Rayleigh quotient
(4

~

H
~
4)/(4

~

4): a minimizer must be a solution to
the discretized Schrodinger equation with E=E,. But if
%' and 4 are ground-state wave functions then so is
—,(4—4). Now this is a function which coincides with 4
on S and is therefore nontrivial [recall that there exists an
L in S such that %(L) &0]. On the other hand, this func-
tion is zero on Cz which extends infinitely to one or both
of +00. Since —,'(4 —4) must also satisfy the discretized
Schrodinger equation and since any solution to this
which vanishes at two consecutive lattice sites must be
identically zero (observe that we are dealing with a
second-order linear recursion relation) we have reached a
contradiction. This shows that the ground-state wave
function has uniform signature.
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In fact, the argument above really shows that the
ground-state wave function can never vanish, for if it did
we could construct a wave function of nonuniform signa-
ture which still minimizes the Rayleigh quotient by ap-
propriate reversals of sign in the given wave function as
done above (actually, by more or less reversing the pro-
cess applied above). Since, by the variational characteri-
zation, this new wave function would also be a ground-
state wave function (i.e., satisfy the discretized
Schrodinger equation for E=E,), we could then arrive
at a contradiction as above. Thus we may assume that 0,
the ground-state wave function, is always positive. From
this, in addition, it follows that 4 is nondegenerate (i.e.,
by orthogonality the "other" ground state would not be
of uniform signature).

moment equation

u (p+2) =Eu (p)

P
+2(e/a ) g a'B(p, i )u(p i—) . (2.6)

1=2,
and even

The ground state must be symmetric, hence
u(p =odd) =0. In the continuum theory the even or-
der Hamburger moments correspond to Stieltjes mo-
ments. The same is true for the lattice theory, although
in a more subtle manner. The even order Hamburger
moments are equivalent to the Stieltjes moments of a
discrete distribution,

u(2p)=u(p)

II. HARMONIC OSCILLATOR

—c.20 "+x2% =E%,
—(e/a ) b, %(L)+(aL ) %(L)=E%(L) .

(2.1)

(2.2)

Applying the moment operator gt+" „a(aLp to both
sides of Eq. (2.2), and defining u(p)—=gta(aL }I'%(L),
give

Let us consider the lattice counterpart to the usual
continuum harmonic-oscillator problem

=f dyy~ Ao5(y)+ g A;5(y —y;)
i=1

Ao 00

5o +QAyi'.
i=1

(2.7)

(2.8)

u (2p ) =a g (aL)2~ql(L), (2.9)

In order to define the y s and A s, we must transform
the Hamburger moments of the symmetric configuration,
4( L) =%(L—), according to

—(e/a ) a g (aL } [%(L+I )+%(L —1)—2%(L)]
L = —cc

+u(p+2)=Eu(p), (2.3)

(a 0) ~=2a %(0}+2a g [(aL )z]~%(L ) .
2 L=1

(2.10)

—(E/a ) a g a~[(L —1}I'+(L+I ) 2L~]%(L—)
L= —oo

+u(p+2) =Eu(p),
QO P—(e/a) a g a 2 g B(p,i )L ' 4(L)

t =2,
and even

(2.4)

Note that (a 0) ~=5o,p. Comparing Eqs. (2.10) and (2.8)
it follows that y; =(ai), and A; =2a+(i)

The importance of Eq. (2.7} is that for symmetric
configurations it simplifies the application of the relevant
theorems arising from the moments problem. "' For
the discrete Stieltjes case, the necessary and sufBcient
conditions for

+u(p+2)=Eu(p) . (2.5)

The B(p,i ) correspond to the binomial coefficients. In-
terchanging the two summations in Eq. (2.5) yields the

to correspond to a non-negative discrete distribution are
that the following Hankel-Hadamard determinant in-
equality constraints be satisfied

u(m), u(m+1), . . . , u(m+n)
u(m+1), u(m+2), . . . , u(m+n+I)

„[u]=Det

u(m+n), u(m+n+1), . . . , u(m+2n)

)0 for m=0, 1 and n)0. (2.11)

The Stieltjes moments are generated through the recur-
sive relation

The first nontrivial Hankel-Hadamard determinants
are

P
u(p+1)=Eu(p)+2(E/a) g a 'B(2p, 2i)u(p —i) .

(2.12}

b, 0——E/c, )0,
6, , =10(E/c)+2a (E/E) 4. )0, —
b.o 2

——4[ —16(E/E) +4a (E/E)+28] ~ 0 .

(2.13a)

(2.13b)

(2.13c)

We may take u (0)= l. Combining these inequalities gives us the lowest-order
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ground-state energy bounds

2+( 4+4() 2)1/2 2+( 4+ 112 2)1/2

10
&E&

8

(2.14)

The numerical results for various values of the lattice
spacing are quoted in Tables I—V. The basic program-
ming logic is as follows. We partition a given energy in-
terval [E;„,E,„] and specify some maximum moment
order p,„. At each point in the partitioned energy inter-
val, all the Stieltjes moments of order p (p,„are calcu-
lated. All the corresponding Hankel-Hadamard deter-
minants are evaluated. Only those energy points satisfy-
ing Eq. (2.11) are allowed. Through them one can define
an updated energy interval [E';„,E',„]. The maximum
moment order parameter is increased by 1, p,„~p,„+1,and the entire procedure is repeated. Rapid-
ly converging lower and upper bounds to the ground-
state energy are obtained for a &0(1).

The results for the continuum case, a =0 (in Table I),
are consistent with the order-of-magnitude estimates in
Ref. 4 (Table I). However, the bounds cited in Ref. 4, at
best, are not as accurately determined as those given
here; and at worst, seem to be systematically off, in
order-of-magnitude estimate, by a factor of 5.

Pmax

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

Lower bound

0.912
0.983 884 80
0.984 470 528
0.997 690409 0
0.997 772 762 3
0.999 692 419 1

0.999 692 419 1

0.999951 048 6
0.999954 135 5
0.999988 708 4
0.999988 708 4
0.999993 119 1

0.999993 119 1

0.999993 666 8
0.999993 671 0

Upper bound

1.045 12
1.042 457 6
1.006 142 464 0
1.005 925 745 0
1.000 819 837 0
1.000 819 837 0
1.000 109 564 0
1.000 105 392 0
1.000 008 1560
1.000 008 1560
0.999995 709 4
0.999 995 569 4
0.999 993 976 7
0.999 993 976 7
0.999 993 779 1

attainable for a rescaled theory.
The rescaled lattice Stieltjes moments, u(p)=u(p)/a ~,

satisfy the recursion relation

u(p +1)=(E/a')u(p)

TABLE II. Eigenvalue bounds for the lattice harmonic oscil-
lator (a =0.01, c, =1).

III. DISCUSSION OF NUMERICAL RESULTS
FOR THE HARMONIC OSCILLATOR

+2(e/a ) g B(2p, 2i)u(p i) . —(3.1)

The results cited in Tables I—V show that the moment
approach yields rapidly converging bounds for relatively
small values of the lattice spacing a. For a=5, no tight
bounds are possible. Already for a=1 there is a clear
reduction in the rate that the bounds converge on the
physical value, in comparison to the cited results for
a =0, 0.01, and 0.1. For the large lattice spacing limit
a~ao, an alternate formulation in terms of the "tri-
gonometric moment problem" works very well. This is
discussed in a sequel by Handy, Mantica, and Gibbons. '

For completeness, we make note of some simple bounds

4=[5(x e'/ )+5(—x+e'/')]/2 . (3.2)

Note that there is no unique non-negatiue solution with
respect to the "energy" variable e. However, if we also

impose the Hankel-Hadarnard inequalities prior to taking

If we relabel E/a =e, then the rescaled moments are ex-
plicitly dependent on e and (e./a ) . In the limit a ~~,
the moments are given by u„(p)=e~. This asymptotic
moment solution can be shown (i.e., Carleman's condi-
tion' ' ) to uniquely correspond to a discrete continuum
Dirac distribution

TABLE I. Eigenvalue bounds for the lattice harmonic oscil-
lator (a =0, a=1).

TABLE III. Eigenvalue bounds for the lattice harmonic os-
cillator (a =0.1, c.=1).

P max

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

Lower bound

0.912
0.983 884 8
0.984 470 528 0
0.997 690 409 0
0.997 772 762 3
0.999 692 419 1

0.999 703 693 2
0.999 959 391 5
0.999 960 893 2
0.999 994 952 2
0.999 994 952 2
0.999999 366 3
0.999999 366 3
0.999 999 915 6
0.999 999 921 8

Upper bound

1.045 12
1.042 457 6
1.006 142 464
1.005 925 745
1.000 819 837
1.000 819 837
1.000 109 564
1.000 109 564
1.000 014 955
1.000 014415
1.000 001 959
1.000 001 819
1.000 000 225
1.000 000 225
1.000 000 030

P max

6
7
8

9
10
11
12
13
14
15
16
17
18

19
20

Lower bound

0.908 24
0.982 864
0.984 057 984
0.996 953 0112
0.997038 978 0
0.999031 689 6
0.999055 863 5

0.999 329 995 2
0.999 331 605 2
0.999 368 538 2
0.999 368 967 1

0.999 373 830 8
0.999 373 859 3

0.999 374 507 2
0.999 374 514 6

Upper bound

1.043 92
1.042 563 2
1.005 549 6960
1.005 549 6960
1.000 305 7180
1.000 240 383 0
0.999490 993 3
0.999490 993 3
0.999 391 174 5
0.999 389 983 1

0.999 376 687 2
0.999 376 687 2
0.999 374 887 7

0.999 374 877 4
0.999 374 644 2
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P max lower bound upper bound

TABLE IV. Eigenvalue bounds for the lattice harmonic os-

cillator (a=1, c, =1).
For the symmetric ground state, we may work with the

Stieltjes moments corresponding to u (p) = u (2p), for

p & 0. The moment equation for u (p) is given by

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

0.78
0.8752
0.8752
0.909 234
0.909 866 06
0.921 622 376
0.921 892 771 3
0.926 557 089 6
0.926 557 089 6
0.928 604 259 0
0.928 604 259 0
0.929 420 271 4
0.929 420 271 4
0.929 720 675 3
0.929 720 675 3

1.052
1.052
0.972 44
0.972 44
0.949 053 78
0.948 661 902 8
0.940 550044 8
0.940 550044 8
0.937 331 665 1

0.937 331 665 1

0.936022 554 2
0.936022 554 2
0.935 428 348 7
0.935 428 348 7
0.935 257 1185

u(p+3) =Eu(p) —u(p+1)

P
+2(e/a ) g B(2p, 2i )a 'u(p i—} . (4.3)

The above moment equation corresponds to a third-order
finite-difference equation. The three initial values
u(0-2), the "missing moments, "must be specified before
all the remaining moments can be generated. The energy
E appears as a parameter in the difference equation. Be-
cause of the homogeneous nature of Eq. (4.3), we are free
to choose any normalization, so long as it is consistent
with the underlying non-negativity of the physical solu-
tion. Contrary to the simple choice u (0}=1adopted for
the harmonic oscillator, it will be necessary to choose

the a~ oo limit, then from Eq. (2.14) a simple relation
follows for e =Ela,

1+(1+40e2la4)1/2 1+(1+112s2la4)1/2

10 8

(3.3)

The asymptotic bounds for e are 0 & e & —,'. Thus, contrary
to the discussion pertaining to the asymptotic theory
defined by Eq. (3.2), e is not unboundedly arbitrary, as
suggested by Eq. (3.3). Thus we interpret this as an indi-
cation that the limit a ~ 00 is not inaccessible because of
a breakdown in the ground state s uniqueness of positivi-
ty, as is confirmed by Ref. 14.

IV. DISCRETIZED SEXTIC ANHARMONIC
OSCILLATOR

We now consider a more difficult problem, that of the
discretized sextic anharmonic oscillator. The corre-
sponding lattice equation is

—( ls)ab, 4+f(aL) +(aL)6]+=E+ . (4.1)

Repeating the technical procedures used in deriving Eq.
(2.6) for the lattice Hamburger moments, one obtains the
sextic moment's equation,

u (p+ 6)=Eu (p ) —u (p+2)
P

+2(E/a ) g a'B(p, i )u(p i) . —
l =2,

and even

(4.2)

P max

6

20

Lower bound

0.066
unchanged

0.066

Upper bound

6.33996
unchanged

6.339 96

TABLE V. Eigenvalue bounds for the lattice harmonic oscil-
lator (a =5, a= 1). These results were obtained by rescaling the
Stieltjes moments according to u(p)/a ~, thus avoiding large
numbers. The Hankel-Hadamard relations are unchanged.
Refer to Eq. (3.1).

2

g u(p)=1.
P=0

(4.4}

M(E;p, q)=5 for 0&p, q &2 . (4.sb)

Note that the missing moments are automatically bound-
ed, 0&u(0—2) &1.

In principle, we could use the Hankel-Hadamard deter-
minant inequalities to constrain and determine the physi-
cal values for the energy and the missing moments. Prac-
tically, this would involve a three-parameter search (E,
and two independent missing moments) in order to deter-
mine where the nonlinear Hankel-Hadamard inequalities
are satisfied. This is very inefficient. Problems involving
three or more independent missing moments become im-
possible. Indeed, all multidimensional problems involve
an infinite hierarchy of missing moments. Because of
this, in Refs. 6 and 7 we reformulated the nonlinear
Hankel-Hadamard moment method in terms of an
equivalent linear theory in the missing moments.

Two important theoretical and practical factors enable
us to develop an equivalent linear formulation of the non-
linear Hankel-Hadamard moment method. The first of
these is outlined in the context of Eqs. (4.7) and (4.8). It
makes use of well-known linear inequality relations tradi-
tionally used in deriving the nonlinear Hankel-Hadamard
inequalities. ' '

The second important factor is the use of the powerful
theory of linear programming' to determine if for 'a

given energy value there cannot exist (infeasibility} a solu-
tion to the aforementioned set of linear inequalities. We
outline below the basic structure of the linearized mo-
rnent method.

The missing moments will become the "independent
variables" in our linear formalism. These variables must
be bounded in order to be able to use linear programming
methods; thus the reason for choosing Eq. (4.4).

The dependence of the u (p)'s on the missing moments
may be represented by

2

u(p)= g M(E;p, q)u(q), (4.Sa)
q=0

where
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2

u(p)= g Q(E;p, q)u(q), (4.6a)

The M matrices are only dependent upon the energy, and
can be generated through the moment equation (4.3)
upon making use of the initialization conditions in Eq.
(4.5b). The constraint relation in Eq. (4.4) allows us to
solve for u (0) in terms of the other missing moments.
We can incorporate this into Eq. (4.5a), obtaining

2 I I
g —u(q) g g C;"Q(E;I+i+j,q}C"

i j=0
I I

& g g C,"M(E;1+i+j,O)C,
" .

i =0 j=O
(4.9b)

For future reference, we also include the bounds
u(0 —2) & 1, or

where

q=0 2

g M(E;p, q)u(q) & 1 M(—E;p, O) for p =0, 1,2 .
q=1

and

1 if q=O
u( )='

u(q) if q =1,2 (4.6b)

M(E;p, O) if q =0
M(E;p, q) M(E;—p, 0) if q =1,2 .

(4.6c)

Let N(L) denote a non-negative lattice function. We
can define an associated discrete distribution by

D(y) = g aN(L)5(y aL) . —

The Hankel-Hadamard determinant inequalities [refer to
Eq. (2.11)]express the necessary and sufficient conditions
in order for D(y) [or equivalently, N(L)] to be non-
negative. These inequalities are traditionally derived
from the following equivalent relations

I
f dy g C~y' D(y))0 for all C's and I &0,—00 .

O

(4.7a)
or alternatively, using u (p) = f "„dyy~D(y),

I I
g g C;u(i +j)C &0 for all C's and I &0 .

i=Oj =0
(4.7b)

I I
g g C u (i +j )C~' & 0

i =0 j=O
(4.8a)

The imposition of Eq. (4.7b) on D (y) and yD (y) would
guarantee that D(y)=0, for y &0, and D(y) &0, for
y=0. Thus, for a Stieltjes distribution, the following
quadratic form constraints insure non-negativity on the
non-negative lattice axis:

(4.9c)

where A and B are a given matrix and vector, respective-
ly (the solution set is a convex "polytope" bounded by in-
tersecting hyperplanes}.

TABLE VI. Ground state for discretized sextic oscillator.

Lattice
spacing

a

Feasible
energy
interval P max ndx

The above infinite set of linear inequalities [with
respect to the independent variables u (1) and u (2)] will
only have a solution for the exact physical energy value.
A rigorous proof of this, with respect to the equivalent
Hankel-Hadamard formulation, has been established by
Ashbaugh and Sundberg. ' Clearly, in order to deter-
mine if a given energy value is unphysical, it is not neces-
sary to solve the uncountably infinite number of inequali-
ties. If one can determine a finite subset of C' and C"
vectors (each of finite dimension) for which the associated
inequality relations are invalid, then one can say that the
given energy value is unphysical. In Refs. 6 and 7, Han-
dy and co-workers describe a "cutting" procedure for
quickly determining such optimal finite subsets of C vec-
tors. As indicated earlier, it is at this stage that the
methods of linear programming are used.

Linear programming is concerned with the following
two issues.

(1) Determining the existence (feasibility) or nonex-
istence (infeasibility) of a solution set to the generic linear
inequality problem

AX(B,

q=I i =0 j=O
I I

g C Q(E;i+j,O)C', (4.9a)
i =0 j=0

and

I I
g g C;"u(1+i+j )C"&0

i =0 j=O

for all C"s, C'"s, and I . (4.8b)

Inserting Eq. (4.6a) into Eqs. (4.8) yields the following
infinite number of linear inequality constraints for the
missing moments, at any arbitrary E value:

2 I I
g —u(q) g g C,'ll'(E;i+j, q)C'

0.01

0.1

(1.41,1.47)
(1.423, 1.438)

(1.4352, 1.4364)
(1.4355,1.4357)

(1.41,1.47)
(1.423, 1.438)

(1.4352, 1.4364)
(1.4355,1.4357)

(1.40, 1.46)
(1.421,1.436)

(1.4331,1.4344)
(1.4334,1.4337)

(1.17,1.30)
(1.19,1.27)

8

10
12
14

8

10
12
14

8

10
12
14

8

20

12
20
34
39

20
22
33
40

21
23
30
42

18
42
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(2) Optimizing some given linear "objective" function
within the solution set.

In most texts, it is the optimization aspect which re-
ceives the greatest attention. An objective function is not
explicitly ingrained in the equations corresponding to Eq.
(4.9). It is clear that these relations are concerned with
feasibility [existence of a u (1),u (2) convex subdomain].
Despite this, the specification of certain appropriate ob-
jective functions is crucial in the deployment of the cut-
ting methods in Refs. 6 and 7. A central aspect of such
cutting techniques is locating a "deep" interior point for
a given polytope. In Ref. 6, the deep interior point is tak-
en to be the average over all "extremal vertices. " In Ref.
7, the deep interior point is defined by the center of the
largest sphere that can be inscribed within the given po-
lytope. The latter is a faster procedure (by at least a fac-
tor of two times the number of missing moments). It is
the one adopted in this work.

The numerical results for the discretized sextic anhar-
monic oscillator are cited in Table VI. Note that the pa-
rameter p,„corresponds to the maximum moment order
generated [M(E;p, q) for p &pm, „],while, nd„ is the ap-
proximate number of C' and C" vectors required to
determine infeasibility. For the continuum case, a =0,

the cited ground-state energy agrees with those of Hioe
et al. ]7

CONCLUSION

We have extended the moment method for generating
rapidly converging eigenvalue bounds to the discretized
Schrodinger equation. Essential to this program is the
development of a linear programming reformulation of
the original Hankel-Hadamard formalism. This enables
us to solve any multidimensional, linear quantum system,
regardless of the number of missing moments.

In addition to the above theoretical interests, the
present lattice formulation encourages us to solve non-
linear problems by combining the moment methods of
the present work with the lattice high-temperature ex-
pansion techniques of Bender et al. The moments of
certain nonlinear problems can be generated through
such methods.
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