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A singular-value decomposition leads to a set of statistically independent variables which are used

in the Grassberger-Procaccia algorithm to calculate the correlation dimension of an attractor from
a scalar time series. This combination alleviates some of the difficulties associated with each tech-

nique when used alone, and can significantly reduce the computational cost of estimating correla-
tion dimensions from a time series.

I. INTRODUCTION

The correlation dimension' has become the most
widely used measure of chaotic behavior. It has been
used in the analysis of hydrodynamic experiments, '

laser systems, neutron-star lurninosities, neuronal and
electroencephalographic signals, business cycles, ' etc.

One of the reasons for this popularity is the relative
ease with which it can be calculated from a scalar time
series. The calculation typically starts by reconstructing
the system's trajectory in an "embedding space" using
the method of "lags" or "time delays. ""' The dimen-
sion of the reconstructed trajectory is then calculated us-

ing, more often than not, an algorithm due to
Grassberger and Procaccia, ' although there are also
widely used ones due to Termonia and Alexandrovitch'
and Badii and Politi. ' It has been known for some time,
however, that while it may be easy to calculate an ap-
parently precise value for a dimension, getting a reliably
accurate one is often quite something else. ' '

Broomhead and King' have suggested that singular-
value decornpositions' may provide an alternative way of
estimating dimensions. This procedure identifies orthog-
onal directions in the embedding space which may be or-
dered according to the magnitude of the variance of the
trajectory's projection on them. The ordering is done us-
ing the singular values of the embedding. The number of
these directions "visited" by the reconstructed trajectory,
and indicated by large singular values, is an estimate of
the dimension of the smallest space that contains the tra-
jectory. Mees, Rapp, and Jennings, however, point out
that the number of large singular values may depend on
the details of the embedding and the accuracy of the data
as much as they do on the dynamics of the system. Mere
counting of large singular values may, therefore, not give
a reliable estimate of dimension. However, in subsequent
papers Broomhead, Jones, and King ' and Mees and
Rapp have shown that it is possible to estimate the di-
mension of a state-space manifold by using an appropri-

ately modified procedure.
In this paper, we show that combining singular-value

decompositions and the Grassberger-Procaccia algorithm
can alleviate some of the ambiguities associated with each
technique when used alone. A singular-value decomposi-
tion leads to a statistically independent set of variables
spanning the embedding space. While the numerical ex-
amples shown here are all done with the Grassberger-
Procaccia algorithm, singular-value decomposition will

apply equally well to other methods of estimating dimen-
sion.

In Sec. II we briefly review the embedding procedure
and the Grassberger-Procaccia algorithm, incorporating
details that will be needed in a subsequent analysis as well
as some refinements in the implementation which have
been introduced since the original formulation of the al-
gorithrn. In Sec. III we review singular-value decornposi-
tions and discuss the question of statistical independence.
We also establish a connection between the covariance
matrix of the embedding and the autocorrelation function
of the time series which can serve as a basis for setting
limits on the "window length" of the embedding —i.e.,
the time spanned by each embedding vector.

Section IV presents some computational evidence that
for a given time series, the singular-value spectrum de-
pends principally on the window length, corroborating
results obtained earlier by Caputo, Malraison, and At-
ten, in connection with correlation dimensions. We
conclude with some suggestions for an interactive pro-
cedure combining singular-value decompositions and the
Grassberger-Procaccia algorithm.

II. EMBEDDING AND
THE GRASSBERGER-PROCACCIA ALGORITHM

A. Embedding

Let a continuous signal v(t) be measured at equal
"sampling intervals, "T„to yield a time series,

38 3017 1988 The American Physical Society



3018 ALBANO, MUENCH, SCHWARTZ, MEES, AND RAPP 38

[v(k)
~

k=1,2, . . . , Nr], (2.1)

where u(k) is an abbreviation for v(kT, }. We presume
v (t) to be one of n state variables which completely de-
scribe a dynamical system, the trajectory of which lies on
a d-dimensional (d & n ) attractor X in the system's phase
space. Generalizations to multivariable time series are
relatively straightforward. For simplicity of presentation
they will not be described here. If the system's temporal

I

y(1)=(v(1), u(1+L), . . . , u(1+(M —1)L }),
y(2)=(v(1+J), u(1+J+L), . . . , u(1+J+(M —1)L)),

evolution is chaotic, X is a strange attractor character-
ized by a noninteger dimension. For the applications in

which we are interested, n is unknown and u(t) is the
only measured quantity.

Packard et al. "and Takens' have shown that starting
from the time series (2.1), one may "embed" or recon-
struct the trajectory in an M-dimensional "embedding
space" by means of the vectors,

(2.2}

y(p)=(v(1+(p —1)J), u(1+(p —1)J+L), . . . , u(1+(p —1)J+(M —1)L)),

M )2n+1, (2.3)

then given the assumption of an infinite amount of noise-
free data one has a proper embedding except when the
system has special symmetries. In particular, the dimen-
sion of the embedded or reconstructed attractor is the
same as that of the system's phase space attractor. In
practice these requirements are not met. However, exper-
imental and computational' studies with progressively
increased data sets suggest that good approximations to
the dimension can often be obtained with fairly small
amounts of data. For example, it is possible to estimate
the dimension of the Henon attractor to within 6% of its
literature value with 500 data points. '

Here, L is the "lag," or the number of sampling intervals
between successive components of an embedding vector,
and J is the number of sampling intervals between the
first components of successive vectors. The time
(M —1)L, spanned by each embedding vector, is the
"window length" of the embedding. ' L is introduced to
allow for the fact that, in an experiment, the sampling in-
terval is often set without accurate prior knowledge of
the time scales intrinsic to the system being studied.
Determining an appropriate value of L then becomes part
of the analysis. We return to this point in Secs. III and
IV. The number J (or a set of J's) describe how the time
series is sampled to create a set of embedding vectors
with a computationally manageable size from a possibly
large data set.

Theorems due to Takens' and Marie state that if the
embedding dimension M and the dimension n of a mani-
fold containing the attractor satisfy the inequality ("Tak-
ens criterion")

D2 —— lim lim D&(M;r ),
M~ co r~O

(2.5)

where Dz(M;r) is the slope of the log-log plot of C~(r)
versus r:

D&(M;r) =d[log, C~(r)]/d[log, (r)] . (2.6)

In calculations involving actual experimental data, nei-
ther of the limits in Eq. (2.5) can be taken. Small values
of r are blurred by noise and by limitations on experimen-
tal accuracy, while large values of M are precluded by
practical limitations on data set sizes and computing
times. In practice, for a given value of M, one looks for a
"plateau" in the plot of D2(M;r ) versus log, (r)—that is,
a range, rt to ru (the "scaling region"), over which

Dz(M;r) has a constant value d(rt, rU), say, to within

some tolerance, +Ad. If this plateau is common to a
number of embedding dimensions exceeding
[2d(r rt)v+1], then it is taken to be the correlation di-

mension for the range of lengths ( rt, r U ). '

Although seemingly quite simple, this prescription
needs to be applied with some care. Figure 1 shows the
slope D2(M;r) versus log, (r) for the Lorenz attractor,

( dx /dt, dy ldt, dz ldt )

artificial correlates due to measurements being taken at
nearly the same time, ' the sum should be taken only
over embedding vectors which are not too closely spaced
in time. That is, a number K is chosen and the sum is
taken over those i's and j's for which

~

i —j ~

& K. In the
following, we will take

~
y(i) —y( j)

~

to be the Euclidean
distance between y(i) and y(j). X~ is the number of
distances used in the sum. Grassberger and Procaccia'
show that the correlation dimension D2 is given by

B. Grassberger-Procaccia =( —10(x —y), x(28 —z) —y, xy —( —,')z) . (2.7)

C~(r) =(1/N, ) g 6(r —
~
y(i) y(j )

~
}, —(2.4)

where 6( ) is the Heaviside unit-step function. To avoid

In an M-dimensional embedding, the "correlation in-

tegral, " C~(r) is defined as the fraction of the distances
between embedding vectors that do not exceed r:

The calculations used 1000 embedding vectors formed
from a data set of 10000 values of x with Tz ——0.01 and
L =5. For each embedding dimension, a value of J was
chosen so as to pick embedding vectors uniformly from
the entire data set. The plots are for embedding dimen-
sions of (a) 5, (b) 10, (c) 15, (d) 20, and (e) 25. The
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A =VSU (3.1)

60- where U means the transpose of U. S is an M gM diag-
onal matrix,

40-

S;,=5;,s(i), i =1,2, . . . , M

Vis an X)&M matrix with orthogonal columns,

(V V);J ——5;, ,

and U is an M )&M orthogonal matrix,

(3.2)

(3.3)

20-
(U U);) ——(UU );)——5;i . (3.4)

The elements s(i) of the diagonal matrix S are known as
the "singular values" of A.
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FIG. 1. Plot of slope =d[log, CM{r)]/d log, (r) for data gen-
erated by the Lorenz equations with parameter values

T& ——0.01, L =5. The five curves correspond to (a) M =5, (b)
M =10, (c) M =15, (d) M=20, (e) M=25.

III. SINGULAR-VALUE DECOMPOSITION
AND AUTOCORRELATION

length scale r is normalized to the largest interpoint dis-
tance in each embedding Thi.s is done in order to use a
length scale derived from the size of the attractor. With
this normalization, the correlation integral CM(r) [Eq.
(2.4)] reaches its maximum value ("saturates") at the
same value of r making it easier to compare plateaus for
different embedding dimensions. [This normalization,
however, makes the plots of log, C~(r) versus log, r inap-
propriate for calculating the entropy. ] In previous work
(see, e.g. , Refs. 6 and 9), such comparisons were facilitat-
ed by plotting D2(M;r ) versus log, Cst(r).

For small r's [log, (r) & —5] as well as for large r's

[log, (r) & —2], the slopes generally increase with increas-
ing embedding dimension. The behavior at small r is
characteristic of noise which has infinite dimen-
sion. ' ' ' At small distances, one has experimental
noise, either inherent in the system or contributed by
measuring instruments, as well as "computational noise, "
arising from round-off errors. At large r's, the increase in
the slope is induced in part by using a relatively small
number of embedding vectors in a high-dimensional
space. It becomes more pronounced and extends to
smaller values of r as M is increased. Thus in the process
of increasing the embedding dimension to check the con-
vergence of the calculation, one causes the scaling region
to shrink, making it difficult to ascertain where the con-
vergence does occur. Any procedure that can legitimate-
ly reduce the required size of the embedding dimension
will therefore be helpful. The singular value decomposi-
tion does this.

y(1)
y(2)

y(N)

(3.5)

The embedding defines a set of points in an M-
dimensional space which may be described by a mul-
tivariate distribution whose variables are the M com-
ponents of the embedding vectors, Eq. (2.2). We may
rewrite these as

y(k)=(y&(k), y2(k), . . . , y;(k), . . . , yM(k)) .

From the definitions of the trajectory matrix A [Eq. (3.5)]
and of the covariance matrix p; of this multivariate dis-
tribution we have

p; =(I/N)Xky;(k)y (k)=(A A );~ . (3.6)

If each column of A has zero mean Xl,y;(k)=0 (which
we presume hereafter), the off-diagonal elements of the
covariance matrix are the (unnormalized) "correlation
coefficients" of the distribution. The correlation
coefficients measure the statistical dependence of the vari-
ables y;; i =1,2, . . . , M, on each other, or the redundan-
cy of the information which they contain. Variables with
vanishing correlation coefficients are, by definition, sta-
tistically independent.

The transformation

or

A~A'=AU, (3.7)

(3.8)

diagonalizes the covariance matrix

B. Covariance and statistical independence

To relate the embedding process to singular-value
decompositions, we follow Broomhead and King' and
consider the case when A is the "trajectory matrix"—
that is, up to a normalization, the matrix whose rows are
the M-dimensional embedding vectors formed from the
time series (2.1):

U (A A)U=S (3.9)
A. Singular-value decomposition

It is well known' that any X)&M matrix A, with
X)M, may be expressed as

The squares of the singular values [s(i)] are the eigen-
values of A A, while the columns of U are its eigenvec-
tors.
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C. Autocorrelation

Using Eqs. (2.2) and (3.5), we may write the k, i element
of the trajectory matrix as

Ak; ——(y(k)); =v(1+(i —1)J+(k —1)L ),
so that the (i,j)th element of the covariance matrix A A

1s

(3.10)

(A A );,=(1/N) g u(p;)u(p;+(j —i)), (3.11}

where p;=1+(k —1)J+(i—1)L. In the limit that the
number N of embedding vectors is large, (A A ); be-
comes proportional to the value at t=(j i}L of t—he
signal's autocorrelation function,

Since U is orthogonal, its eigenvectors form an ortho-
normal basis for the embedding space. The directions of
the eigenvectors are called the "principal axes." In addi-
tion, the Euclidean distances

~

y(i) —y(j)
~

used in the
calculation of the correlation integral Eq. (2A) are invari-
ant under this transformation. The correlation dimen-
sion itself, therefore, is also invariant. A' is called the
"matrix of principal components" of A, y,.

' is the ith
"principal component" of y', or its projection along the
ith principal axis.

It also follows from the above that the eigenvalue
[s(i)] is the variance of the ith principal component. If,
for some j, [s(j}]=0, then the reconstructed trajectory
does not "visit" principal axis j. In the absence of noise,
this means that the rank of the covariance matrix, which
is equal to the number of its nonzero eigenvalues, is the
dimension of the smallest subspace of the embedding
space that contains the reconstructed trajectory. ' Noise
prevents any eigenvalue from vanishing, so that the di-
mension is estimated by counting the number of "large"
eigenvalues. ' '

Although a singular-value decomposition is mathemat-
ically equivalent to a diagonalization of the covariance
matrix, the former turns out to be more robust numeri-
cally. In this work, we use a version of the code
developed by Mees, Rapp, and Jennings implementing
the Golub-Reinsch algorithm. '

mate of the trajectory's dimension, we would be led to
conclude that we are observing noise. On the other hand,
in the limit of very small windows (M —1)L « t„all the
elements of the covariance matrix approach 1. In the ex-
treme case when all elements are equal to 1, the matrix
has one nonzero eigenvalue equal to M and (M —1) zero
eigenvalues corresponding to the case when the trajectory
is projected onto a line segment on the space s main diag-
ona yi=»= . . =yM.

These effects are evident in Fig. 2 which shows the nor-
malized eigenvalues for 16-dimensional embeddings of
the Lorenz attractor with lags L = 1,2, . . . , 9. The
graphs with the larger eigenvalues correspond to larger
windows. It does not seem possible to deduce from these
graphs that these eigenvalues pertain to an attractor with
a correlation dimension that is slightly greater than 2.

IV. GRASSBERGER AND PROCACCIA IN ROTATED
EMBEDDING SPACE

A. Testing convergence

The process of checking the convergence of a
Grassberger-Procaccia calculation in embedding spaces
of relatively high dimensions can obscure the very con-
vergence that is being tested. Counting the number of
"large" singular values of a trajectory matrix does not
give a reliable estimate of the dimension of the embedded
trajectory. However, since the principal components of
the embedding vectors form a statistically independent
set of variables and since the relative contributions of
these variables to the distances used in the calculation of
the correlation dimension are directly measured by the ei-
genvalues, there are obvious advantages to combining
these two techniques.

The combination proceeds as follows: For a given
embedding, a singular-value decomposition is performed,
yielding the matrix of singular values S, and the orthogo-
nal matrix U of Eq. (3.1). The trajectory matrix is rotat-
ed [Eq. (3.7)] to get the matrix of principal components
which is then used in a Grassberger-Procaccia calcula-
tion.

g(t)=[X„v(kL)v(kL+t)]/[X„[v(kL)] I .

That is,

(3.12)
V)

'Uo -5-
lim (ArA); =o g[(j i)LTs), —

N~ oo
(3.13)

where ~ is the variance of the time series.
This intimate relationship between the covariance ma-

trix and the autocorrelation function helps to illuminate
the critical importance of the window length (M —1)L in
the embedding and in subsequent calculations. By
definition, g(0)=1, and for decorrelated signals, g(t}~0
for t && t„where t, is a time interval characteristic of the
decay of the autocorrelation. Thus, for these signals, in
the limit of large windows, where (M —1)L » t„ the co-
variance matrix approaches the unit matrix, which has M
degenerate unit eigenvalues. This means that regardless
of the choice of M, the rank of the matrix is always M. If
we took the rank of the covariance matrix to be an esti-
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FIG. 2. Normalized principal-value spectrum for data gen-
erated from the Lorenz equations. The diagram shows normal-
ized principal values log, o(s, /Xs; ) as a function of index j. The
nine spectra correspond, from bottom to top, to
lag = 1,2, 3, . . . , 9. The embedding dimension is 16 in each case.
One thousand vectors were used in each calculation.
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The convergence of the calculation may be checked by
performing the calculations in a series of subspaces of the
embedding space spanned by principal axes with the larg-
est singular values. The procedure is considered to have
converged if the calculations yield similar results for a
few of the largest subspaces. Actually, this check need
not always be done explicitly. A few calculations are usu-
ally enough to establish how large a singular value must
be in order for its principal components to introduce a
measurable difference in the dimension calculation.

To illustrate this we show in Fig. 3 some results for the
Lorenz attractor Eq. (2.7). To compare the effects of
principal components characterized by singular values
that span several orders of magnitude, we have chosen a
nine-dimensional embedding with lag, L = 1. This gives a
window length that would be too small for a "good" di-
mension calculation (see Sec. V) but does give a range of
eigenvalues spanning 15 orders of magnitude. The figure
consists of four superimposed graphs of slope versus
log, (r) obtained by using principal components corre-
sponding to the largest 2, 3, 4, and 9 eigenvalues, that is,
2, 3, 4, and 9 columns of the principal component matrix
AU were used in the calculations. The normalized eigen
ualues [s(i)] /Ig. , ~[s(j)] ] are 0.98, 1.62X10
1.69' 10, 1.48 X 10, 1.65 ' 10, 7.46' 10
4.35&10 ', 9.25)&10 ', and 4.37)(10 ' . In this
case, inclusion of principal components with normalized
singular values less than 10 has a negligible effect on
the results of the calculation. This was found to be true
for other embeddings of the Lorenz attractor as well as
for the Rossler attractor [Eq. (4.1)] and a 3-torus [Eq.
(4.2)]. In the case of Fig. 3, the calculations clearly agree
for log, (r) & —3 when only the two largest principal com-
ponents are used.

Again we explicitly note that this diagram does not
demonstrate a successful calculation of the dimension of

40-

the Lorenz attractor. Because L =1, there is no plateau
in the derivative of the correlation integral that can be
used to estimate the dimension. The issue of an appropri-
ate lag is addressed presently. The purpose of this calcu-
lation is to demonstrate that, given an appropriate
singular-value spectrum, only a few columns of the prin-
cipal component matrix are required to estimate accu-
rately the correlation integral. Using the Golub-Reinsch
algorithm, singular-value decompositions can be rapidly
computed. For example, the double precision decompo-
sition of a 2000)& 10 matrix can be performed in approxi-
mately 84 sec on an 8-MHz personal computer with a
Aoating point coprocessor. Singular-value decomposition
is not a major computational cost because the computa-
tional costs of dimension-estimation procedures are main-
ly in the calculation of the correlation integral. A corre-
lation integral calculation using 1000 ten-dimensional
vectors takes some 15 min on the same computer. Be-
cause the time required to calculate these integrals in-
creases rapidly with embedding dimension, the results
summarized in Fig. 3 are of considerable practical
significance.

A comparison of Figs. 1 and 3 displays quite vividly
the advantage of implementing the algorithm in terms of
the principal components. One can check for conver-
gence without introducing noiselike behavior at large dis-
tances.

B. Window length

Results obtained by Broomhead and King' and by
Mees, Rapp, and Jennings suggest that for a given time
series, the normalized singular values may depend only
on the window length (M —1)L, and not separately on
the embedding dimension M, or the lag L. Figure 4
shows a semilog plot of the normalized eigenvalues versus
the index for a number of embeddings with window
lengths that are nearly equal. The values of embedding
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FIG. 3. Plot of slope vs log, {r) for data generated by the
Lorenz equations with parameter values T, =0.01 and L=1.
Matrix A was formed by 1000 vectors embedded in a nine-
dimensional space. Correlation integrals and the corresponding
derivatives shown here were calculated using the first 2, 3, 4,
and 9 columns of the rotated principal component matrix A U.

FIG. 4. Normalized principal values log«(s, '/Xs, ') plotted as
a function of index j for data generated by the Lorenz equa-
tions. In each case, matrix A contained 1000 rows. The values
of embedding dimension M and lag L are {M,L)=(5,24), (6,19),
(7,16), (8,14), (9,12), (10,11), and (11,10). The solid line connects
the eigenvalues for the 11-dimensional embedding.
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dimension and lag (M, L) used were (5,24), (6,19), (7,16),
8, 14), (9,12), (10,11), and (11,10). The eigenvalues are

seen to fall essentially on a single curve. The solid lines
connect eigenvalues for the 11-dimensional embedding
with a lag of 10.

This dependence on window length rather than sepa-
rately on embedding dimension and lag is also displayed
by results of correlation dimension calculations. On the
basis of extensive calculations on the Lorenz attractor,
Caputo et al. suggest that the local slope obeys a
"universal law" that depends only on the window
ength. 3 Figure 5 shows plots of the slope of log, [C~(r) j

versus log, (r) for the Lorenz attractor, Eq. (2.7), for
(M, L)=(5,24), (8,14), (9,12), and (11,10). The thick,
dark curve is a superposition of results from the three
largest subspaces of the 8-, 9-, and 11-dimensional embed-
dings, while the light curve is from the 5-dimensional
embedding using all five components. Note that embed-
ding dimension 5 does not satisfy Taken's criterion (2.3)
for a proper embedding. Nevertheless, in the scaling re-
gion —3& log, (r) & —1, the results for five dimensions
do not differ from the rest by more than 10%. Of course
many n-dimensional rnanifolds (and attractors contained
in them) can be embedded in fewer than 2n +1 dimen-
sions, and indeed what we have here is an embedding of

in IR . Figures 1 and 5 show the relative effects of
varying the embedding dimension for fixed lag and of
varying both lag and embedding dimension, while keep-
ing the window length approximately constant. It could
be argued that the results in Fig. 5 might reflect a behav-

607

ior unique to the Lorenz equations. Additional computa-
tions on other systems suggest that this is not the case.

Figure 6 is similar to Fig. 5, but for the Rossler attrac-
tor,

(dx Idt, dy Idt, dz Idt )

=( —y —z, x+0.2y, 0.4+xz —5.7z), (4.1)

for M, L)=(6, 13), (7, 11), (9,8). Figure 7 shows results
for the 3-torus,

x(k)=sin(took)+ sin(2 ~ cook)+ sin(3 took),

(4.2)

with coo=6.0)&10 and for (M, L)=(7,20), (9,15),
10,13), and (11,12). All cases show remarkable stabilit

as both lag and embedding dimension are changed while
t e window length remains approximately constant.

Upon reflection, the dependence of the correlatioa ion in-

egra on window length rather than on lag or embedding
dimension should have been expected. Similar window
lengths compare similar segments of a trajectory.
Changes of lag within the window simply give different
discrete approximations of the correlation integral.

V. WHAT IS A GOOD WINDOW'F

In Sec. III B we saw that the window length used in the

It a
embedding crucially affects the singular-value spectpec rum.

also affects the outcome of attempts to estimate the
attractor's dimension. The importance of choosing an
appropriate window was pointed out by Froehling
et a. who proposed using 10% of the "folding time"
which was defined as "the average time between "fold-
ing" of adjacent sheets of the attractor. Unfortunately
t is criterion is difficult to implement in a systematic way
or all attractors. Aspects of the importance of window
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FIG. 5. PlPlot of slope vs log, (r) for data generated by the
Lorenz equations. In each case, the trajectory matrix A had
1000 rows. The curves correspond to embedding dimension M
and lag L of (M, L)=(5,24), (8,14), (9,12), and (11 10). Th
t ic dark curve results from the superposition of three calcula-
tions each for M =8, 9, and 11. In each embedding dim

M, the first M —2, M —1, and M columns, respectively, of the
rotated matrix A. U were used in the dimension calculation.
The thin curve corresponds to the five-dimensional embedding
in which all five 1columns were used in the dimension calcula-
tion.
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FIG. 6. Plot of slope vs log, (r) for data generated by the
Rossler equations ( T& ——0.05). In each case matrix A consisted
of 1000 rows. The curves correspond to embedding dimension
M and lag L of (M, L)= (6, 13), (7, 11),and (9,8).
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value to dimension estimates using the Grassberger-
Procaccia algorithm are shown in Figs. 1 and 3. The
various graphs in Fig. 1 are results of calculations using
different window lengths. There is so much variability
between graphs that one cannot tell if the calculations are
converging to a limit. Figure 3, on the other hand, shows
that the calculations agree, but it does not display a scal-
ing region, and so does not yield a value for the correla-
tion dimension. Problems such as these have been known
for some time and there have been a number of efforts to
define an optimum window. '

The first issue to address is why there should be an op-
timal window. It is clear that there is a lower bound to
the window length. If the window is too short, noise
dominates. Up to a point, we want the largest window
possible. The question is, why should we have to stop?
Why not use giant windows? The answer to this question
is not to be found in the Grassberger-Procaccia algo-
rithm, but rather in the Takens's theorem' that produces
the theoretical foundations for the calculation. Takens's
theorem states that

FIG. 7. Plot of slope vs log, (r) for the 3-torus Eq. (4.2). In
each case matrix A consisted of 1000 rows. The curves corre-
spond to embedding dimension M and lag L of (M, L)=(7,20),
(9,15), (10,13), and (11,12).

tion function is an appropriate time scale to use. In pre-
vious work we have used the first zero of the autocorrela-
tion function, but subsequent calculations on data from
simulations as well as from experiments show that the
correlation time, which is defined as the time required for
the autocorrelation function to decrease to 1/e of its
original value, is more robust. For band-limited data,
Broomhead and King use the inverse of the band-limiting
frequency. ' While straightforward in principle, numeri-
cal estimation of the band-limiting frequency poses some
practical problems.

In slightly different terms but in similar context, Capu-
to, Malraison, and Atten use a number of the order of
the first return time, while Fraser and Swinney use the
first minimum of the mutual information function. We
have performed a series of calculations of mutual infor-
mation for these three example systems that are analo-
gous to those presented here of the autocorrelation func-
tion. In summary, the mutual information function did
not prove to be a reliable indicator of optimal window
length. Additionally, significant technical problems are
associated with numerical estimation of mutual informa-
tion that are very nearly as complex as those encountered
in dimension calculations themselves. A systematic ac-
count of these results is given in Martinerie et al.

To test if an optimum" window length does exist and,
if it exists, whether it is related to a time scale charac-
teristic of the correlation function, we performed a series
of calculations using a variety of windows. The analysis
was performed on the data used for Figs. 5 —7. These
were the Lorenz attractor [Eq. (2.7)], the Rossler attrac-
tor [Eq. (4.1)], and a 3-torus [Eq. (4.2)]. The results of the
calculations are shown in Figs. 8 —10, respectively, and
are summarized in Table I.

For our present purposes, the optimum window is

60-

40-

(v(J}, v(J+L}, v(J+2L), . . . , v(J+(M —1)L))

is an embedding. However, if the system decorrelates, as
it will in chaotic cases, we must ensure that, as required
by the theorem, all of these points are on the same trajec-
tory by ensuring that (M —1)L is not too big. Data gen-
erated by numerical integration or in noisy experiments
do not present a trajectory but a perturbation of a trajec-
tory. This puts an upper bound on an acceptable value of
(M —1)L. Effective window length is thus bounded from
below and from above. The present object of our investi-
gation is to locate the optimal window within this range.

The relationship between the covariance matrix and
the autocorrelation function of the signal [Eq. (3.13)) sug-
gests that a time-scale characteristic of the autocorrela-

20-
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FIG. 8. Plot of slope vs log, (r) for data generated by the
Lorenz equations. In each case matrix 3 consisted of 1000
rows. The curves correspond to embedding dimension M and
lag L of (a) (M, L) =(5,6), (b) (8,10), (c) (11,10), and (d) (9,30).
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FIG. 9. Plot of slope vs log, (r) for data generated by the
Rossler equations. In each case matrix A consisted of 1000
rows. The curves correspond to embedding dimension M and
lag L of (a) (M, L)=(9,3), (b) (7,11), (c) (9,12).

merely that which gives the broadest plateau at the
attractor's known correlation dimension. For each win-
dow, the time series is embedded in an M-dimensional
space that satisfies Takens's criterion (2.3). A singular-
value decomposition is performed on the trajectory ma-
trix, and the transformation Eq. (3.7) is done. This is fol-
lowed by a Grassberger-Procaccia calculation in a sub-
space of the embedding space spanned by principal axes
with normalized eigenvalues exceeding 1.0 &( 10

Figure 8 shows results for the Lorenz attractor using a
data set with a correlation time of 30Ts. The four graphs
are labeled according to the window length used in the
calculation: (a) 24Ts, (b) 70Ts, (c) 100Ts, (d) 240Ts.
Curves (a) and (b) corresponding to the smaller window
lengths show low values of the slope for large values of r
[log, (r) & —3.5) and oscillate as the small, noise-
dominated length scales are reached. On the other hand,
curve (d), with a window length that is eight times the
correlation time, shows an anomalously large peak at
large values of r [log, (r}& —1.0], while becoming as er-
ratic as the curves for small windows at the small length
scales. Curve (c), with a window length three times the
correlation time, displays a plateau in the region
—3.0 & log, (r) & —0.6, at a slope of 2.0+0. 1.

Figure 9 shows similar results for the Rossler attractor,
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FIG. 10. Plot of slope vs log, (r) for the 3-torus. In each case
matrix A consisted of 1000 rows. The curves correspond to
embedding dimension M and lag L of (a) (M, L)=(9,5), (b)
(11,12), (c) (10,20).

for a data set with a correlation time of 23Ts. Curve (a)
is for a window of 24Ts, (b} for 66', and (c) for 96Ts.
Figure 10 is for a 3-torus with a correlation time of 62Ts,
curves (a), (b), and (c) corresponding, respectively, to
window lengths of 40Ts 120Ts and 180Ts

The results of comparisons of window length and the
autocorrelation function are summarized in Table I. In
all three cases, windows of the order of the correlation
time or smaller result in small or nonexistent plateaus
with values of the slope that are smaller than the
attractor s dimension except in noise-dominated regions
at small distance scales. On the other hand, windows of
the order of four times the correlation time or greater re-
sult in similarly small or nonexistent plateaus with values
of the slope that are larger than the attractor's dimen-
sion. In all three cases, the broadest plateaus, at values
within 10% of the attractor s dimension, are obtained for
windows that are between 1.6 and 3.5 times the correla-
tion time. In these numerical experiments, T;„ tracks
T„;„d,„slightly better than T„c. However, as previously
mentioned, numerical difficulties are frequently encoun-
tered in estimating T;„. TAc estimates are much more
robust against variations in size and quality of the data

TABLE I. Comparison of window length with the autocorrelation function. T« is the autocorrela-
tion time, T„„,is the time of the first zero crossing of the autocorrelation function, and T,n is the time
of the first local minimum of the autocorrelation function. Tw;nd, w is the window length of those tested
that results in the broadest plateau at the attractor's known dimension. All times are reported in units
of sample interval Tz.

Lorenz
Rossler
3-torus

TAc

30
23
62

Tzero

122
32
90

mtn

72
60

122

Twindow

100
66

100

Twtndow ~ AC

3.33
2.87
1.61
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set. For this reason, the present discussion focuses on

TAc.
These results indicate that though the correlation time

is an imperfect predictor of the optimal window, the rate
at which a signal decorrelates is certainly a determinant
of optimal window. That this should be so was anticipat-
ed by our previously outlined examination of Takens's
theorem. The Lyapunov exponents, particularly the
system's largest Lyapunov exponent, provide a quantita-
tive measure of the average exponential divergence of
nearby trajectories in the phase space of a dynamical sys-
tem. We hypothesize that if the product
(window L,„), where L,„ is the largest Lyapunov ex-

ponent, is too large, the signal decorrelates and the scal-
ing region is lost. The smaller the maximum Lyapunov
exponent, the larger we can take the window. Tests of
this hypothesis using a numerical procedure for estimat-
ing Lyapunov exponents constructed by Wolf et al. are
now underway.

While these admittedly anecdotal results con6rm the
overall dependence of the results of the calculations on
the window length, they do not give a precise prescrip-
tion that would allow determination of an "optimum" in

terms of the signal's correlation time. They do, however,
suggest a relatively narrow range over which the window

length may be varied to maximize the plateau.
We propose the following interactive procedure for

combining a singular-value decomposition and the
Grassberger-Procaccia algorithm.

0 Choose an embedding dimension M and a lag L so
that the window (M —1)L is a few times larger than the
correlation time.

~ Perform a singular-value decomposition and rotate
the embedding space using the matrix U of eigenvectors
of the covariance matrix.

~ Perform Grassberger-Procaccia calculations in sub-

spaces of the rotated space spanned by principal axes
with eigenvalues exceeding 10 . If this results in a di-
mension that does not satisfy Takens' criterion, increase
M until it does. (In practice, 10 is not invariably an ap-
propriate criterion. However, it cuts off dimensions that
contribute no more than 0.01% to the variance of the
multivariate data. If the quality of the data used and the
precision of the calculations warrant it, more or less
stringent criteria may be used. )

~ Vary the window length to maximize the plateau.

VI. FURTHER PROBLEMS AND POSSIBILITIES

Establishing rI and rU, the lower and upper bounds of
the derivative plateau, presents computational problems
that are not readily resolved. In calculations using noisy

experimental data, the plateau boundaries may not be ob-
vious. Numerical experimentation demonstrates that
even small variations in rL and rU can have signi6cant
effects on the dimension estimate. Caswell and Yorke'
have suggested including explicit values of rL and rU in

dimension calculations; D, (rL, rU) would be reported. In
many experimental investigations, the absolute value of
dimension is not of interest, rather the change in dimen-

sion in response to changes in experimentally controlled
parameters (Reynolds number, temperature, cognitive ac-
tivity) may be of interest. In this case, the importance of
systematic errors associated with plateau boundary esti-
mates can be reduced by reporting the ratio of dimen-

sions estimated with common values of rL and rU. In
some cases no single number can accurately approximate
the derivative of the correlation dimension. In these in-

stances, producing the Slope versus log, (r) plot is

perhaps the only legitimate means of presenting the re-
sults of these calculations.

The results presented here have addressed the question
of window length. The question of epoch length has not
been considered. If NT data points are collected at a uni-

form sample interval T„ then the epoch length, the dura-
tion of the record, is given by TF ——T, (NT 1). Sele—ction
of an appropriate epoch length is a much more difficult
problem than selecting a window because its resolution
turns on questions of signal stationarity. This problem
has already been encountered in classical signal analysis,
and the generalization of a classical technique used in the
characterization of nonstationary signals may be applic-
able here. The Wigner transform estimates the instan-
taneous energy for a given time and frequency. Others
have shown ' that it is possible to generalize the con-
cept of dimension to construct a continuous dimension
spectrum. We have proposed' that it should be possible
to construct an analog to the Wigner transform that can
be applied successfully to the dimension spectra of non-
stationary signals.
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