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Probing the phase coherence of parametrically generated photon pairs:
A new test of Bell's inequalities
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We show that the two-photon phase coherence of parametrically generated photon pairs, which

is at the origin of squeezed-light generation, can be directly probed using an intensity-correlation

measurement. The resulting intensity correlation leads to a new violation of Bell's inequalities,

which could be experimentally tested.

Parametric processes are well known to produce quan-
tum states of light such as squeezed states' and single-

photon states, s which cannot be described by any clas-
sical wave model of light. These states have been demon-
strated experimentally using, respectively, homodyne' and
photon counting3 techniques. On the other hand, some
quantum states for light or particles have been demon-
strated, which are in conflict with classical notions of
causality and/or locality, and therefore cannot be de-
scribed by any classical model: A criterion for this is the
violation of the so-called "Bell's inequalities. " " These
inequalities restrict the possible amount of correlation be-
tween spatially separated events for a whole class of "local
realistic theories"e which typify "classical" (i.e., non-

quantum) theories according to ideas developed by Ein-
stein, Podolsky, and Rosen. 'z An example of violation of
Bell's inequalities is provided by polarization correlations
between two photons emitted in pairs by atomic cas-
cades'3 ' or direct two-photon decay processes. ' '
Though the possibility of violation of Bell's inequalities in

optics experiment without using polarization correlation
has been considered, 2P2' the schemes proposed so far
differ significantly from the one described below.

In this paper, we show that the two-photon phase coher-
ence of photon pairs generated in parametric processes,
probed using coherent "local oscillator" light beams, give
rise to a violation of Bell's inequalities, which could be ex-
perimentally tested. The detection scheme to be used is in

some sense (see below) a mixture of homodyne and inten-

sity correlations (i.e., photon counting) techniques. 22

A convenient way of describing parametric processes
for our purposes is using the unitary transformation
which relates the input mode's destruction operators
la(m)l to the output mode's destruction operators [b(m) I

for a parametric ampliler

b(m) G(m)a(m)+M(m)at(2mp —m) (1)
where m and mp are, respectively, the signal and pump op-
tical frequencies, and where G(m) and M(m) obey the
unitarity relations

These equations give a correct account of a wide range
of parametric processes involving second- or third-order
nonlinear effects, as it has been established by squeezing
experiments. It can be said that Eq. (1) describes the
creation of photon pairs at both sidebands co and

(2mp —m) with respect to the pump frequency (these are
usually called signal and idler sidebands). Here, we want
to separate spatially the signal and idler sidebands, which

can be done using a dispersive element as shown in Fig. l.
One thus assumes that one selects two narrow bands of
frequency 8~ and 82.
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where I y) is the quantum state we are considering and
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which are directed to different detectors Dl and D2. We
will assume in the following that mt+m2 2mp. Using
50% beam splitters BS1 and BS2, the light beams from
the dispersive element are mixed before detection with
two weak coherent beams at frequencies ml and m2, re-
spectively. The destruction operators for modes a, cl, and

c2 (see Fig. 1) are therefore given by
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FIG. 1. Experimental scheme. The parametric amplifier PA
transforms the (vacuum) input modes a to output modes b. The
signal and idler parts of modes b are separated using a dispersive
element (prism and slits), then mixed with modes c| and c2 us-

ing beam splitters BS1 and BS2. One measures the intensity
correlation between modes d I and d2.
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pl, p2 are coherent state amplitudes. The operators d& and d2 for the detector modes are obtained from ct and c2, and
from the output modes of the dispersive element b ~ and b2.

d, (m) - fb, (m)+c, (m)],1

2

d2(ko) [b2(ko) +C2(ko)l .l

(Sa)

(sb)

The detectors Dl and D2 are then set to measure the intensity correlation function between modes d~ and d2, which is
given for a delay time r by the relations

C,2(g) dm dko' dko" dko"'e' 'e' '+' (d( (ko)d &
(ko') dj(m" )d 2(ko"')),

I I g Bi gB1 ~B2 g B2
1 2

(6a)

where

(6c)

I( „adms a dm'(d& (m)d((m')), (6b)

I2-„a dko "~ a dm"'(d j(m")d2(m"')&.

As expected, C~2(t) does not depend on the time vari-
able k, which is eliminated when integrating over the fre-
quencies. In order to proceed further, we will assume that
the parametric gain is uniform over the frequency band-
widths 8~ and 82, and therefore omit the m dependencies.
We define

and Weinberg in 1970.2s It is most apparent when
IM I « IG I, i.e., when the parametric gain is very

small. On the other hand, when I M I 0 and P~,P2w0
we obtain

C»(x) -i.
This is just the "flat" random coincidence spectrum for
laser light. Let us now assume that IM I « I 6 I, and
adjust the coherent field intensities to get

IG(mg) I -IG(ko2) I -IGI,
IM(mt) I

- IM(ko2) I -IMI,
(7a)

(7b)

This means that the coincidence rate from the laser fields
is equal to the pairs of photons counting rate for r 0.
Then we obtain

Arg[G(m~)M(m2)] -2tsp.

It is also useful to introduce

&~ -Arg(p&), p2-Arg(p2) .

(7c) Ci2(x) 1+ +2 cos(pt+&2 —2&p) .

(is)

The calculation is then straightforward, and we get

N»(x)
C)2(x) ~1+

I)I2

where we have introduced the normalized delay time

x -amr/2.

N~2(x) and I~I2 are given by

N»(x)-IGI'IMI' """ (~m)'

(9)

(io)

Here the first term is due to laser-laser coincidences, the
second one to pairs coincidences, and the third one is an
interference term depending on the phases p~ and p2.
C~2(x) is plotted in Fig. 2 for various values of

(pt+p2 2&p). The most dramatic effect is obtained

4.0 I I I I

3.5—

3.0—

+2cos(&~+&2 2&p) IP[P2G M I hm,

2.5—

(1 la)

I,I, -[IMI'~m+ IP, I'][IMI'~m+ IP, I']. (iil )

To get some insight in these results, let us consider first
the case where P~ -P2 0, i.e., when there is no coherent
"local oscillator" field. We obtain
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This is the well-known "pair production" correlation
peak, which was observed for the first time by Burnham

FIG. 2. Intensity correlation as a function of the normalized
delay x for different values of the phase p &~+&2 2&0.
Curves a, b, c, d, e correspond respectively to p 0, m/4,

z/2, 3z/4, z.
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for x r 0, ~here we get

C12(0) -2[1+cos(p + p2 2&0)] . (i6)

This correlation function is mathematically the same as
the polarization correlation function which is well
known to yield a violation of Bell's inequalities in atomic
cascade experiments. ' ' Therefore, the experimental
setup of Fig. 1 does yield a new test of Bell's inequalities.
It has the advantage that the quantum correlated pairs of
photons are emitted in well-defined directions, contrary to
the atomic cascade experiments. Therefore, using this
scheme, together with high-quantum efficiency solid-state
photomultipliers recently developed, would improve
greatly over the best detection efficiency value achieved so
far, which is about 10, and includes both solid-angle
collection efficiency and photomultiplier quantum
efficiency. ' Such an improvement is related to the so-
called "supplementary assumption, " which has always
been made in order to derive usable Bell's inequalities
[see Eq. (A2) and discussion in Appendix].

As a conclusion, we have shown that parametrically
generated pairs of photons could be used in a new experi-
mental test of Bell's inequalities. Such an experiment
would also be a direct evidence of two-photon phase
coherence for the parametric pair. Indeed one can say
that a photon from the parametric pair will be either
transmitted or reflected by the beam splitters BS1 or BS2,
depending on its "phase" relative to the coherent beam
entering the other port of the beam splitter. Such a phase
is undefined for a single photon, but the pair does have a
two-photon coherence, which allows transmission or
reflection by BS1 and BS2 to be strongly correlated. The
quantum mechanical properties of this correlation are evi-
denced by Eq. (16), which leads to a violation of Bell' s
inequalities. Finally, let us note that the correlation could
be probed "at the last instant, "' '

by allowing both the
parametric pairs and the coherent beams to propagate
separately a long way, and choosing their relative phase
just before mixing and detection, using a fast electro-
optical device.

One of us (P.G.) acknowledges fruitful discussions with
Alain Aspect about the appendix of this paper.

APPENDIX: BELL'S INEQUALITIES WITH
LOCAL OSCILLATORS

This proof is closely related to the one given by Bell in
Ref. 11, including "detector hidden variables. " We will
give here the essential features of the calculation, specify-
ing clearly the hypothesis relevant to the present scheme.

A source emits pairs of correlated particles (here pho-
tons), counterpropagating to distant detectors. Each
"detector" consists of two photomultipliers, in the two
output ports of a beam splitter, and a "local oscillator"
(LO) which enters the other input port Consequen. tly,
the case is being considered where four photodetectors are
employed, one in each output port of the beam splitter in-
stead of just the two shown in Fig. 1. This allows one to

follow closely the discussions of the more usual Bell's in-
equality experiments in which each polarization detector
employs two photodetectors, one in each output port of a
given polarization beam splitter. Both LO are supposed to
be "locally" generated, i.e., are completely separated from
the emission by the source. This is obviously possible in
principle, by knowing well enough the frequency filters at
the source (such filters are also used in atomic cascade ex-
periments' ' ). On each detector, one can adjust the
phases pl and p2 of the LO's. The result of a measure-
ment will be +1 for a detection in the transmitted chan-
nel, —1 for a detection in the reflected channel.

Both the source and the detectors can be described
within Bell's formalism, using local supplementary pa-
rameters as introduced in Ref. 11. We denote by A, these
parameters for the source, and kl, k2 for the LO's. An im-
portant feature of the present scheme is that the detectors
will register counts even without the source, due to the LO
light. However, we are going to demonstrate that Bell' s
inequalities can be obtained for any pair of detections
which occurs within a coincidence time 8' which will be
chosen to be of the order of the correlation time of the
pairs emitted by the source.

Let us use p(2 (k, l, l, A2, pl, lI12) to denote the probabilities
for joint detections within W, and p'I (k, kl, pl),
pj2 (&,&2, p2) to denote the probabilities for singles
(i,j -~ 1). The dependency of p'1 (pj2) on X and kl (X2)
allows a "redistribution" of the emitted pairs between
both channels of the detectors, as a function of LO's pa-
rameters, which might be due to some kind of local in-
terference effect at the detector. It also includes the fact
that the photomultiplier may register a count, even with
no emitted pair from the source. We remark however that
in a naive "particle" point of view, the probability to get a
LO photon and an emitted pair within the same W is very
small.

In order to derive Bell's inequalities, we need two hy-
potheses:

(p2(~~~1~~2~41~42) pl +~~l~tll)p2(~~~2~42) ~

p.+(&,x.,y. )+p. (x,z„,y„) -p„(z,g„),

(Ai)

(A2)

where n 1,2.
Equation (Ai) is the well-known locality hypothesis,

which is fundamental to obtain Bell s inequalities. It is
written here in a form which was introduced first by
Clauser and Horne as a very general statement about
"objective local theories. "

Equation (A2) expresses that a change in p„ for a given
set ofparameters can only redistribute the probabilities of
detection between the transmitted and reflected channel,
but does not change the total detection probability.

One then defines the correlation functions

gt JP(2(X,A, l, k2, $1,$2)

gP'(2 (A. ,k l,k2, Pl, P2)

, av (A3)

, av

where av denotes an average over X, Xl and k2. E(pl, ltl2) is
measured experimentally using the four twofold coin-
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cidence rates N;~(p~, p2):

XIJN, (oi, o»
E(y|,42)...- " (A4)

Nrg Ai, 42)
1%1

Using (A 1) and (A2), the denominator in (A3) can be
rewritten as [p|(k,k|)pz(A, ,X2)]„,and corresponds experi-
mentally to a coincidence in any of the four channels, i.e.,
to the denominator of (A4).

Using well-known calculations, "one then obtains

—2&S~2, (AS)

where S is given as the result of four measurements:

S E(p&, pz) —E(y(,yz)+E(y(, &2)+E(&I,&2) . (A6)

On the other hand, let us consider quantum mechanical
predictions for the scheme discussed in this paper, in the
case where 8' is shorter than the correlation time 1/hcp,
such that the zero-delay result [Eq. (16)] can be used.
Remembering that the relative phase between the local os-
cillator and the signal differs by n depending on whether
the signal is transmitted through or reflected off'of a beam

splitter, Eq. (16) generalizes to

C'1'z (0) 2[1+ijcos(p~ +pz 2&p) ] .

One then gets

E(pl, &2)qM cos(4|+$2 2pp) .

It is then easy to show that the choice

(A7)

(As)

p ) +p2 2$p ~n/4,

41-&/2,

y2-4»+ ~/2,

(A9a)

(A9b)

(A9c)

yields SqM 242, which strongly violates the inequality
(A5). This violation is quantitatively the same as in

atomic cascades experiments. 's We emphasize that in

this appendix hypothesis (A2) is a necessary assumption,
which is related to the "no-enhancement hypothesis" of
Ref. 6 or to the "nonbiased-sample hypothesis" of Ref. 16.
A more detailed discussion of this assumption, in particu-
lar in the case of nearly perfect detection efficiency, will

be presented in a forthcoming publication.
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