
PHYSICAL REVIEW A VOLUME 38, NUMBER 6 SEPTEMBER 15, 1988

Nonperiodic time dependence at the onset of convection in a binary liquid mixture
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We report measurements of the convective heat transport near the onset of convection in a nor-
mal He- He mixture for values of the separation ratio y between —0.044 and —0.010. For
y~ —0.018, the first bifurcation was to a relatively large-amplitude time-dependent state with
characteristic frequencies over an order of magnitude smaller than predicted by linear-stability
analysis. The onset of the time dependence was intermittent and not hysteretic. Above onset, the
frequency spectrum of the time dependence either contained discrete frequencies or not, depend-
ing on y.

Convection in shallow, horizontal layers of binary fluid
mixtures heated from below has attracted much attention
recently because it offers the opportunity to study a great
variety of linear and nonlinear phenomena. ' In this sys-
tem there are two control parameters. One of them, the
Rayleigh number R, is proportional to the vertical tem-
perature difference AT across the fluid layer. The other,
the separation ratio ter, determines whether concentration
gradients help (y & 0) or hinder (y & 0) convection. By
changing y, the nature of the bifurcation from the con-
ducting to the convecting state, which occurs when R is
increased beyond R, (y), may be altered. In this com-
munication we are concerned with the convective heat
transport in the region y& y, = —0.010. Close to but
below y, convective motion is initiated in our system via a
backward Hopf bifurcation to a time-periodic state34
which presumably consists of traveling waves. 5 s The
characteristic frequency to of this state diff'ers from the
Hopf bifurcation frequency "

by only a factor of 0.6 or
so, and when scaled by the vertical thermal diffusion time
t„ is approximately equal to 2. We found that for
y& tlr;=- —0.018 the first bifurcation changes dramati-
cally. The convecting state just beyond R, has an inter-
mittent character, apparently forming and disappearing in
bursts with a duration which is much shorter than the ir-
regular separation between them. The convective heat
transport between bursts is zero within our resolution.
Separation between bursts of several hundred times T,
have been observed. The intermittent character of this
state suggests a relationship to the noise-induced convec-
tively (as opposed to absolutely) unstable solutions of the
complex Ginzburg-Landau equation (CGLE) which have
been studied recently. ' '3 As R is increased, the time be-
tween bursts becomes shorter; and for sufficiently large R
successive ones begin to overlap. The spectrum of the
convective heat transport can have periodic components or
be broadband, depending on R and y.

Over a wider range of y but in less detail than explored
quantitatively by us, the onset of time dependence has
been observed previously but no characterization of the
bifurcation lines and of the nonlinear state have been at-
tempted.

Our convection cell had upper and lower boundaries of
copper and sidewalls made of thin stainless steel. The cell

was a rectangular box with vertical height d 0.083 cm,
length 34d, and width 6.9d. The temperature of the top
plate was held constant to ~ 0.5 pK. Power was dissipat-
ed in a resistance heater on the bottom plate and the bot-
tom plate temperature was monitored as a function of
time by a germanium thermometer. We thus had the
ability to measure the temperature difference across the
cell, the average temperature in the fluid, and the (time-
dependent) thermal conductance of the fluid layer. Since
we are interested in the convective part of the heat
transfer, we express our results in terms of N —1, where
the Nusselt number N is the measured conductance nor-
malized by the conductance of the nonconvecting state.
All times and frequencies are normalized by the vertical
thermal diffusion time t„, =d /tc = 24 sec (x. is the
thermal diffusivit ). The fluid had the same 0.03 molar
concentration of He in He used in two previous experi-
ments3"'s and the relationship between y and the aver-
age temperature used here is the same as in the previous
work. The Prandtl number o = v/tc was about 0.6, and the
Lewis number L D/tc was close to 0.03 (v is the kine-
matic viscosity and D the mass diffusivity). The tempera-
ture was always maintained above the superfluid transi-
tion temperature for the mixture.

Figure 1 is a bifurcation diagram for the parameter re-
gion we have studied. For tlr; & tlr & y„ the bifurcation se-
quence for increasing AT is as follows At the open
squares, pure conduction lost stability at a Hopf bifurca-
tion to a state we will call the periodic state. The periodic
state was characterized by a mean convective heat trans-
port N —1 = 10 with periodic modulations = 10 s at
a modulation frequency to=2. These observations are
consistent with the periodic state being composed of trav-
eling waves (TW) with a time-independent envelope and
finite spatial extent. The bifurcation to the periodic
state was hysteretic at these values of y, and AT had to be
reduced to the open diamonds before pure conduction was
recovered. As hT was raised above the onset (AT, ) of the
periodic state, the modulation frequency decreased linear-
ly with a slope Bto/Be = —18, where e = (AT hT, )/hT, . —
At the open triangles, the periodic state lost stability to a
much larger amplitude (N —1=10 ), but time-inde-
pendent state that we refer to as stationary convection.
This bifurcation was also hysteretic, and the values of AT
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FIG. 1. Bifurcation diagram showing lines to transition be-
tween various states. Open squares: conduction to periodic os-
cillations. Open triangles: periodic oscillations to steady con-
vection. Short dashed line: steady convection to conduction.
Open diamonds: periodic oscillation to conduction. Solid cir-
cles: conduction to the slow state. Solid triangles: slow state to
periodic oscillations. Crosses: periodic oscillations to the slow

state. Points are experimentally determined transitions, lines

are a guide to the eye.

at which pure conduction reappears is shown as the short
dashed line in the figure. The periodic state is described in
more detail elsewhere in connection with its behavior
closer to the codimension two point. 3

Of central interest in this communication is the ex-
istence of a state for ppv~ happ;

which has a much slower time
dependence than the periodic state described above. An
interesting characteristic of the slow state is that it is the
first convecting state and yet its onset is intermittent. As
shown in Fig. 2 for y —Q.Q21 and a (Q.3~Q.3)
xlQ 3, the convective heat transport just above onset
consists of irregularly spaced bursts. Note that the time
between bursts is very long compared to t„. The bifurca-
tion to the slow state is shown in Fig. 1 as solid circles and
appears along a line that is a smooth extension of the bi-
furcation line to the periodic state (open squares). The bi-
furcation to the slow state is not hysteretic. The ampli-
tude variations of the Nusselt number are much larger in
the slow state than in the periodic state and the charac-

FIG. 3. (a) A section of a 3000t„convective heat-transport
time series for tv

—0.021, s (3.6~0.3) x10 '. (b) Fourier
transform of the complete time series.
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teristic frequency is more than an order of magnitude
smaller. The slow state is a stable state of the system
which we have observed under stationary external condi-
tions for as long as 1Q t„.

At any value of y, the characteristic frequency of the
slow state increases with a The nature of the time depen-
dence varies with y. Figure 3 shows a portion of a con-
vected heat-current time series and the Fourier transform
of the entire 3QQQt„ time series for y —Q.Q21 and
e (3.6 ~Q.3) &1Q 3. [Note the large change in time
scale between Figs. 2 and 3(a)]. The Fourier transform
reveals a single frequency (ro Q.Q73) with a rich har-
monic structure and a broadband contribution that is
about two times larger than the instrumental background.
By contrast, Fig. 4 showers a portion of the convective heat
transport time series for y —Q.Q44 and a (7.6~Q.5)

I—
&Z

0

(b)

0 0.5 I.O 1.5

FIG. 2. Convective heat-transport time series for
—0.021, 8 (0.3+ 0.3) x10

F1G. 4. (a) A section of a 3000t. convective heat-transport
time series for y —0.044, s (7.6+'0.5) x10 '. (b) Fourier
transform of the complete time series.
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&&10 and the Fourier transform of the complete time
series. The spectral resolution is pro 4.2X10 . Suc-
cessive points in the spectrum scatter randomly about a
smooth curve, showing that at this value of y the Fourier
transform has mostly broad features. We have examined
Fourier transforms of all three time series and find no evi-
dence for a periodic component at frequencies correspond-
ing to the TW state.

Another characteristic of the slow state in this range of
y is that as tJ, T is raised to the values labeled by the solid
triangles in Fig. 1, a hysteretic bifurcation occurs in which
the slow state dies out and a stable periodic state remains.
This state has all the same characteristics of the TW's
which form via the backward Hopf bifurcation for y & y;.
If hT is raised further, the periodic state loses stability to
stationary convection at the open triangles, but if iJ.T is
decreased, one of two events will occur, depending on ttt.

For tit& —0.025, the periodic state remains stable to the
points labeled by open diamonds, below which pure con-
duction is restored. For ttt& —0.025, the periodic state
remains stable only until reaching the crosses, where it
loses stability to the slow state.

To more clearly illustrate the relationship between the
slow state and the periodic state, the following transient
measurement was made: At t 0, with ttt

—0.038, a
was changed from —(1.4~0.3) &10 3 to (11.2+ 0.3)
x10 ', i.e., from conduction to a point where the slow
state is unstable to the periodic state. The resulting time
series is shown in Fig. 5. After 20t„, the slow state, with
its characteristic large amplitude and slow oscillations,
grew out of the conducting state. After 170t„ the slow
state decayed to the periodic state. A Fourier transform is
required to resolve the time dependence of the periodic
state, but here its mean conductance can be compared
with that of the conductive state and the amplitude varia-
tions of the slow state.

At sufficiently small amplitudes, traveling waves in
binary mixtures should have an envelope that satisfies the
complex Ginzburg-Landau equation (CGLE). ' A num-
ber of recent theoretical papers have described the in-

teresting dynamics of this generic amplitude equa-
tion'2' '9 and its application to binary mix-
tures. ""' 2' Our periodic state has the characteristics
of a traveling-wave state with a time-independent en-
velope. One would hope that our results for the slow state
can also be understood on the basis of the CGLE, without
invoking instabilities beyond the scope of that equation.
We presume that in the region of slow time dependence
this envelope has become unstable and that the time
dependence is due to this envelope instability. We note
that the bursts in Figs. 2-5 reach values of N 1 which
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FIG. 5. Convective heat transport as a function of time show-

ing transitions between conduction, the slow state, and the
periodic state for y —0.038. At t 0, s was changed from
—(1.4+'0.3) &10 ' to (11.2~0.3) &10 '. (A Fourier trans-
form is required to resolve the periodic oscillations for t & 180).
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are an order of magnitude larger than the time-averaged
value of N —1 in the periodic state (see Fig. 5). This sug-
gests that the oscillations first form throughout a large
portion or all of the cell, and in the intermittent cases
(Fig. 2) disappear altogether between the bursts. If this is
indeed the case, then the periodic state would seem to be
highly localized, 7 s occupying only about 1090 or so of the
cell.

There are a number of mechanisms which can produce
traveling-wave states with time-dependent envelopes, but
as yet no complete explanation of our results. Deissler
and Brand'2'3 have shown that a generic feature of the
CGLE with a nonzero group velocity is a finite range of
a & 0 where the system is convectively unstable and thus
sensitive to spatially varying sources of noise. Also in the
presence of noise the CGLE can display subcritical
(a & 0) bursts. '3 22 Either of these might provide a natu-
ral explanation of the observed intermittency at the onset
of the slow state. Cross2' has demonstrated a mechanism
for producing slow, periodic modulations of a traveling-
wave state in the absence of noise. However, it is not clear
if his mechanism can explain other features of the slow
state, such as its nonperiodic behavior, the a dependence
of its characteristic frequency, and the hysteretic transi-
tion to the periodic state. A direct comparison with
theory awaits either a theoretical calculation or experi-
mental measurement of the nonlinear parameters in the
CGLE. A determination of these parameters is also im-
portant for deciding whether the Benjamin-Feir instabili-
ty'7 plays a role.
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