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Nose equation for a one-dimensional oscillator: Resonance zones and the transition
to large-scale irregular dynamics
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Recently, attempts have been made to alter the equation of motion of a multiparticle system so
that the temperature rather than the energy is constant. Nose introduced a modified multiparticle
equation of motion involving an auxiliary equation with a free parameter Q. We consider the
Nose-Hoover equation for a one-dimensional oscillator as the equation of motion for a coupled os-
cillator system with two degrees of freedom. For different values of Q, we consider the dynamics in

the four-dimensional phase space by examining two-dimensional surfaces of section. We show that
the overlapping of resonance zones causes a transition to large-scale irregular dynamics for a limit-
ed range of Q.

Many studies have considered the classical mechanics
of a multiparticle system. The multiparticle equation of
motion is deterministic and reversible and the energy is
constant. Many experiments are performed at constant
temperature rather than constant energy, and various at-
tempts' have been made to modify the multiparticle
equation of motion so that the temperature is constant.
However, the resulting equations had been restricted to
systems with a large number of particles or had been ei-
ther nondeterministic or nonreversible until Nose' in-
troduced a modification involving an auxiliary equation
with a free parameter Q. The Nose equation is both
deterministic and reversible and, not surprisingly, has re-
ceived a considerable amount of attention. Most stud-
ies, including those of Nose, have considered systems
with a large number of particles and it has been estab-
lished that for an N-particle system the Nose equation
with a wide range of Q thermostats the system in the
large-N limit.

In this Brief Report we consider the Nose-Hoover
equation for a one-dimensional oscillator as the equation
of motion for a coupled oscillator system with two de-
grees of freedom. This system was previously considered
by Hoover and by Posch, Hoover, and Vesely who es-
tablished a clear connection between the ability of the
Nose-Hoover equation to thermostat the oscillator and
the extent to which the dynamics is irregular. The pur-
pose of this Brief Report is to examine the mechanism of
the transition to large-scale irregular dynamics and to
gain thereby a qualitative understanding of the optimum
range of Q.

The Nose Hamiltonian is' '

Hz ——p /2ms +p, /2Q+V(q)+kT ln(s) .

For convenience, we choose m and kT to be 1.0. In (1) q
is the oscillator variable and s is an auxiliary variable
while p and p, are their conjugate momenta, respective-
ly. V(q) is the oscillator potential which in previous
studies ' was chosen to be harmonic. We are interested
in modeling a diatomic for which, in general, the poten-

tial is anharmonic and we therefore choose

V(q)=q /2+ Aq /3+0. 01q /4 . (2)

Below we present results for A =0.05 (weak nonlinearity)
and A =0.20 (stronger nonlinearity). It will be seen that
the overall mechanism of the transition to large-scale ir-
regular dynamics is the same although there are quantita-
tive differences. We note that the amount of nonlinearity
displayed by a diatomic typically depends on its excita-
tion energy relative to its dissociation energy. As a rough
guide, for 02, weak and stronger nonlinearity here corre-
spond to approximately 100 and 1000 K, respectively.
The kinetic energy of the oscillator is Ek ——p /2 and the
energy of the oscillator is E„,=Ek+ V(q). The initial
values of q and p must be specified while the initial
values of s and p, are chosen to be 1.0 and 0.0, respective-
ly. In (2) the q term ensures that the oscillator equation
of motion is bound for all initial conditions.

The Nose-Hoover equation of motion (obtained by
scaling and redefining variables ) is

S=P

p, =F(q) p,p, —

p, =(p —1.0)/Q,

(3)

where F(q)= dV(q)/dq. In (—3) the q and s degrees of
freedom are coupled via the —p,p term; when p is
greater than 1.0, p, is increasing and, on average, p is de-
creasing. It is clear that decreasing Q both increases the
coupling to the oscillator equation and increases the fre-
quency of the auxiliary equation.

For the Nose-Hoover equation of a one-dimensional
oscillator, the trajectories traverse a four-dimensional
phase space. We construct two-dimensional q-p surfaces
of section by plotting points (q,p ) when p, passes
through zero. The q-p surface of section is symmetric
with respect to reAection in the q axis but not the p axis,
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because of the anharmonic term in the potential. If there
is a second constant of the motion, the points (q,p~) lie

on closed curves and the dynamics is regular. Many stud-
ies ' have been made of coupled oscillator systems with
two degrees of freedom in which the dynamics is primari-
ly regular for small coupling but primarily irregular for
large coupling. It was established by Posch, Hoover, and
Vesely that there is a clear connection between the abili-
ty of the Nose-Hoover equation to thermostat the oscilla-
tor and the extent to which the dynamics is irregular.
Over a number of years, Chirikov" has developed a
theory of the transition to irregular dynamics based on
the overlap of resonance zones and Walker and Ford'
have demonstrated the relevance of this theory for cou-
pled oscillator systems with two degrees of freedom.
Large-scale irregular dynamics is generally associated
with the overlap of low-order resonance zones.

We first consider results for A =0.05 (weak nonlineari-
ty). Figure 1(a) shows q-pq surfaces of section for
Q=10.0 for initial conditions (1.0,0.0), (1.5,0.0), (2.0,0.0).
As indicated previously, these are the initial values of q
and p, respectively, and the initial values of s and p, are
chosen to be 1.0 and 0.0, respectively. It may be seen
that there are closed curves showing that the dynamics is
primarily regular. Each trajectory switches between an

E„,g1.0 curve and an E„,&1.0 curve and the closed
curves for initial condition (1.5,0.0) are strongly per-
turbed by a resonance zone in the region E„,=1.0. This
2-1 resonance zone, which consists of four islands (two
for which

~ pq ~

is greater than 1.0 and two for which

~ p~ ~

is less than 1.0), occurs when the frequency of the
auxiliary equation is twice that of the oscillator equation.
A 2-1 resonance zone must exist for any form of the auxi-
liary equation of motion and we therefore call it the pri-
mary resonance zone. Figure 1(b) shows q-p surfaces of
section for Q= 1.0 for initial conditions (2.0,0.0), (0.0,2.0),
and (0.0, 1.0). It may be seen that, as in Fig. 1(a), there
are closed curves showing that the dynamics is primarily
regular. It may also be seen that the primary resonance
zone is now larger.

Even for Q=10.0 and 1.0, there are large regions of ir-
regular dynamics at large (and small) values of E„,.
However, there is no large-scale irregular dynamics in the
sense that there are tori around E„,=1.0 that separate
these regions. For an irregular trajectory the kinetic en-
ergy peaks at Ek ——0.0 but the Ej, distribution is not well
approximated by 2.0 exp( 2.0Ek ). To gain—a qualitative
understanding of the transition to large-scale irregular
dynamics we now examine the location (to the nearest
0.05) of the primary resonance zone and several secon-
dary resonance zones as defined by the position of the
(c,0.0) elliptic point which is one of the centers. These
correspond to the re-entrant periodic trajectories of
Posch, Hoover, and Vesely who gave the p axis inter-
cept. We have altered their prescription because the res-
onance overlap occurs along the q axis on the q-p sur-
faces of section. Also, the secondary 2-2 resonance zone
(see below) corresponds to an n =1 reentrant periodic tra-
jectory that has no p axis intercept.

Over the range of Q from 1.0 to 0.3, the primary reso-
nance zone remains in the area E„,=1.0, and c is close
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FIG. 1. q-p surfaces of section [for potential (2) with
A=0.05] for (a) Q=10.0 and (b) Q=1.0 for initial conditions
(1.0,0.0), (1.5,0.0), (2.0,0.0) and (2.0,0.0), (0.0,2.0), (0.0,1.0), re-
spectively.
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to 1.25. However, a secondary 2-2 resonance zone arises
in the area E„,) 1.0 and its location varies greatly; for
Q=0.9 and 0.8, c=2.60 and 2.40, respectively. In Figs.
2(a) and 2(b) we show q-p surfaces of section for Q=0.7
and Q=0.6, respectively, for initial conditions (2.0,0.0),
(0.0,2.0), and (0.0, 1.0). The primary and secondary 2-2
resonance zones are clearly visible and it may be seen
that for the primary resonance, c remains close to 1.25
while for the secondary 2-2 resonance, c=2.20 and 1.85,
respectively. The secondary 2-2 resonance zone begins to
overlap with the primary resonance zone for Q between
0.7 and 0.6. It may be seen from Fig. 2(b) that for Q=0.6
the tori around E, =1.0 have been destroyed and there
is a small region of large-scale irregular dynamics.

In fact, for Q=0.5, the secondary 2-2 resonance zone
has passed into the area E„,=1.0 and there is no large-
scale irregular dynamics, but a secondary 4-2 resonance
zone arises in the region E„,& 1.0 and its location also
varies greatly; for Q=0.6, 0.5, 0.4, and 0.3, c=2.65, 2.45,
2.25, and 2.00, respectively. The secondary 4-2 resonance
zone begins to overlap with the primary resonance zone
for Q between 0.4 and 0.3 For Q=0.3 the tori around

E„,=1.0 have again been destroyed and there is an ex-
tensive region of large-scale irregular dynamics.

We now consider results for Q=0.20 (stronger non-
linearity). For Q= 10.0 and Q= 1.0, the situation is simi-
lar to that described above for weak nonlinearity. Again,
over the range of Q from 1.0 to 0.3, the primary reso-
nance zone remains in the area Eo 1 0 However, the
primary resonance zone is somewhat larger and c is close
to 1.35. Consequently, the secondary 2-2 resonance zone
begins to overlap with the primary resonance zone for Q
between 0.8 and 0.7. For Q=0.6, 0.5, 0.4, and 0.3, there
are extensive regions of large-scale irregular dynamics (al-
though the secondary 4-2 resonance zone may still be
identified). Therefore, not surprisingly, for stronger non-
linearity the transition to large-scale irregular dynamics
takes place for a larger value of Q, and the dynamics is
more irregular for smaller values of Q.

Thus the transition to large-scale irregular dynamics
may be qualitatively understood as being due to the
sequential overlap of successively higher-order secondary
resonance zones with the primary resonance zone in the
area E„,= 1.0 as Q is decreased. Maximum irregular dy-
namics occurs for a limited range of Q (larger for
stronger nonlinearity) when several secondary low-order
resonance zones effectively overlap with the primary res-
onance zone. Thus for Q between 0.1 and 0.05 the dy-
namics is primarily irregular. Then, for an irregular tra-
jectory, the kinetic energy peaks at Ek ——0.0 and the Ek
distribution is well approximated by 2.0 exp( —2.OEk ).

As Q is further decreased the frequency of the auxiliary
equation increases until the dynamics is eventually dom-
inated by high order resonance zones. In this case there
is no longer effective overlap of low-order resonance
zones and the dynamics is primarily regular (albeit very
complicated). Then, for an irregular trajectory, the kinet-
ic energy typically peaks at Ek )0.0 although the average
Ek is very close to 0.5.

In this Brief Report we considered the Nose-Hoover
equation for a one-dimensional oscillator. For different
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FIG. 2. q-p surfaces of section [for potential (2) with
A=0.05] for (a) Q=0.7 and (b) Q=0.6 for initial conditions
(2.0,0.0), (0.0,2.0), (0.0,1.0).
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values of Q we considered the dynamics in the four-
dimensional phase space by examining two-dimensional
surfaces of section. For large (and small) values of Q
there are isolated resonance zones and the dynamics is
primarily regular. However, we have shown that for a
limited range of Q there is effective overlap of low-order
resonance zones and the dynamics is primarily irregular.
Note that by causing the dynamics to be primarily irregu-
lar, the Nose-Hoover equation creates the circumstances
that are required for it to work. We believe that these re-
sults are also relevant for a multidimensional oscillator.

If the Nose-Hoover equation thermostats such systems
for a much broader range of Q it is either because the
multidimensional oscillator dynamics is primarily irregu-
lar or because it is suSciently complicated that it is
effectively irregular. That is, recurrence times are longer
than typical limiting times (such as the collision time).
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