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High-order cyclo-Raman scattering of a laser by a single electron
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"Cyclo-Raman resonance" of a single electron (i.e., cyclotron motion of an electron driven by op-
tical fields) in the nth order at the cyclotron frequency 0, can be excited by biharmonic laser beams
with their frequencies co& and co2 such that co& —cu2= n 0, . This effect exhibits hysteresis, prohibit-
ed" and "allowed" orbits of excitation, phase multistability, and the optical Stark effect.

The interaction of radiation with a slightly relativistic
single electron can result in strong nonlinear effects'
constituting the most fundamental mechanism of non-
linear interaction of light with matter. These effects in-
clude hysteresis and bistability in cyclotron resonance of
a free electron predicted in Ref. 1 and experimentally ob-
served in Ref. 2, high-order optical subharmonics excita-
tion, and multiphoton optical resonances. ' The latter
processes consist of the excitation of a free electron (at
the cyclotron frequency Q, ) driven by a biharmonic laser
with frequencies to, and co2 such that to, —to2=Q, (three-
photon resonance '

) or co, —to2=2Q, (four-photon reso-4, 6

nance ). Under biharmonic pumping, in the first approxi-
mation for each optical photon with higher frequency co, ,
one optical photon with lower frequency co2, as well as
one or two photons with the cyclotron frequency Q„are
emitted. It is natural, therefore, to regard these processes
as "stimulated cyclo-Raman scattering" of the first and
the second order&, respectively.

In this paper, we show that with a low driving laser
power it is feasible to observe cyclo-Raman excitation
and scattering of an arbitrary nth order, with the
difference between driving laser frequencies being
co, —co2=n 0, when n is an integer. For any order n, the
cyclo-Raman resonances exhibit "prohibited" and "al-
lowed" cyclotron orbits (which results in multiple isolat-
ed branches of solutions, the so-called isolas), n possible
equidistant phase states (which results in phase multista-
bility for n ) 1), the optical Stark shift (i.e., an intensity-
dependent shift of the eigenfrequency), and multiwave
mixing effects.

Consider a single electron in a homogeneous magnetic
field Ho=hHO which gives rise to a cyclotron resonance
with the initial (i.e., unperturbed) frequency
Q, =eHO/moc. The electron is illuminated by optical
waves with their frequencies being ~, and co2, respectively
(with co»co2). We designate co, to2 nQ an—d a—s—sume
that neither ratio (co, +coz)/Q nor to, 2/Q is an integer
(this excludes higher-order subharmonics and can readi-
ly be arranged by the proper frequency tuning). We
choose the propagation configuration such that all the
traveling waves E propagate in the plane normal to Ho
with their polarizations parallel to Ho (see inset in Fig. 1).
We describe the motion of the electron by its momentum

p and radius vector r, and introduce the dimensionless
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FIG. 1. Maximal and minimal values of excitation parameter
a proportional to the total electron momentum p, [see the text
between Eqs. (6) and (7)] vs the intensity of driving waves I.
Curve 1 (dot-dashed line) and the lower branch of curves 2
(solid lines) correspond to the maximum of the main hysteresis
for the cyclo-Raman scattering with n = 1 (Ref. 6) and n =2, re-
spectively, the next one above the lower branch of curves 2 to
the first isola, etc. Curve 3 (dashed line) corresponds to the
maximal and minimal excitation of the first isola for n =3.
Areas surrounded by each curve correspond to allowed excita-
tion; areas between them, to prohibited excitation. The inset
depicts the propagation configuration. Curve 2' (dotted line)
corresponds to the maximal excitation for a different
configuration of the cyclo-Raman scattering with n =2 (Ref. 4).

quantities p=p/mac, f =E /Ho ——eE /mocQ„and
ql=kjlkl, where k =to /c.

Following Refs. 1-6, we treat the problem classically,
which is justified by a relatively high (and therefore clas-
sical) energy of electron excitation. Indeed, even in the
case of lowest-order cyclo-Raman scattering, we typically
obtain p, =P, =10,which corresponds to the energy of
=0.25 eV, i.e., to the excitation of a few hundreds of
Landau levels. Using a conventional Lorentz equation
(modified to include damping due to synchrotron radia-
tion ) and following procedure, we expand the momen-
tum p as p=p, +p'„,"+,where p, (normal to h) is a
cyclotron component corresponding to a pure revolution
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of the electron around some fixed center (r=0) with the
frequency 0=0, /y„and the noncyclotron components
of various orders p„, include oscillations with all the oth-
er, nonresonant, frequencies. The cyclotron motion is
governed then by the equation

where p, and P are the slowly varying cyclotron momen-
tum amplitude and phase, respectively, separating the cy-
clotron component F', ' out of F' ' and substituting it into
Eq. (1), we obtain two scalar equations for the dynamics
of p, and 1I},

n p, —),-'(p, &&h)+r),p, =F',"+F1,"+ .

where F", are cyclotron components of various sth-order
forces F1', I =2e II, /3moc «& 1 is a synchrotron
damping parameter, and y, =(1+p, )' . In the case of
optical driving F',"=0, and the first meaningful term
contributing to this excitation is cyclotron component
F', ' of the force

0, 'y, p, = —I y,p, +pQ+sin6, ,

0, 'y, p, $= —(y, Q/II, —1 —S)p,

+p(Q —P, Q+ /n )cos8„,

where 8„=n (P n /2—), and Q+ are defined as

Q+ =J„,(a)+J„+,(a)

(4)

(5)

(2)

Here f~—:f (~ t —k~.r) are all the traveling waves parti-
cipating in the interaction, and p„",' for the chosen
configuration was found to be

[ J„,(nP, )+J„+(nP,)] .
CO~+C02

In Eqs. (4)—(6) J,(z) is the vth-order Bessel function of
first kind, a, 2—=co, 2p, /Q„a=a, +a2, p, =u/c =p, /y„
the term S is defined as

p„",'= g (0, /coj )f~(co~t —k r, n/2—),
J

(3)
0 +2 Jo(2a; )
CO].

where r, =cy, ' jp, dt = e(Qy,—) '(p, Xh). In con-
trast to the hysteretic resonance at the main frequen-
cy, ' cyclo-Raman excitations are attributed to the so-
called nonlinear radiation Lorentz and "fast" relativistic
mechanisms; see the first and second terms on the right-
hand side of Eq. (2), respectively. The former mechanism
here is originated by magnetic fields of optical waves,
whereas the latter one is due to modulation of relativistic
electron mass m (t)=may(t) caused by fast but slight
noncyclotron (optical) perturbations of a microwave cy-
clotron electron motion. Once the cyclotron motion is
excited, though, it is only the "slow" relativistic mass
effect [see below, Eq. (5)] that acts to limit the excitation
energy and to form hysteresises or isolas.

We further assume that h=e, and the driving radia-
tion at both frequencies co, and co2 forms standing-wave
patterns with all the waves propagating along the same
axis x, i.e., q + ——+e„; see inset in Fig. 1. For each fre-
quency co~ (j =1,2) there are two counterpropagating
traveling waves f +

——(f /2)e, sin(co t+. k x+g+) with
the same amplitude fj/2; their phases P +, in general,
could be different. The equilibrium cyclotron motion is
achieved when the center of the cyclotron orbit coincides
with a node of one of the standing waves and simultane-
ously with an antinode of the other one if n is odd, and
with nodes of both standing waves (or their antinodes) if
n is even. Therefore one of the choices for the phases in
the equation for fj+ is l(, + nm, g, ——=0, and 1rj2+ ——0.
At this point, the average radiation forces of all the
waves acting upon the electron cancel each other out and
therefore the trapping potential (although weak) can be
excluded from consideration (which is why the standing-
wave configuration is chosen for this calculation).

Substituting p„",' in the form of Eq. (3) into Eq. (2), as-
suming p, in the form

p, =p, [sin( 0t +P )e„+cos( Qt +P )e~ ],

+2J2(2a; ) (7)

y, Q/0, —1=S+p, '[Q ((g) —p, Q+(1z)/11. ]

(@2p2r2y4 /Q2)1/2 (8)

Our stability analysis of Eqs. (4) and (5) showed that the
upper sign in Eq. (8) corresponds to stable states, and the
lower to unstable ones; see Fig. 2.

The phase stability is an important issue critical for
maintaining a coherent excitation of a single electron,
since a single electron is a very high-finesse system. For
example, in the case of A,, =2 mrn, I =0.6&& 10 ",which
corresponds to the half-linewidth of 0.9 Hz. The estimate
in Refs. 4 and 6 shows that the critical laser intensity to
obtain a hysteretic first-order cyclo-Raman effect is ap-
proximately 48 mW/cm, which allows one to use a He-
Ne laser even with sub-mW total power. In this case the
effective driving frequency 0 is formed by the difference
between two laser modes A=co, —co2. Currently avail-
able stabilized He-Ne lasers can produce a frequency sta-

and p is a driving parameter defined as

P=f,f2(II, /ri), +0, /co2)/8 .

The term S in Eq. (7) was identified in Ref. 6 as the opti-
cal (i.e., intensity-dependent) Stark shift of the eigenfre-
quency 0 [also see Eq. (8) below]. The term y, inside the
first set of parentheses on the right-hand side (rhs) of Eq.
(5) refiects the "slow" relativistic change of electron mass
which gives rise to hysteresis or isola regimes. It should
be noted that the signs in front of terms with ( —1)"' in
Eq. (7) must be changed if the location of the center of or-
bit with respect to both of the standing waves is chosen in
such a way that g1

——0, l(1+ ——(n —1)m, $2
——0, and

$2+ ——m. . The steady-state regime follows from Eqs. (4)
and (5) if d /dt =0, in particular,
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a 0 5

energy excitation, p, «1 (but sufficiently high parameter
a). In such a case, the expression in the square root in
Eq. (8) can be rewritten as

p —I p, a /4n J„(a);
therefore the steady-state excitation is allowed only if

2np
~

J„(a)
~

&ap, I
0 5 q

FIG. 2. Excitation parameter a vs frequency detuning pa-
rameter g (as defined in the text) for the cyclo-Raman excitation
of different orders (n =1,2, 3), with the fixed driving amplitude.
The solid branches in the curves correspond to stable states, the
broken ones to unstable states.

bility better than 0.1 Hz. Therefore this stability is
sufficient for observation for the proposed effect, even if
one assumes that the frequency fluctuations at both
modes (cv, and c02) are completely independent. Further-
more, the dominant source of laser frequency fluctuations
is a laser resonator, ' which suggests strong phase coher-
ence between neighboring laser modes radiated by the
same laser. In such a case, assuming AQ and hem to be
frequency fluctuations of the effective driving frequency
Q and laser frequency, respectively, one finds that
b 0=b co( fl/co ), where to = (cv, + to2) /2, which suggests
that the fluctuations at the frequency Q may be reduced
by a factor -to/Q. In a typical case this reduction can
be as large as —10, which may result in a linewidth EQ
significantly smaller than that of a synchrotron radiation
linewidth. This illustrates potential advantages of cyclo-
Raman laser excitation over conventional methods of cy-
clotron excitation exploiting rf or microwave sources.

It is readily seen from Eqs. (4) and (5) that there are n

equally possible diferent equidistant states of the phase
(m =0, 1, . . . , n —1) for both stable and unstable

branches by P„&——P„&+2@m /n Which .one of n stable
phase states is excited depends on the initial condition of
excitation. Therefore phase multistability (i.e., multiple
stable phase states analogous to that in n-stable paramet-
ric frequency dividers' ) is expected.

Isolated branches of steady-state excitation (the so-
called isolas similar to isolas in other areas of nonlinear
physics") appear when driving force p, and therefore ki-
netic energy, of the electron increases. These isolas occur
because of a spatially oscillating wave pattern of driving
radiation in the plane of cyclotron motion attributed to
the particular propagation configuration used here. This
is confirmed by comparison with Ref. 4, in which four-
photon resonance (i.e., essentially, the cyclo-Raman
scattering with n =2) was considered with two waves
propagating parallel to Ho. It was shown in Ref. 4 that
this propagation configuration, which does not form a
spatially oscillating wave pattern in the plane of cyc1o-
tron motion, does not give rise to isolas either. The isolas
in consideration can be obtained even in the case of low-

This condition determines the maximal possible momen-
tum (p, ),„ for any given driving amplitude p. Equation
(9) shows, on the other hand, that when p exceeds some
level, there are ranges of momentum p, [such that

p, & (p, ),„] in which the steady-state excitation does not
exist, i.e. , some orbits are "prohibited" (note that
r, =p, /k, =P, /k„where k, =Q, /c). For sufficiently

large a, Eq. (9) predicts the radii of prohibited orbit,
r „h =(21+1)A,/8, where l is an integer and
X=4nc/(ro, +rvz). Prohibited orbits correspond to the
destructive interaction of both of the waves with respect
to the electron, as opposed to the constructive interaction
pertinent to "allowed" orbits forming isolas. As the in-
tensity of driving waves (or )Lt) increases, the first isola is
formed, then the second, and so on.

The critical driving parameter p required to observe
the mth isola of nth order cyclo-Raman excitation is
determined by Eq. (9) (with the equality sign), in which
instead of a one ahs to substitute the mth positive root of
the equation (n —2)J„~(a)—(n+2)J„+&(a)=0. In the
case n = 1, the first isola appears at a =5 with the criti-
cal laser intensity as low as =77 W/cm (A,, =2 mm,

f, =fz). In the cyclo-Raman scattering with n =2, a cy-
clotron oscillation cannot be excited at all (see Fig. 2) un-
less driving amplitude exceeds the threshold
go=21 II, /(co&+tv2), which corresponds to the laser in-
tensity=6. 6 W/cm; see the lower branch of curves 2 in
Fig. 1. Such intensity can again be obtained using a fo-
cused cw He-Ne laser. As the laser intensity increases, in
addition to the hysteretic resonance, one can observe the
formation of isolas. For the propagation configuration
considered here, the critical laser intensity for a cyclotron
excitation is about three to five orders of magnitude
lower, compared with that for the configuration. How-
ever, once the cyclotron oscillation is excited, the maxi-
mal kinetic energy of the electron in the configuration
dramatically increases as the driving laser intensity I in-
creases, the maximal kinetic energy of the electron being
y,„—1 = (I/Io )' —1, where Io =0.66)& 10 W/cm
(see curve 2' in Fig. 1), whereas the energy of the first iso-
la in the configuration considered here reaches saturation
at a relatively low level.

Equations (8) and (9) show that for all n ) 3, the cyclo-
Raman scattering with arbitrary low p, cannot be excit-
ed, i.e., there is some minimal level of possible kinetic en-
ergy of electron excitation; this corresponds to the so-
called hard excitation. Therefore, for the cyclo-Raman
scattering with n )3, only isolas excitation is possible, al-
though the critical laser intensity remains relatively low
(e.g., the intensity -9.7 W/cm is required to observe the
first isola for n =3). In Fig. 2, the excitation parameter a
is depicted versus the frequency detuning parameter
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g =sgn(b )&2
~

5
i

(co, +co2) /Q,

(b, =Q/Q, —1, and "sgn" is the sign function) at the
driving amplitude )M =501 Q, /(co&+co&) for cyclo-Raman
excitation of the various orders n. The "self-crossing" of
steady-state characteristics seen in Fig. 2 is unlikely to be
observed in the experiment since one of the two self-
crossing branches in an isola is unstable.

The total power P, of the synchrotron radiation at the
cyclotron frequency 0 in the low-relativistic case
(p, « I) can be written as P, = I'p, Q, moc . The noncy-
clotron momentum p'„", (parallel to Ho) oscillates at com-
bination frequencies co& z+lQ, Eq. (3), where l is an in-
teger, and therefore gives rise to the stimulated dipole ra-
diation at these frequencies (with a polarization parallel
to Ho), which can also be regarded as multiwave mixing.
It can be shown that at low excitation the power P, ab-
sorbed from the higher laser frequency m& and the power
I'z radiated at the lower frequency co2 obey the Manley-
Rowe relationships P, = P, co, l—n Q and P2 P, co,——In Q.
This reflects a quantum balance of optical emission and
absorption in the system and suggests a stimulated emis-

sion at the frequency co2 analogous to stimulated Raman
scattering. The multiwave radiation at optical frequen-
cies co& 2+lQ and at microwave cyclotron frequency 0
may provide a method for the observation of cyclo-
Raman scattering of any order.

Since the nonparabolicity of the potential well in
narrow-gap semiconductors' gives rise to a nonlinear
mass effect of conduction electron which resembles that
of free relativistic electrons, the cyclo-Raman scattering
of high orders in such semiconductors may also be ex-
pected. Susceptibility X' ' for such a process in InSb for
n =1 was measured in Ref. 13; hysteretic excitation was
predicted in Ref. 14. This process may provide the mech-
anism for a tunable high-order cyclo-Raman laser in a
far-infrared range. '

In conclusion, we demonstrated the feasibility of the
nth-order cyclo-Raman scattering of biharmonic laser by
a single cyclotron electron, this effect being characterized
by relativistic hysteresises for n =1,2 and multiple isolas
and prohibited orbits for any n.
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