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Analytic determination of the hyperfine-assisted Zeeman shift for the deuterium atom
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Small extra Zeeman shifts measured in the ground states of 'Rb and ' Rb have previously been

shown to be due to the hyperfine interaction to second order coupled with the Zeeman interaction

to first order. Approximate theoretical calculations yielded effective frequencies for the two iso-

topes of 0.016 Hz/T and 0.18 Hz/T, respectively, in good agreement with experiments. We calcu-

late exactly the same shift for the 1s and 2s states of 'H by perturbation differential equations. For
the 1s and 2s states the respective frequencies are 2.61 &(10 ' Hz/T and 2.56)& 10 ' Hz/T.

Recently, Fletcher, Lipson, and Larson' through high
precision measurements of the hyperfine and Zeeman in-
teractions in S ground-state Rb atoms found evidence
for an additional term in the ground energy of the form

hPMtM, B
E(Mt, M, )=

where MI and M, are, respectively, the nuclear and elec-
tron spin magnetic quantum numbers. The measured
value of P for Rb was

Atomic units are used, and gD ——0.857. Following Fort-
son, we, too, neglect the nuclear Zeeman term and ten-
sor hyperfine coupling.

Although the perturbation theory is of third order, we
shall show that all that is needed is the wave function
which is first order in H . We may obtain this wave
function directly, circumventing the usual sum over
states. Since we are only concerned with s states we may
write the zeroth-order wave function as

(r)=qr„(r)
~
mtm, ),

P=0. 168(15) Hz/T . (2)

Fortson has shown that this energy is due to a third-
order perturbation-theory term which is second order in
the contact hyperfine interaction and first order in the
Zeeman interaction. Using the standard sum-over-states
expression for the term, along with approximations to the
energy differences, he obtained

P=0. 18 Hz/T,

in good agreement with the Rb experiment. The Rb
result was shown to be simply related to the Rb value
because they scale as gi, where gi is the nuclear g factor.

Interestingly, this effect has never been seen or calcu-
lated for the H atom. Although the calculation for 'H is
identical to that which follows, the effect is trivial: the
+—,

' nuclear spin lines are shifted equally. In this note we

calculate this interaction exactly for H. Besides its in-

trinsic merit, the H-atom result will be useful in future
testing of approximate methods.

The fundamental Hamiltonian which we consider is

(4)

where

(sa)

where we have used the high field eigenstates of H as a
basis in spin space, and y„(r) are s orbitals.

In principle there will be two first-order wave func-
tions, hatt„and g„.Since H commutes with H,

s s I s s I
however, f„ is zero. The derived energy term being

s s I
second order in H and first order in H is readily shown
to be

E„(m,mt)= Jd r(P„~ )*(H E)P'„—
where E is the first-order Zeeman energy

s

Em I Bge~s~

Since the zeroth-order energy is 2(2I+1)-fold degen-
erate, care must be taken in solving for P„.Failure"s s I
to do so results in unsolvable differential equations and
singular sums over states. Writing down the first-order
perturbation equation in the coupled F, mF representa-
tion, in which H is diagonal, and transforming to the
high-field representation shows that

=3'pttm~ 'g, gDqr'„(r)I S
~
mtm, ),

H = ij,ttm~ 'g, gD6 (r)I S, (5b)
where y'„ is determined by the inhomogeneous equation

s

and (H E„)p'„+4~[5(r—) P„(0)]y„=0. — (10)

H =PBg, B.S . (5c) The energy becomes
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E„(m„m t)
S

=—9p'ttm~ g,'gD[( m, mt
~

(I.S}(B.S}(I.S)
~
m, m, )

m—,B(m, mt
~

(I S)
~
m, mt)]

x f(p'„) dr.

and

8 2

r= +28,

8 2

J (q&~, ) dr= +27,

(14a)

(14b)

Reduction of the spin matrix elements yields

(msmr )= 9ptt~mp gegD[m. mt {I+1)ms+2'mt]

which are surprisingly close in value. P&, and P2, for H

may now be obtained realizing that

X y'„dr . (12)

=2.8X10' Hz/T .
I

The results are

Equation (10) has been solved by Schwartz for n= 1

and 2. The solutions have been used for other pur-
poses. ' Requiring y'„ to be orthogonal to q„„and us-

S

ing y =1.7811. . . (a form of Euler's constant ), the wave
function may be written as

and

P„=2.61 X 10 Hz/T

p2, =2.56x10 s Hz/T.

(15)

(16}

c 2—+kin(2yr) —10+4r
T

and

4 ~
—r/2

qz,
—— ——8 ln(yr)+6+4r ln(yr) —13r +r

T &32tr

(13a)

The results are far smaller than those obtained for Rb
since Z is much smaller in H.

The approach described above may readily be general-
ized to any state of any hydrogen isotope or hydrogenlike
ion. For alkali-metal atoms the analogous technique in-
volving a numerical or basis-function solution of the radi-
al differential equation is likely to be an efficient method.

The integrals may be evaluated, giving
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