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We study the motion of a reaction front formed by a process, A+B C, in which the reagents
are transported by diffusion and the reaction kinetics is of second order. A scaling description
valid in the long-time limit is derived analytically, and it is found that the center (xf) and the
width (w) of the front scale with time as xI-Jt and w-t ts, while the production rate of C at
xf is proportional to t

The presence of a reaction front is a characteristic
feature of a variety of physical, chemical, and biological
processes. For example, a chemical-reaction-type process
A+8 C exhibits a front (i.e., a spatially localized re-
gion where the production of C is nonzero) provided the
diff'using reagents A and 8 are initially separated in space.
Interest in these fronts has increased recently since it has
been realized that pattern formation in the wake of a mov-
ing front is a quite general phenomenon. ' A classic case
associated with the A+8 C reaction is the Liesegang-
band formations which is thought to be a complex process
of interplay between the dynamics of the reaction front
and the nucleation kinetics of the precipitate (C). Anoth-
er much studied example where a reaction-diffusion front
produces nontrivial structure is the diffusion-limited ag-
gregation. In that case, one of the species (8) plays the
role of the precipitate (C 8) while the density of the oth-
er reagent (A) is negligibly small.

It is quite clear that the first stage in understanding pat-
tern formation in the processes discussed above is the
description and calculation of the properties of the reac-
tion zone, i.e., answering the question of where and at
what rate the reaction product C appears. This question
has been studied for a long time. Simplified theories of
Liesegang-band formation derive the pattern from the
properties of the front alones and phenomenological
theories of diffusion-limited aggregations rely on some
unproven and often contradictory assumptions about the
screening length which is the width of the reaction front.
Unfortunately, most of the works in these fields consist of
numerical simulations and a convincing answer to the
above question has not been found.

In view of the scarcity of analytical results about the re-
action zone, here we study in detail a reaction process
A+8 C in which the transport kinetics of the reagents
is dominated by diffusion and the reaction kinetics is of
second order. Our aim is to present an analytical calcula-
tion of the spatial distribution of the production rate of C.

The mathematical description of the process we consid-
er is given by the set of reaction-diffusion equations

r

R(x, t) -ka(x, t)b(x, t) -t ~F X —Xf
a (3)

where the position of the center of the front, xf, scales
with time as xf- Jt (if ap bp the front does not move
and xf 0), the width of the reaction front is proportional
to t' with a —,', and the scaling exponent of the produc-
tion rate of C at x xI is p

In order to make the mathematics more transparent, we
shall simplify the calculation of R(x, t) by assuming that
the diffusion constants are equal, D, Db D. The
derivation can be carried through for the case of D, WDb
and the conclusions about the scaling properties of the re-
action front [Eq. (3)] and about the numerical values of
the exponents are not changed. The ratio D,/Db is an ir-
relevant variable in the sense of critical phenomena, it
plays a role only in producing some unimportant shape
corrections in the scaling function F(z).

A simplifying feature of the D, Db assumption is that
by measuring length, time, and particle density in units of
I-JD/(kap), z I/(kap), and ap, respectively, we elimi-
nate all the material constants and the only control pa-
rameter left in the problem is q bp/ap. A more itnpor-
tant consequence of the D, Db choice is that after sub-
tracting (2) from (1), one obtains a diffusion equation for
u a b. It can be sol—ved with the appropriate initial
condition (u 1 for x (0 and u —

q for x & 0) and the
result is given by

sponding diffusion constants, and the reaction rate param-
eter is k. As an initial condition, we choose the reagents
to be separated with constant densities for both x & 0
(a ap and b 0) and x&0 (a 0 and b bp) Fo. r this
choice of initial state, the solution of (1) and (2) depends
only on the x spatial coordinate at all times, t, i.e., the sys-
tem effectively becomes one dimensional. Denoting the
solution by a(x, t) and b(x, t), the production rate of C
which is the object of our investigation is obtained
through R(x, t) ka(x, t)b(x, t). Our main result is that
R(x, t) assumes the scaling form in the large time limit

a D,ha —kab,

b Dbts. b —kab, (2)

1 —q 1+q Xu(x, t) a —b — erf
2 2 2J

(4)

where the concentrations of the reactants A and 8 are
denoted by a and b, respectively, D, and Db are the corre-

where erf(x) is the error function. Two points are impor-
tant about this solution. The Grst one is that the width of
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the depletion zone (Wd) de6ned as the region where a and
b are significantly smaller than their initial values (Fig. 1)
scales with time as Jt. The second one follows from the
observation that the production rate of C is expected to be
largest in the region where a =b (Fig. 1). Thus, Eq. (4)
can be used to determine a reference point (xI) in the re-
action zone which we shall call the center of the reac-
tion zone, by requiring that a(x/, t) b(xI, t) F.rom
u(xr, t) 0, the time dependence of x/ is found to be

xI-AD/t, (5)

where the "diffusion constant" of the front DI is deter-

mined from the equation erf (JDI/2) -(I —q)/(1+q).
It should be noted that the results embodied in Eqs. (4)
and (5) are well known for the case of an infinitely thin
reaction zone.

Substituting Eq. (4) into Eq. (1), a nonlinear partial
differential equation is obtained,

a a"—a +ua, (6)

t = 50

which we are unable to solve in general. The derivation of
the scaling form (3) is nevertheless possible if we make
the assumption that the width of the reaction front w in-
creases with time not faster than t' where a & 2 . In oth-
er words, this assumption means that in the long time lim-
it, the width of the reaction zone is negligible compared to
the width of the depletion zone (w « Wq). A justification
for this assumption comes from the numerical solution of

Eqs. (1) and (2) (Fig. 1) where one 6nds that w, which is
defined through the second moment of R(x, t)

(x —xI) 'R(x, t)dx

R(x, t)dx
(7)

scales with time as w-t' and a= & . An a posteriori

justification is the self-consistency of our result a
with the above assumption.

Once w«Wd is assumed, we may expand u(x, t)
around xI and keep only the first term in the expansion

u(x, t) = —K(x —x/)l/~&, (8)

where K is given by K (1+q)exp( —DI/2)/(2 Jx). The
terms neglected in Eq. (8) are of the form

(a„/n!)[(x —x/)/Jt ]", where a„ is the nth derivative of
erf(x) at x DI/2. Taking into account that in the region
of interest we have x —xr = t'« Jt, one can see that the
correction terms are of the order of t"(' '/2) and they
indeed can be neglected in the limit of large times.

Since we make the approximation (8) for u(x, t) we

must reconsider the boundary condition for a(x, t) at
x~ —ce. As we get out of the reaction front in the re-
gion x &x/, we have b 0 and, thus, u(x, t) a(x, t)
Consequently, the solution of Eq. (6) must match u(x, t)
[Eq. (8)] for —Jt «x —x/« —t' In t.he scaling limit
[t eo and z (x —x/)/t' fixed] which will be con-
sidered below, the matching region extends to x
and, thus, we have the following boundary condition:
a (x, t ) —K(x XI)/ Jt—for x —eo. The other
boundary condition [a(x,t) 0 for x +eo] remains
unchanged since it is independent of the approximation
made for u.

Now the solution of Eq. (6) satisfying the boundary
conditions discussed above is obtained by using a scaling
ansatz

0
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It can be easily seen that the boundary conditions imply
the following asymptotics for the scaling function G(z),

G(z)~ —Kz for z —oe and G(z) 0 for z +ee.
(10)

Furthermore, they force the exponents to satisfy a scaling
law

a+P/2

Substituting (9) into Eq. (6) and introducing the notation
z (x xf )/t', one 6nds an equation

FIG. 1. Numerical results for Eqs. (1) and (2) demonstrating
that the width of the depletion zone (Wq) increases with time
much faster than the width of the reaction zone (w). Length
(x), time (t), the densities (a,b) of the reagents (A,B), and the
magnified production rate (R 100R 100kab) of C are all
dimensionless since they are scaled by 1, ~, ao, and ao/~, respec-
tively [for definition of these quantities see discussion preceding
Eq. (4)]. As an initial condition, we used: a 1, b 0 for
x & 30, and a 0, b 0.5 for x) 30 (the t 0 position of the
center of the front, xr is shown by an arrow).

t ' ' 2 —+G(z) —azG'(z) + t 'QD /2G'(z)
2 f
-t "+'"G"(z)—G'(z-) —KzG(z), (12)

in which the terms resulting from the time derivative in

Eq. (6) (left-hand side) can be neglected in the scaling
limit t ~ oe and z (x xI)/t' fixe—d. In order to obtain
an equation for G (z) which has a solution with the correct
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asymptotics [Eq. (10)], one needs the first term on the
right-hand side of Eq. (12). Since that term alone is not
enough to obtain a meaningful solution, we arrive at the
conclusion that the exponent of t in front of G "(z) must
be zero and thus a —,

' . Then the value of the other ex-
ponent P

—', is also determined through Eq. (11) and,
furthermore, we find that G(z) satisfies the equation

G "(z) G (z)+KzG(z) . (i3)

This equation with the boundary conditions (10) can be
solved numerically and, for example, the value of G(0)
which we shall use below can be determined to be
G(0) -K t 0.5454. . . . It can also be seen from (13) that
for large z where G (z) can be neglected as compared to
zG(z), the asymptotes of G(z) are given by the Airy func-
tion' G(z) =Ai(K'~'z).

Now we proceed by determining b a —u from Eqs.
(g) and (9),

b(x, t) -t ~ '[G(z)+Kz], (14)

and then by finding R(x, t) kab using Eq. (9). One can
see our main result immediately: R(x, t) is indeed de-
scribed by the scaling form given in Eq. (3) with xf- Jt,
a —,

' and P & . A few explanatory notes remain to
complete the derivation.

The scaling function F(z) kG(z)[G(z)+Kz] is ob-
tained from Eqs. (9) and (14). Since F(z) is a symmetric
function of z [Eqs. (13) and (10) yield G(z)+Kz

G( —z) and, consequently, F(z) kG(z)G( —z)], we
conclude that the reaction front is symmetric about the
point xf. This observation justifies the name "center of
the reaction front" we introduced for xf.

The production rate of C at xf can be obtained through
the numerical value of G(0),

R (xf, t ) -kG (0) '/t ' ' =0.298kK' '/t ' '.
Using the scaling form [Eq. (3)] for the evaluating the

width of the front [Eq. (7)] it is a matter of change of
variables in the integrals to show that w-Qt' /K' as
claimed (the constant of proportionality Q=2 can be
determined numerically). This result may be used to esti-
mate the time domain where the approximation w« Wd
which yields scalin~ is valid. Since Wd ——t' [see Eq.
(4)], we have w-t /K' «Wd-t' or, in dimensional
form, to= (kaoK) ' « t Takin.g the values of
k = 10 mol 'sec ', ao 100bo= 10 mol from a
theory' which reproduces the formation of Liesegang
bands, we find K= 10, and, consequently, to= 10 sec.
Thus, the scaling regime seems to set in fast on the time-
scale (hours) of the band formation.

Having finished the mathematical derivation of Eq. (3),
we now present a simple argument which yields the same
values of a and P as obtained above. The derivation is
based on the following assuinptions: (i) The width of the
depletion zone, Wd, is proportional to Jt. Since the parti-
cles can diffuse to the reaction zone from a distance pro-
portional to Jt (Fig. 1), this is a natural assumption. (ii)
The width of the reaction zone scales with time as w -t'

and a & —, , i.e., w« Wd. (iii) The scaling of the produc-
tion rate of C in the central region of the reaction zone is
given by t ~. The last two points are scaling assumptions
based on studying the numerical solution of Eqs. (1) and
(2).

The values of a and P are calculated by deriving two
scaling laws connecting these exponents. The first one fol-
lows from a conservation law: the number of particles C
produced in the reaction zone is equal to the number of A-
and 8-type particles entering the zone. The number of C
particles produced in a unit of time can be estimated as
wR-t' ~, while the number of A and 8 particles enter-
ing the reaction zone in a unit time is given by their
currents j, —D, 8a/8x and jb

—Db8b/8x towards the
reaction zone. Since a and b decrease from their initial
value to zero in a distance proportional to Wg (Fig. 1), we
can estimate j, and jb to be proportional to Wp, i.e., we
obtain j,—jb-t ' (note that this is a known result in
case of an infinitely thin reaction zone"). Comparing
now the exponents in wR-j, we have the first scaling re-
lation

(is)
The second scaling law is obtained by noting that the

j,-8a/8x-jt, -8b/8x-t ' relation can be used to
estimate the average values of a and b in the reaction
front a-b -w/t 't . Thus, the production rate of C parti-
cles can be obtained as R-t ~-ab-w /t-t ' ' and
comparison of the exponents leads to the scaling relation
2a —1 —P which we have already met in the discussion
of the boundary condition for the equation determining
the scaling function [see Eq. (11)]. The solution of Eqs.
(15) and (11) is a 6 and P —,'. Thus, our analytical
results are recovered from a simple physical argument.

A problem where the results of this paper can help to
simplify the calculation is the formation of Liesegang
bands. The equations to be solved in that case are Eqs.
(1) and (2) and an equation governing the kinetics of the
product C:

c D,hc+kab —u(c) .

Here c and D, denote the concentration and the diffusion
constant of C, respectively, and u(c) describes the de-
pletion of C's resulting from their nucleation and from the
growth of their droplets. Since a and b appear in (16)
only through the source term (kab) calculated above, Eqs.
(1) and (2) do not have to be considered any more. This
simplification makes it possible to extend previous stud-
ies' ' and to investigate how the details of the reaction
zone affect the formation of bands in the asymptotic time
domain. '

A less obvious problem to be explored is how to apply
our results to the theory of diffusion-limited aggregation.

We would like to thank F. Niedermayer for many help-
ful discussions. This research was supported by the Hun-
garian Academy of Sciences through Grants Nos.
AKA1-3-86-324 and Nos. OTKA 819.



3154 L. GALFI AND Z. RACZ

t J.S. Langer, Rev. Mod. Phys. 52, 1 (1980).
2G. T. Dee, J. Stat. Phys. 39, 705 (1985).
sR. E. Liesegang, Naturwiss. Wochenschr. 11, 353 (1896).
4T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400

(1982).
sS. Prager, J. Chem. Phys. 25, 279 (1956); Ya.B. Zeldovitch,

G. I. Barrenblatt, and R. L. Salganik, Dokl. Akad. Nauk
SSSR 140, 1281 (1962) [Sov. Phys. Dokl. 6, 869 (1962}].

sM. Muthukumar, Phys. Rev. Lett. 50, 839 (1983);M. Tokuya-
ma and K. Kawasaki, Phys. Lett. 100A, 337 (1984); R. Ball,
M. Nauenberg, and T. A. Witten, Phys. Rev. A 29, 2017
(1984).

~M. Plischke and Z. Racz, Phys. Rev. Lett. 53, 415 (1984);

P. Meakin and L. M. Sander, Phys. Rev. Lett. 54, 2053
(1985);P. Meakin, A. Coniglio, H. E. Stanley, and T. A. Wit-
ten, Phys. Rev. A 34, 3325 (1986).

sHandbook of Mathematical Functions, edited by M. Abra-
mowitz and I. A. Stegun (Dover, New York, 1965}.

sG. Venzl, J. Chem. Phys. $5, 2006 (1986); D. A. Smith, ibid
$1, 3102 (1984).

tOG. T. Dee, Phys. Rev. Lett. 57, 275 (1986).
K. M. Pillai, V. K. Vaidyan, and M. A. Ittyachan, Colloid
Polym. Sci. 25$, 831 (1980).

'2M. E. LeVan and J. Ross, J. Phys. Chem. 91, 6300 (1987).
'sL Ga16 and Z. Racz (unpublished).


