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Phase and amplitude dynamics in the laser Lorenz model
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Phase as well as amplitude dynamics in the complex laser Lorenz model have been studied, in

contrast to previous studies limited to intensity (i.e., amplitude only). The topological nature of
the chaotic intensity is not modified by a small detuning, although the electric field phase is

dramatically altered, showing a steady drift with respect to the frequency of the corresponding
steady-state solution in addition to small-scale modulation. For larger detunings at the same

pump parameter, where one finds periodic intensity pulsations, there is a similar average drift in

the phase leading to spuriously quasiperiodic representations of the attractor. After removal of
this average drift (which amounts to a frequency shift) all dynamical variables, including the

phase, have the same periodicity.

Recent experimental studies of Lorenz-like pulsations
in a FIR single-mode laser have included measurements
of the complex amplitude of the laser field, permitting
analysis of the dynamics of the phase in addition to that of
the intensity. ' This has stimulated our renewed studies of
the laser Lorenz model (single-mode laser with detuning)
with attention to the previously neglected ~hase dynamics.

The equations for the detuned laser are
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where E, P, and D are the slowly varying reduced complex
amplitudes of the electric field, atomic polarization, and
inversion, respectively, with corresponding decay rates x,
y&, and yt. The frequency of the carrier wave cot. of the
electromagnetic field is detuned from the nearest cavity
resonance ro, and from the atomic resonance ro, by
icb (ro, —toL) and y&h (roi. —ro, ), respectively.

As shown by Haken, ' for the case of perfect tuning
(b d, 0) these equations are isomorphic to the Lorenz
equations developed to describe convective hydrodynam-
ics. In the laser case, the control parameter is A which is
identified with the Rayleigh number (typically represent-
ed by r) in the hydrodynamic case. An extension of the
original Lorenz equations to complex variables was pro-
posed by Gibbon and McGuinness. This extension was
motivated by an analysis of the baroclinic instability. In
our notation they considered complexifying the decay
rates for E and P and the pump parameter A. As the
complex form of A has no physical meaning for the laser,
their results do not apply to Eqs. (1).

Equations (1) have a trivial steady-state solution E 0
which is stable for A & I+[(co,—co, )/(x+y&)] . The
nontrivial steady-state solution has an intensity I

~E ~
A —1 —h and a dispersion relation for coL,

given by b b.. This solution is stable in the domain
0&I &I,. The threshold intensity, I, (iJ.), is the solution
of a quadratic equation. Its existence requires that
x & y~+ yt. In the limit x && y~+ yt, it has been shown in

Ref. 7 that this quartic reduces to

3I2+ 2x2(I 3g2)I 2x3(I yg2) 2 0 (2)

The nontrivial solution is a plane wave of constant in-
tensity and constant frequency with the "steady-state"
electric field given by

vA —1 —A exp( irot. t) .—

As it is defined in the reference frame rotating at coL, E is
a constant; in any other reference frame, the electric field
becomes a simple harmonic function with a frequency
given by the frequency shift from coL. Therefore, the sta-
bility analysis of the nontrivial "steady-state solutions" of
Ref. 7 is identical to the stability analysis of the periodic
solution of Ref. 8, as the two solutions only differ in the
choice of reference frame. We shall consider decay rates
such that for small detunings (and in resonance) the insta-
bility at I, is a subcritical Hopf bifurcation leading to
chaos; for larger detunings, the instability is a supercriti-
cal Hopf bifurcation to stable periodic solutions.

The phase dynamics in the resonant case is limited to
changes of sign of the real variable E and, hence, the
phase corresponding to the well-known spirals in the E-D
plane is restricted to alternating jumps of n radians as
shown in Fig. 1(b) (see also, Ref. 9 for a related observa-
tion). We present the corresponding amplitude dynamics
in Fig. 1(a) by a plot of

~
E

~
vs t as this representation is

physically more relevant in the laser case.
For small detunings the intensity dynamics remain es-

sentially unchanged as seen by comparing Figs. 1(c) and
1 (a). In contrast, the phase as displayed in Fig. 1(d) has
three new characteristics. (1) The "transitions" between
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FIG. 1. Solutions of Eqs. (1) for yt/y& 0.2S, A 15, and «/y~ 2 with the time t measured in units of y& ,
. (a), (b) intensity and

phase of the field at b 0; (c),(d) intensity and phase of the field at b 0.001.

plateaus are no longer sharp jumps but are reduced to
changes by less than x and the evolution during a transi-
tion is smoothed. (2) The transitions no longer alternate
in sign but always have the same sign determined by the
sign of h. (3) The plateaus are no longer constant but
show both a fine structure correlated with the intensity
pulsations and an average slope. These results are con-
sistent with the experimental results' shown in Fig. 2.
The only difference is an occasional change of sign in the
transition which we attribute to jitter in the cavity fre-
quency of the laser.

We interpret the new amplitude and phase dynamics as
follows: From the lack of sharp jumps by z we deduce
that the amplitude of the complex field never passes exact-
ly through zero. As Eqs. (l) are written in the rotating
reference frame of the steady-state solution, any slope of
the phase means that there is an additional frequency shift
of dynamical origin. A careful analysis of the numerical
data indicates that there are coarse and fine contributions
to phase evolution. On a coarse scale, there is an average
negative drift of the phase. This suggests that the rotating
reference frame we are using is inadequate and that it
must be corrected by an additional frequency shift. On a
fine scale, each plateau displays both frequency modula-
tion and an average positive slope. This is better analyzed
by considering the instantaneous frequency p'(t) as will be
presented in Ref. 10.

As the detuning is further increased, the spiral chaotic
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FIG. 2. Intensity and phase for the FIR ammonia laser stud-
ied in Ref. 1. The operating parameters correspond approxi-
mately to those used in Figs. 1(c) and 1(d). The vertical axis
for the phase has tick marks every x.
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FIG. 3. A period-four solution of Eqs. (1) for yt/y& 0.25, A 15, «/y& 2, and b 0.22 with time t measured in units of y& ', (a)
intensity vs time; (b} imaginary vs real part of the electric field; (c) phase of the field.

attractor is transformed into a period-doubling chaotic at-

tractor and then through an inverse period-doubling se-

quence into a periodic attractor. t b} Thus far, this transi-

tion has only been recorded and studied for the resulting

intensity pulsations. Similar inverse period doublings

have been observed in FIR laser experiments. "
Figure 3 shows a stable four-cycle intensity pulsation

pattern and the corresponding representations of the solu-

tion in the [Re(E),Im(E)] plane and for the phase versus

time. In Fig. 3(b) the attractor is quasiperiodic with two

incommensurate frequencies. One frequency is the inten-

sity pulsation frequency (and its subharmonics) while the
other is given by the average slope of the phase. As a
consequence, when we subtract this average slope from

the frequency of the rotating frame, we obtain the new re-
sults displayed in Fig. 4. These graphs clearly show four-

cycle behavior in this new rotating frame. A similar

transformation of the frequency of the rotating frame can
be performed for each periodic detuned solution. This
transformation provides a kind of irreducible representa-
tion of the periodic solution for all variables and not only

for the intensity.
The range of modulation of the phase, as displayed in

Fig. 4(b), is 0.68tr. The steep transitions [which corre-
spond to the jumps between plateaus in Fig. 3(c)] occur
between pulses and depend on the height of the preceding
intensity peak (larger jumps occur after larger peaks).
The largest jump is 0.64ts and the smallest is 0.12tr. The
frequency, shown in Fig. 4(c), is nearly constant during
each pulse though there is a slight difference for pulses of
different heights.

With reference to Figs. 3 and 4 taken as an example of
the various detuned periodic solutions, we can compare
the various frequencies and frequency shifts. The detun-

ing of the laser cavity eigenfrequency from the atomic res-

onance (ro, —ro, )/y& is given by (1+tr/y&)h 0.66 while

the corresponding detuning of the steady-state laser fre-

quency from the atomic resonance (ruL —ro, )/y& is 0.22.
The detuning from the atomic resonance of the reference
frame frequency used in Fig. 4 is 0.70. The intensity pul-

sation frequency is 1.7 and the spectrum includes the first
two subharmonics of this frequency at 0.85 and 0.425.

Therefore, the phase dynamics of the detuned laser
Lorenz model has distinctive signatures which can be
compared with experimental measurements using hetero-

dyne detection of the electric field.
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FIG. 4. For the same parameters as in Fig. 3, solutions of Eqs. (1}after subtracting from the electric field phase the contribution
0.48y&t which defines a new rotating frame; (a) imaginary vs real part of the electric field; (b) phase of the field; (c) instantaneous
field frequency.
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