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Forbidden nature of multipolar contributions to second-harmonic generation in isotropic fluids
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Using a molecular theory of harmonic generation developed within the framework of quantum
electrodynamics, we prove that second-harmonic generation is forbidden in isotropic fluids to all

levels of multipolar approximation.

The use of second-harmonic generation (SHG) in
characterizing surfaces has enjoyed an upsurge in interest
in the past five years. ' ' The technique's surface sensi-
tivity arises when the bulk of the medium is isotropic.
Under these conditions, it is not possible to observe the
second harmonic in its coherent, forwardly scattered
form. Molecules close to the surface or at the surface,
however, are not isotropically distributed and may give
rise to an observed second harmonic, providing the
species itself does not possess inversion symmetry. '

In several recent papers, notably Sipe et al. , ' Heinz
et al. ,

' ' and Marowsky et al. , it has been stated that
although SHG is forbidden in centrosymmetric materials
in the electric dipole approximation, it can still occur
when electric quadrupole and magnetic dipole interac-
tions are significant. Whilst this statement is correct for
harmonic scattering by individual molecules with inver-
sion symmetry, or centrosymmetric crystals where the
nuclei have a fixed orientation in space, it is not a rule

I

which can generally be applied at the macroscopic level
to isotropic gaseous or otherwise structurally fluid media.
In these situations the molecules may freely tumble in

space and in effecting the necessary rotational average it
is found that coherent scattering of even harmonics is
forbidden to all orders of the multipolar interaction Ham-
iltonian. ' Exceptions to this rule can only arise where
there is an induced anisotropy, ' as, for example, may be
conferred on a fluid through its interaction with the in-
tense electric field of laser light.

Within the confines of molecular quantutn electro-
dynamics the intensity of the second harmonic can be ex-
pressed in terms of a series of molecular response tensors
A, the propagation vectors for the incident light and em-
itted harmonic, k and k', respectively (where k=k',
for coherent forward scattering), and the unit vectors w"
disposed perpendicular to k. By taking the usual mul-

tipolar expansion of the interaction Harniltonian, the
intensity of the second harmonic is
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where g' ' is the degree of second-order coherence, co is the circular frequency of the incident laser light, q =s —1,
where s represents the order to which the multipolar expansion of k is taken, p = t —2, where t is the order to which
the multipolar expansion of k is taken (e.g, t =4 when the matrix element comprises E1M3, E2M2, or E3M1 interac-
tions with the incident light), and r is the number of magnetic interactions. The angular brackets ( ) indicate that both
phase and rotational averaging are required for each molecule, g, within the sample.

Assuming that there is no orientational correlation between different molecules, the result of rotationally averaging
each of the terms in the angular brackets is independent of the particular molecule on which the average is performed,
and hence with N molecules in the interaction volume we have
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where the overbars represent complex conjugates. The two terms in the angular brackets, respectively, denote in-
coherent and coherent contributions to the second-harmonic intensity. The incoherent term is relatively weak, (due to
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g(p+q+3;u) 2 (3)
p+q+3 1 p+q+3

its linear dependence on N) and can normally be ignored. The second term, however, is much larger, due to its quadra-
tic dependence on N, and represents the situation where the scattered light from the rnolecules within the interaction
volume interferes constructively. This coherent term normally represents the primary contribution to a harmonic sig-
nal.

When the medium is a fiuid the result expressed in Eq. (2) needs to be rotationally averaged, and this can be done by
using the tensor averaging results given by Andrews and Thirunamachandran. If we assume that the coherent contri-
bution to the second-harmonic intensity dominates, we can write
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where

(p+q+3)f (p+q+3;t) (p+q+3;u)
1 p+q+3 1 p+q+3

t, u

represents the rank (p+q+3) rotational average of the
product of direction cosines relating the laboratory-fixed
and molecule-fixed frames. The f ' +q+ '" and
g' + + '"' tensors are isotropic, being constructed from
products of Kronecker 5 tensors, with one Levi-Civita
tensor if the rank is odd. The resultant contraction of
these isotropic tensors with the molecular and polariza-
tion tensors represents the isotropic average for the sys-
tem. When p+q is even, then p+q+3 is odd and the
isotropic tensors f +

,
+ '" invol.ve. one Levi-Civita ten-

1 p+q+3
sor and (p+q)/2 Kronecker 5 tensors. The Levi-Civita
tensor must contract with two noncollinear w vectors
and one k vector to give a nonvanishing result; hence
there is only one w vector and p +q —1 k vectors to con-
tract with the Kronecker 5 tensor. Since p +q —1 is odd,
the result must involve one w k term, which is clearly
zero and hence the result vanishes.

Ifp+q is odd then p+q+3 is even and f p +q;+ '" is.
1 p+q+3

a product of (p +q + 3 ) /2 Kronecker 5 tensors; conse-
quently there will be a w k term in each isomer, again
leading to a vanishing result. Thus the rotational average
necessary when considering free molecules forbids the ob-
servation of a coherent second harmonic within the bulk
of the medium. It is in this respect that SHG in crystals
differs from SHG in free molecules. This point appears
to have been overlooked in a number of communica-
tions, ' ' where it is assumed that SHG will be al-
lowed in centrosymmetric media when higher multipolar
contributions are considered. However, it is clear that
this is not the case when one is considering isotropic
fluids where SHG is forbidden to all orders of multipolar
approximation.

One direct consequence of this is that SHG in isotropic
fluids can only be a surface phenomenon. Many authors
attribute the surface activity of SHG to the destruction of
inversion symmetry which occurs at the surface. On a
molecular level the orientational distribution is no longer
random and therefore the orientational averaging pro-
cedure outlined above is inappropriate. Dipolar fluids at

I

metal-liquid interfaces, for example, will experience a cer-
tain degree of molecular order which arises as a result of
preferential alignment of polar molecules with the elec-
tric field perpendicular to the metal surface. In this case
the distribution can be described by the well-known
Langevin function. The subsequent perturbation of the
orientational distribution allows the coherent second har-
monic to be observed. "

As is evident from the above treatment of SHG, the
polarization formalism adopted in a great many papers
obscures what is happening at the molecular level. The
necessary rotational average shows that whilst coherent
scattering of the second harmonic is forbidden to all or-
ders of multipolar approximation, incoherent scattering
of the second harmonic is allowed. The distinction be-
tween coherent and incoherent contributions to the scat-
tered intensity is again something not immediately evi-
dent within the polarization formalism. For example, in
a classic paper by Bloembergen and Jha, the derivation
of the nonlinear polarization P' '(2e~) only includes the
coherent contribution [i.e., E(2(v) ~l)l]. Whilst entirely
correct in its application to SHG in crystals, its apparent
generalization to all homogeneous media' makes the
treatment incomplete. In a recent paper' it has been
concluded that "an important component of forbidden
bulk second-harmonic generation in homogeneous media
is inseparable from the surface contribution in all practi-
cal situations. " Whilst this statement will be true for
solid interfaces, this will clearly not be the case when the
medium in question is an isotropic liquid, for then the
bulk term will vanish.

In summary, using quantum electrodynamics we have
shown that SHG is forbidden in fiuids to all orders of
multipolar approximation, provided there is no orienta-
tional correlation. This reinforces the view that SHG in
isotropic fluids is purely a surface phenomenon, and
within this context can therefore be used as a surface
probe.
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