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Competition between roll and square convection patterns in binary mixtures
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We present a few-mode Galerkin model for convection in binary fluid layers subject to imperme-

able horizontal boundary conditions at positive separation ratios. It describes convection in the

form of rolls in x direction, y direction, and squares. To incorporate symmetry-breaking sidewall

forces selecting the spatial phase of the patterns relative to the walls we introduce into the model

equations a single small inhomogeneity that favors the experimentally realized phase. Then squares

are stabilized shortly above onset of convection where the amplitudes are very small. Far above on-

set, the amplitudes strongly increase, nonlinear mode coupling dominates, and causes rolls to be

stable. In an intermediate regime, there are oscillations between the three competing patterns of
rolls in x direction, squares, and rolls in y direction. Heat transport, spatial, and temporal behavior

of the various convective states are in good agreement with recent experiments.

I. INTRODUCTION

Already close to the threshold for onset of convection
in a binary Quid layer heated from below' the interplay
between currents of momentum, heat, and concentration
leads to rich and interesting linear and nonlinear behav-
ior. The convective momentum currents are driven
by buoyancy forces that result from vertical mass density
variations due to temperature and concentration gra-
dients. These two driving mechanisms can be controlled
externally by varying the Rayleigh number R, i.e., the
temperature stress and the separation ratio f (Ref. 9}
which measures the concentration driving: g) 0 implies
concentration gradients such that convective currents are
enhanced, while the opposite holds for f(0.

Recently, Moses and Steinberg (MS) examined con-
vection patterns and heat transport in ethanol water mix-
tures at small positive separation ratios 0.01($(0.1.
Their heat transport measurements showed two distinct
ranges in the plot Nusselt number N, i.e., reduced heat
transport, versus Rayleigh number. For slightly super-
critical R the Nusselt number and its slope are very small
and the convective motion is driven by the solute gra-
dient via the Soret effect." MS defined this range of a1-

most vanishing convective heat transport as the Soret re-
gime. For larger Rayleigh numbers the slope of N sharp-
ly increases to a higher value which is close to the slope
for convection in a pure Quid. This second range is
defined as the Rayleigh regime.

MS found stationary square convective patterns within
the Soret regime and stationary roll patterns in the far
Rayleigh regime. In a region of Rayleigh numbers be-
tween these two regimes they observed in square experi-
mental cells (and also in cylindrical containers) periodical-
ly alternating patterns of squares and rolls. Le Gal
et al. " did similar experiments to those of MS in circu-
lar cells. However, they used oil, i.e., a multicomponent
Quid instead of a pure binary mixture. They also found at
small Rayleigh numbers stationary square convective pat-
terns, then oscillating patterns of squares and rolls, and

then for still larger R stationary roll patterns.
In this work we present a model that is able to repro-

duce and to explain the main features of the experiments
of MS. We shall see that the stationary square patterns
at onset of convection just as the oscillating square and
roll patterns at slightly larger Rayleigh numbers are a
genuine phenomenon of binary mixtures with positive
separation ratios.

In Sec. II we introduce a low-mode Galerkin model for
binary mixtures between impermeable horizontal boun-
daries. In Sec. III we investigate its stationary solutions
describing square and roll convection and its oscillatory
solutions describing alternating patterns of squares and
rolls. In Sec. IV we discuss the fact that sidewall forces
in the experimental cell select particular spatial phases of
the convective patterns. We incorporate such forces phe-
nomenologically into our model, we determine their effect
on linear and nonlinear properties of the stationary and
oscillatory convective states, and we compare with exper-
iments. Section V contains a summary of our results.

II. GALERKIN MODEL

Consider a layer of a binary Quid mixture extending la-
terally, i.e., in the x-y direction to infinity and heated
from below. Neglecting the Dufour effect" the nondi-
mensionalized equations of motion for the deviations
from the conductive state read in Oberbeck-Boussinesq
approximation"

V.u=o, (2.1a)

(t},+u V)u= —Vp+o [(1+/)8+(]e,+cr V u, (2.1b)

(t), +u V)g=LV g gV 8, —

(8, +u V)8=Ru, +V 8.
(2.1c}

(2.1d)

The vector u(x, t ) is the velocity field, p(x, t ) the pres-
sure, and 8(x, t) the temperature. The combined field

g(x, t ) =c(x, t ) $8(x, t)—
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A. Selection and truncation of the modes

To describe the convective flow we use a Galerkin
technique and expand the spatial dependence of the hy-
drodynamic fields in Fourier series appropriate to free-
slip, impermeable (FSI) horizontal boundary conditions,

P( x, t ) = g P„(t)e'q"*, (2.3a)

with

n=(nI, n2, n3), n;=0, +1,+2, . . .

q(n)=(kn, , kn2 mn

(2.3b)

(2.3c)

is used instead of the concentration field c(x, t ). Then the
impermeability of the horizontal boundaries to concen-
tration currents can be imposed in a mathematically
more convenient way. Lengths are scaled by the layer
thickness d, multiplied by the vertical diffusion time d /~
where ~ is the thermal diffusivity. We have scaled tem-
peratures by va. /pIgd and concentration by vtr/p2gd
where v is the kinematic viscosity, g the gravitational
constant, and pI (pz) the thermal (solutal) expansion
coefficient at constant concentration (temperature) and
pressure. Moreover, 0 =v/a is the Prandtl number, and
the Lewis number L =D /a is the ratio of mass diffusivity
D and thermal diffusivity ~. There are two control pa-
rameters: the separation ratio f and the Rayleigh num-
ber R =D, T13Igd /vtr where b, T is the externally imposed
temperature difference between the upper and the lower
plate at z =1 and 0, respectively.

within the linearized equations. The associated wave
numbers in the region of reciprocal space with positive
mode indices are shown in Fig. 1 by closed symbols.
They are, e.g. , (101) and (011) for 8 and u and (100) and
(010) for g. In each case the modes with n, =0 or nz ——0
describe convective roll patterns with axes parallel to the
x or y axis, respectively.

(ii) In addition, we retain the first modes that are cou-
pled to the above basic critical modes via the nonlinear
convective interactions on the left-hand side of (2.1).
These modes are shown in Fig. 1 by open symbols. For
example, the (112) mode of 8 and u is driven by the com-
bination of a (101) and a (011) mode in the nonlinearities
(u V)8 and (u V)u, respectively. On the other hand, the
form of the mode interaction (u V g' appearing in (2.1c) is
such that it can generate only a (001) mode in the g field

by combining the critical modes of u and g (closed trian-
gles and squares, respectively, in Fig. 1) but not a (111)
mode. To find all these additional modes one merely has
to list the triple-mode interactions of the form q+ q' =q"
that involve two basic critical modes. Modes which in

principle are possible by this procedure but incompatible
with incompressibility or thermal boundary conditions
(e.g. , umI2 or 8»0) are discarded. The mode u „IIturns out
to be damped away.

(iii) We neglect the modes
) n, ) & 1,

) nz ) & I that
represent higher lateral harmoni'c variations of the fields.

With the modes shown in Fig. 1 we then obtain for the
vertical component of the velocity field

It has recently become clear that the impermeability of
the horizontal boundaries significantly affects lin-
ear ' ' and nonlinear' ' properties of binary mix-
tures. The reason is the additional coupling between tem-
perature and concentration gradients at the boundaries
arising from the condition that the vertical concentration
current has to vanish there. We use physically unrealistic
but mathematically convenient free-slip conditions on the
lateral momentum currents at the horizontal boundaries.
The influence of the slip condition on convection seems
to be much less important. ' ' ' It gives rise to different
wave numbers, critical Rayleigh numbers, and frequen-
cies, i.e., effects that can partly be taken care of by using
properly scaled quantities.

The expansion (2.3) will be truncated so as to describe
with a minimal set of modes convection in the form of
straight rolls parallel to the x axis, parallel to the y axis,
and convection in square form. We restrict ourselves in
this work to convective patterns that do not move lateral-
ly, thus the phases of the complex amplitudes P„donot
vary in time. The patterns are invariant under transla-
tion in the x and y directions by half a wavelength.
Furthermore, a possible convective pattern is trans-
formed via rotation around the z axis by integer multiples
of m/2 into another possible pattern.

The selection of the modes retained in the truncation is
based on the following reasoning.

(i) First we take the basic critical modes, i.e., the lowest
modes that can grow above the convective threshold

(002) 0

{112)

(1 0 1)

'~ (011)
I

I

I

I

,
' {010)

~,0:
~ , o

FIG. 1. Wave vectors retained in the truncation of the
Fourier expansion of the hydrodynamic fields u (triangles), 9
(circles), and g (squares). Shown is only one-eighth of k space.
Closed symbols and thick lines denote the basic critical modes,
while open symbols and thin lines show modes that are coupled
via the convective nonlinearities to the basic modes. See text
for more details.
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u3(x, t }=2V2[u, p, (t)cos(kx)+ up» (t)cos(ky)]sin(mz )

+4&2u &&z(t)cos(kx)cos(ky)sin(2nz ) . (2.4a)

The horizontal velocity fields u, and uz follow via the
continuity equation,

rX= —oq X+o (I+/)Y+ U + X S,

(2.5a}

u &(x, t }= —2&2—[u,o, (t}sin(kx }cos(mz }lpl

+2u»2( t )sin( kx )cos( ky)cos(2~z )],
(2.4b)

rY = —q Y+(r —Z)X+ X T,
1

rU= ——k 'U+q 'PY+ VX,
3

rZ= b(Z——X Y),

(2.5b)

(2.5c}

(2.5d)

uz(x, t ) = —2~2—
[uo&& (t)sin(ky)cos(~z )

k

+2u „2(t)cos(kx)sin(ky)cos(2n'z)] .

(2.4c)

rV= b —V+—', fZ+-,'X U-

A

rS = 2o d—S+o( I +f) T — —X)Xz,
d d

(2.5e)

(2.5f}

For the deviation from the conductive temperature
profile we get

8(x, t ) =2~2[8&p, (t)cos(kx )+Hp»(t}cos(ky) ]sin(nz )

+v 2[48»z(t)cos(kx)cos(ky)+8opz(t)]sin(2mz),

(2.4d)

and for the combined field g

g(x, t ) =2/&oo(t)cos(kx)+2(&&p(t)cos(ky)

+&2'»(t)cos(nz ) . (2.4e)

B. Model equations

Projecting the equations of motion (2.1} onto the ten
modes retained in the Galerkin ansatz (2.4} we obtain the
following generalized Lorenz model:

The expansion of the z dependence of g in cos modes'
guarantees impermeability since the vertical component
of the concentration current, LV3(, van—ishes at the
horizontal boundaries z =0, 1. All mode amplitudes ap-
pearing in (2.4) are real. To arrive at (2.4) we used the
reality of the fields, the constraints imposed by mirror
and inversion symmetry of the patterns to be described,
and the fact that the patterns are standing. Note that the
relative spatial phases of the fields in (2.4) have been
fixed.

If one were to discard all y-dependent (x-dependent}
terms in (2.4), i.e., if one would keep only the wave vec-
tors in the k„-k,(k -k, ) plane of Fig. 1 then one would

have a five-mode truncation describing a standing pattern
of convective rolls perpendicular to the x axis (y axis}.
Thus the fields (2.4) may be visualized by a superposition
of two sets of mutually perpendicular convective rolls
with weights given by the corresponding mode ampli-
tudes. In addition, however, there appears also a lateral
contribution, e.g., -cos(kx)cos(ky), that is generated by
the nonlinear interaction of the roll-type fields. Thus our
truncation leads to a natural but nontrivial extension of
the five-mode Lorenz models' for binary mixtures which
describe standing roll patterns.

rT = rS 2d T——(X&—Yz+X2 Y& ) .
4

(2.5g)

~&z-
Z = — 8pp2 V=

R, 2&2Rc

and the two additional modes are

(2.6b)

m&2S y u J)py

q,

n&2-
Ro 112 '

C

(2.6c)

We have used the constants

7r2
p6

p qC
R, =

kp

1 4mb—
0

q, q,
(2.6d)

which are the critical quantities of the model for /=0.
They are also used to define the following reduced quanti-
ties:

R r k 2 k +~2 2 k~+26r=
go ko o' o'

C C qc q,

(2.6e)

Here r and k are the reduced Rayleigh number and wave
number, respectively.

Without the additional modes S and T the model equa-

Here we have combined the critical modes into two-
component vectors defined by

u ioiX=
q' oui

p
qc ]Of (2.6a}

8011

p
~Qc g)ppU=

2v 2R, gp]p

The current-carrying modes for heat and concentration
are
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tions are mathematically identical to the set of equations
presented in Ref. 12. However, the physical meaning of
the mode variables is a very different one. The authors of
Ref. 12 are concerned with one propagating set of rolls
oriented along the y axis. There the paired modes, e.g.,
(X„Xz) represent real and imaginary part of the complex
roll amplitudes. Here, however, X&,X2 are the real am-
plitudes of the taboo diferent standing roll sets.

C. Convective threshold

Throughout this paper we restrict ourselves to positive
separation ratios. Then the conductive state u, 8, (=0
becomes unstable via a stationary instability at

r„„(k)=„,1+/+ 24 ~ (2.7)
Ic Lk2

There the critical modes X, Y, and U begin to grow in
the linearized model. In fact, the linear properties of our
model (2.5} are identical to those of the eight-mode
Galerkin model of Ref. 12 since S and T drop out after
linearization. The critical wave number of (2.7) van-
ishes' for

g & L [(16/n z) —L ]

fluid, provided that the amplitudes are small. ' Assum-
ing small variations of the refractive index to be propor-
tional to small variations hp=p —(p) of the density p
around its mean (p) the intensity modulation of a sha-
dowgraph picture taken at the top of the fluid layer is a
vertically averaged quantity given by

1

bI(x,y, t) = A dz bp(x, y, z, t) . (2.10)
0

Here EI is the deviation from the mean background light
intensity. The proportionality constant A is positive, in-
dicating that positive density fluctuations lead to an in-
creasing refractive index and thus to a greater light inten-
sity. Only the density variation due to the convective
temperature and concentration field

p„„„(x,y, z, t)= — p [o(1+/)8(x,y, z, t)+g(x, y, z, t)]
gd

(2.11)

enters into (2.11). The conductive part being horizontally
homogeneous drops out. Here po is the reference density
taken, say, at the upper plate.

Within our Galerkin truncation (2.4) b,I is given by

For almost all experimental parameters of MS
(0.01 & g &0.1, 0.021 &L &0.025) this condition is
fulfilled. However, in all convection patterns observed by
MS the wavelength is k=2 so that the wave number
k =~ corresponds to the critical wave number k, in the
reference one-component system at (=0. In our free-sinai
model the reference critical wave number is k, =n/v'2.
Thus we fix k =k /k, = 1 in the rest of this paper.

D. Model variables and experimental quantities

4v'2R,
bI(x,y, t) = —3 po

gd qq 1T

X [p, (t)cos(kx)+pz(t)cos(ky)] .

The two time-dependent prefactors

p, (t}=(1+/)Y,(t)+ U, (t), i=1,2

(2.12a)

(2.12b)

Here we give the connection between the model vari-
ables and experimentally accessible quantities such as the
Nusselt number and shadowgraph pictures. The relation
between the fields u, 0,c and the model variables is given
in Eqs. (2.4) and (2.6).

1. Nusselt number

The laterally averaged vertical heat current density
evaluated at the lower boundary, z =0, of the fluid layer
1s

q(z=0, t)= —B,(8(x, t)) ~, ,+R, (2.8)

where ( ) abbreviates the lateral average. The conduc-
tive heat current density associated with the linear con-
ductive temperature profile is given by the Rayleigh num-
ber R. Using (2.8) one finds that the Nusselt number,
N (t) =q(z =0, t) /R, is determined in our model by 800&,

N(t) = Z(t)+1 . —2

r
(2.9)

2. Shadowgraph pictures

Modulations of the light intensity in shadowgraph pic-
tures are a direct image of the refractive index in the

will be called "shadowgraph pattern amplitudes. " Their
relative size determines which shadowgraph pattern is
observed: p& measures the maximal intensity of vertical
stripes and p2 measures the maximal intensity of horizon-
tal stripes. For example, p, =p2 corresponds to a square
pattern, while p2 ——0 (p &

——0) corresponds to a striped pat-
tern of parallel convective rolls with axes in the y direc-
tion (x direction). In general, the shadowgraph pattern
(2.12a) is a superposition of two crossed line patterns.

From the shadowgraph pattern we can deduce infor-
mation on the structure and spatial phase of the convec-
tive flow field. For example, for a striped shadowgraph
pattern with p2 ——0 (rolls oriented along the y direction)
we have the following chain of implications: dark stripe
at x =0 ~ p, & 0 ~ reduced refractive index ~ reduced
density ~ warm ~ upflow, and the opposite for a bright
stripe. Note that the implication reduced density ~
warm holds only when the convective density variationp„„„is dominated by 0. In that case the shadowgraph
picture is mainly an image of the horizontal variation of
the critical mode contribution to the horizontal tempera-
ture field. With the exception of the Soret regime shortly
above the convective threshold the temperature modes Y
are always larger in size than the modes U of the g field
as we shall see later.
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III. CONVECTION IN THE ABSENCE
OF IMPERFECTIONS

X2 ——Y2 ——U2 ——0,
so that p2 ——0. There are two fixed points given by'

(3.1b)

Here we discuss the results of our model for an J',deal-
ized situation without symmetry-breaking imperfections
such as, e.g., sidewalls that distort amplitudes and favor
particular phases of the convective fields or particular
patterns. In Sec. IV we shall see that already small inho-
mogeneities that simulate in an ad hoc manner the
sidewall forcing can give rise to important changes.
Since, however, these effects are best understood on the
background of the unperturbed model we discuss in this
section first the ideal system.

A. Stationary patterns

1. Rolls

In the convective roll states the velocity mode u»2 and
the temperature mode t9»2 are not excited, i.e.,

S=O=T (3.1a)

in the model. Furthermore, for rolls with axes parallel to
the y direction,

The stationary convective states are determined by the
nontrivial fixed points of the model. There is a set of four
equivalent fixed points representing convection in the
form of straight rolls (fixed points on the axes of Fig. 2)
and another set of four equivalent fixed points describing
convection in the form of squares (fixed points on the di-
agonals of Fig. 2). The symmetry operations under which
the four convective patterns of each set are transformed
into each other are: translations by A, /2 and/or rotations
by m. /2.

L
Y, =rN&X&, U& rg —————,X& N&N&X&, (3.1c)

Z=rN&X&, V= —rg(1+ 9L)E—&%~X&,

N, =(1+X,) ', N, =(L /6+X) )

(3.1d)

(3.1e)

Here X, is determined by the positive root (for 1( &0
there is only one) of

X, +aXf+P=O,
with

(3.1f)

L2 32a=1+ —r I+g—
6 31r'

(3.1g)

LP= — (r/r„„—1) . (3.1h)

The roll-fixed point (3.1) with positive X&, Y„p,describes
the roll pattern 3 in Fig. 2 with maximal upflow, u&0&

positive, at x =0. The other one with negative X„Y„p,
has downflow at the origin (pattern 3'). A translation in
the x direction by X/2 which is equivalent to inverting
the rotation direction of each roll transforms the two pat-
terns into each other.

The stationary patterns of rolls oriented along the x
axis are identical to the above-described ones after a rota-
tion by n/2 in the x-y plane. This corresponds to ex-
changing indices 1 and 2 of the mode amplitudes in (3.1).
In the plane of the shadowgraph amplitudes the patterns
of rolls oriented along the x axis are represented by the
fixed points 1 and 1' in Fig. 2.

4
'a.

;
3

j

Xi =Xz lui I

=
I pz I

(3.2a)

with X~ being the only positive root of the third-order
polynomial

2. Squares

The convective square patterns correspond to four
fixed points of our model for which

X, +a2X&+a&X&+ao ——0 .6 4 (3.2b)

Here

2' oL
~0 = rI ("/"stat (3.2c)

3 32
a, = g err 1+/ 1—

37T2

L 2—o. 1+
6

FIG. 2. Convective fixed points of the model projected onto
the plane of shadowgraph pattern amplitudes. The correspond-
ing patterns are shown in the insets. Therein the light intensity
variation (2.12) is shown with ten gray levels. Dark areas indi-
cate smaller refractive index implying upflow in the Rayleigh
regime.

~ra. , +—(1+1() +-,'L (-', ~ +1)1 4g L 5 2 5 2

(3.2d)
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a2=or (1+1()(—,
' —

—,', 0)— f + —",0 + —,', (5+L ),4 16

(3.2e)

where

g=o [r(1+/) —',~] . (3.2f)

For this square convective state the other modes are re-
lated to X=(X„X2) as follows:

Z =X Y, V= ——
( —', litY+U) X,2 4 (3.2h)

sgn X]X2 2 gb( I+/)
7l

~9X)+ X Y (3.2i)

sgn(X, X2 ) 25~b
~4rX, + X Y

7l
(3.2j)

The mode vectors X, Y, and U are collinear and X and Y
are parallel. Thus the fixed point with X& ——X2 being pos-
itive lies (at least in the Rayleigh regime) in the first qua-
drant of the p&-p2 plane of Fig. 2 giving rise to pattern 2
shown there for p& ——p2 &0. One obtains the other
square-fixed points, e.g., 4, by rotating the vectors
X,Y,U by m/2 and by changing the sign of S and T. The
modes Z and V do not change. One should keep in mind
that with S(G»z) and T(8»2) being nonzero the fields of
vertical velocity and temperature contain contributions
-cos(kx)cos(ky) which are not visible in the shadow-
graph intensity distribution because of its lateral depen-
dence sin2nz that is integrated out in (2.10).

It is interesting and for the discussion in Sec. IV help-
ful to note that our model without the modes S, T would
have a continuous family of fixed points with X,Y,U also
being collinear but with an arbitrary common phase an-
gle, e.g., in the X&-Xz plane (cf. the discussion in Ref. 12).
Projected onto the p&-p2 plane these fixed points would
form a circle that may be viewed as the bottom of a
"Mexican hat" potential. The continuous degeneracy of
this "hat" is lifted by including the modes S, T that are
excited by the nonlinear coupling, e.g., (u V)8, of critical
modes. The effect is to distort the hat vertically in such a
way that its groove develops four local minima —the ro11
states —on the p&,p2 axes and in between them four local
maxima —the square states —on the diagonals. The hat
is also deformed radially with square- and roll-fixed
points no longer lying on a circle.

We should like to point out, however, that the Galer-
kin model equations are not derivable from a potential.
We use the picture of the Mexican hat potential only as a
convenient means for the discussion.

I+4Xi /(3'�) L/2 —SXi /3Y=r 2X, U=p
2 2

Y,1+[2—25o b /(9r) )]Xf L /6+ 2X~)

(3.2g)

3. Nusselt numbers

In Fig. 3(a) we show the Nusselt numbers for station-
ary convection in the form of rolls (thick curve) and
squares (dashed line) as a function of reduced Rayleigh
number. In the Rayleigh regime, r ~1, heat is more
effectively transported by rolls than by squares. More-
over, shortly above r = 1, the slope of the Nusselt number
for rolls is close to 2, i.e., the value for a one-component
Quid subject to free-slip horizontal boundary conditions.

In the Soret regime r„„(r~ 1, on the other hand, con-
vective heat transport is extremely small for both pat-
terns. The convective states bifurcate out of the conduc-
tive state at r„„(cf.arrow in Fig. 3) albeit with such a
small slope of N that the bifurcation threshold is not visi-
ble in Fig. 3(a).

In Fig. 3(b) we show the strengths of the critical 8 and

g modes for the roll pattern of Fig. 3(a). For the square
pattern the situation is similar. That 8 dominates the
buoyancy force (2.11) in the Rayleigh regime (r & 1) while

g dominates in the Soret regime (r„„&r & 1) supports
the picture of MS that convection is driven in the former
mainly by temperature gradients and in the latter mainly
by concentration gradients.

0.6

i 0.4—
Z,'

ro[

0.2—

0.0

~ ~
I ~ ~

0.5

-00E
0

ou--05 E

0.0
I

0.5 1.0 1.5

FIG. 3. Nusselt number (a) and selected model amplitudes (b)
vs Rayleigh number r for stationary states in the absence of im-

perfections. Arrow labeled r„„marksthe convective threshold.
Convective squares are always unstable, however, only very
slightly in the range r &1. Rolls are unstable in an interval
close to r = 1 as indicated by the dots. (b) shows the mode U of
the g field and the mode Y of the 8 field for convective rolls.
The former (latter) dominates in the Soret regime, r &1 (Ray-
leigh regime, r &1). For squares the situation is similar. Pa-
rameters are /=0. 1, o =23, L =0.018.

4. Stability

The stability of the two above-described stationary
convective states was determined by numerically evaluat-
ing the eigenvalues of the 10)& 10 matrix that results after
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linearizing the model equations (2.5) around the fixed

points (3.1) and (3.2), respectively.
In the Rayleigh regime well above r =1 squares are

strongly unstable with large positive eigenvalues, awhile

rolls are quite stable there with the largest real part being
suSciently negative. As an aside we mention that
without the S, T modes the resulting rotational symmetry
of the aforementioned undistorted Mexican hat potential
would lead to a zero eigenvalue for the roll- and the
square-fixed points.

In the Soret regime, r ~ 1, on the other hand, rolls are
very weakly stable and squares are very weakly unstable.
In each case there is one real eigenvalue very close to
zero. For example, for the parameters of Fig. 3 this ei-
genvalue is y„&&,

———2.5X10 and y,„„„„=2.5X10
at r =0.5. For the potential picture of the Mexican hat
this implies that the deformation by the S, T modes is
very small: the roll minima are very shallow and the
square maxima are very small in the Soret regime. Con-
sequently, there is in the ideal system an extremely slow
approach on a time scale —I/y„„,to a final roll state,
whereas in the experiments of MS the square state was
stable in the Soret regime (cf. Sec. IV for a discussion of
the stabilization of squares by symmetry-breaking imper-
fections).

An important feature for understanding the convective
behavior upon increasing the Rayleigh number towards
r =1 is the Hopf bifurcation dynamics there: In the Soret
regime there are for both, the square- as well as for the
roll-fixed point, two complex-conjugate eigenvalues with
a small negative real part. With increasing r this real
part grows, becomes positive at a threshold value
(r =0.78 in Fig. 3), and causes a Hopf bifurcation into a
limit cycle there.

B. Oscillating patterns

For Rayleigh numbers around r = 1 between the Soret
regime and the Rayleigh regime (dotted region in Fig. 3)
no stable stationary convective solution exists. There we

have found limit cycles numerically. The projection of
their trajectories onto the p, -pz plane has typically an el-

lipsoidal shape centered around the origin p, =p2 ——0.
Depending on r, however, the ellipses can also degenerate
to a straight line through the origin. We found these
"squeezed*' forms typically for r & 1 when all amplitudes
were sma11. These linelike trajectories, e.g. , between 1

and 1' in Fig. 2, correspond to patterns that periodically
decay to zero and grow again with globally reversed flow

directions. The Nusselt number periodically goes to zero
when the flow reverses its direction.

On the other hand, circular-shaped limit cycle trajec-
tories were typically found for r & 1 when the convective
amplitudes were appreciable. This type of limit cycle
represents an alternating sequence of convective square
and roll patterns in which each of the eight patterns of
Fig. 2 is successively appearing along the circular orbit
running, e.g., through the points 1-2-3-4-1'-2'-3'-4' in the
p&-p2 plane. In the X,-Xz plane the trajectory is not
purely circular since the Mexican hat is deformed in radi-

al direction by the S, T modes. Therefore
~

X(t)
~

and
with it Z(t) and also the Nusselt number X(t) oscillate
weakly around a mean that is smaller than the Nusselt
number of the unstable stationary convective rolls.
Furthermore, the limit cycle remains stable for r much
larger than the value where the roll-fixed point (cf. Fig. 3)
becomes stable again. Eventually the ideal model system
undergoes a hysteretic transition to the stable roll-fixed
point.

Although the alternating patterns and the oscillations
in heat transport are somewhat similar to the results of
MS, this limit cycle is not the experimentally observed
one. One reason is the oscillation frequency which in the
ideal system grows with r, while it decreases with r in the
experiment of MS and of Le Gal et al. " The other
reason is the way square and roll patterns alternate as de-
scribed below.

IV. EFFECT OF SIDE%'ALLS

A. Sidewall forcing in the experimental square cell

Here we argue that in the experimental cell of MS with
a square-shaped horizontal cross section there are
sidewall forces that favor particular patterns, i.e., certain
phase relations of the patterns relative to the sidewalls.

Let us first recall the limit cycles of the ideal model
system without sidewalls: In each case the sequence of
patterns is such that the convective flow periodically re-
verts its direction, since with a particular pattern n also
its inverse n' is part of the cycle. Take as an example the
circular trajectory 1-2-3-4-1'-2'-3'-4' in the p&-p2 plane of
Fig. 2. Thus roll states 1 and 1' with reversed rotation
directions of the rolls periodically appear.

The experimental shadowgraph pictures [Figs.
4(c)—4(e) of MS covering half a period], on the other
hand, clearly show that patterns with globally reversed
flow directions do not appear. This is most easily seen
from the fact that there are places (lying on a square lat-
tice) that remain always black, e.g. , close to the sidewalls,
while others remain always bright. Furthermore, the
number of horizontal and vertical lines of black dots or
black stripes remains fixed at 12 and also the number of
bright vertical and horizontal stripes, 11, does not
change. This also implies that the turning directions of
the rolls remain the same. For opposite turning direc-
tions one would have 11 black and 12 bright stripes given
that the number of rolls —22 in the x and y directions—
does not change.

The shadowgraphs of MS strongly suggest that the lim-
it cycle in the experimental cell consists of a sequence of
patterns, say, 1-2-3-2-1. . . of Fig. 2, such that there are
always black dots or a black stripe near the sidewalls.
Starting from point 1 in this cycle the flow intensity of a
fixed set of 22 convective rolls with axes parallel to x de-
creases, while simultaneously a similar fixed set of 22
rolls with axes in the y direction grows. When the inten-
sities of the x and y rolls are equal we have a square pat-
tern (point 2). Then the intensity of the x rolls decreases
and that of the y rolls reaches its maximum (point 3). In
the second half of the cycle x rolls grow again and y rolls
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decrease and the system returns to point 1.
Note that in this cycle the local flow direction remains

unchanged everywhere. In comparison with the symme-

try of the unbounded ideal system under reversing the
turning direction of rolls or of replacing upflow by
downflow the experimental limit cycle implies that the
experimental setup favors a particular phase of the flow

field, e.g. , a particular rotation direction of a particular
roll. For a fixed number of rolls or squares this is a mani-
festation of sidewall forcing that leads to a particular flow
configuration near the wall.

B. Incorporating symmetry-breaking forces into the model

iU= ——U+1(Y+ VX+/,
3

(4.1)

with a constant inhomogeneity g. Here we have used
k =g = 1 as in the rest of this paper.

For the square convection cell used by MS the forcing
caused by each of the sidewalls should be the same which
implies g, =$2 in our model. For a rectangular cell, on
the other hand, g&/(2&1 would be a function of the ratio
of the side lengths. In the picture of the Mexican hat po-
tential the forcing g with g, =$2 & 0 tilts the hat along the
135' diagonal axis, thereby lowering its groove in the first
quadrant. Hence the square pattern 2 and the adjacent
roll patterns 1 and 3 (notation of Fig. 2) become favored.
For a rectangular-shaped cell, say, with side lengths
L~ &&L„,one would have (2-0 and gt&0, thereby favor-
ing the roll patterns 3 or 3'. It is interesting to note that
MS found well-developed regular square patterns only in
square-shaped convection cells, i.e., in systems for which
in our model the forces g, = (2 provide the largest bias for
squares.

C. Results

Since our model assumes a fluid layer extended lateral-
ly to infinity it does not contain symmetry-breaking
sidewall forces that favor particular phases of the flow
patterns. We tried to incorporate the effect of these im-
perfections by adding, in a purely phenomenological and
ad hoc manner, small inhomogeneities, i.e., small general-
ized forces to the equations of motions of the pattern-
carrying modes. Doing so we were guided by the ap-
proach of Ahlers et al. ,

' who incorporated the sidewall
forces caused by temperature modulation into a Lorenz
model. We found good agreement with experiment for
forces g' that couple to the g field being a combination of
concentration and temperature.

In the rest of this paper we present results of our
modified Galerkin model where Eq. (2.5c) is replaced by

2. Oscillating patterns

In the range of Rayleigh numbers between r, and rz
(Fig. 4) stationary roll and square convection is unstable.
Instead our perturbed model has stable limit cycle solu-
tions which we have determined numerically. Their time
behavior differing significantly from that of the ideal un-
forced system will be discussed further below.

The associated time-averaged Nusselt number is shown
in Fig. 4 by dots in comparison with the experimental re-
sults (open circles) for the oscillatory states as far as we
could read them off the figures published by MS. The ex-
istence range of oscillatory patterns in the experimental
cell seems to be smaller than in our model. This might be
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Rayleigh regime, well above r = 1 only stationary convec-
tive rolls are stable. The threshold Rayleigh number r2
(cf. Fig. 4) down to which they are stable depends slightly

on the size of g. But otherwise the small inhomogeneity g
alters the stationary roll-fixed points only insofar as fixed
points 1 and 3 are slightly favored over 1' and 3'. Thus in
the far Rayleigh regime the internally generated forces
due to nonlinear mode interactions dominate over the
external forcing g and determine the fixed point behavior
of the system.

In the Soret regime, however, squares being slightly
unstable in the ideal system are stabilized by the sidewall
forcing, while rolls are destabilized. The reason is that in
the Soret regime the mode amplitudes are so small and
the Mexican hat potential is so shallow that already a
small inhomogeneity —a small tilt of the "potential"—
stabilizes pattern 2 and destabilizes the others.

At r =r
~

(Fig. 4) this stationary convective square pat-
tern becomes unstable as the system undergoes a for-
wards Hopf bifurcation into an oscillatory convective
state. We have chosen )=0.005 such that the Hopf bi-
furcation at r, coincides with the experimental onset of
oscillations in the large square cell of MS.

1. Stationary convection

0.5 1.0 1.5

We have numerically evaluated the stationary solutions
of our model equations in the presence of a small forcing
g, =gz ——g&0 by a Newtonian algorithm. Their stability
was determined by solving the associated 10' 10 eigen-
value problem as described in Sec. III.

In agreement with experiments we found that in the

FIG. 4. Mean Nusselt number and reduced oscillation fre-
quency (inset) vs reduced Rayleigh number. Solid lines (station-
ary convection) and dots (oscillatory convection) result from our
model with forcing /=0. 005 for /=0. 1, L =0.018, o =23.
Open squares and circles are experimental results of MS for sta-
tionary square convection and oscillatory convection, respec-
tively. Oscillations first appear at r i, stationary rolls at rz.
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due to our crude and presumably not fully adequate in-
corporation of the sidewall forcing effect. Furthermore,
our model uses free-slip boundaries, whereas the no-slip
experimental boundaries might slow down the periodical-
ly alternating growth of the two orthogonal sets of con-
vection rolls appearing in the cycle. A hint in this direc-
tion is the fact that at the threshold r =r, the experimen-
tal oscillation period ( =2.8d /~) is about a factor of 10
longer than that of our free-slip model.

We have therefore plotted in the inset of Fig. 4 the os-
cillation frequencies reduced by their respective values at
onset, r =r, . With growing Rayleigh number the fre-
quency decreases towards a finite value at r =r2 where
the roll solution becomes stable again. Our model shows
in the immediate vicinity of r2 a hysteretic transition to
stationary roll convection.

In Fig. 5 we show the trajectories of the limit cycles
projected onto the plane of the pattern amplitudes p &,p2
which determine the light intensity distribution of the
shadowgraph pictures. This limit cycle where the three
shown patterns appear successively strongly resembles
the experimentally observed pattern sequence.

In the lower half of Fig. 6 we show for the limit cycle
at r =1.3 and I.05 one period of the shadowgraph ampli-
tude p, (t) starting from the positions marked in Fig. 5 by
the arrows. For r close to ri the oscillations are almost
sinusoidal. In agreement with experiment they become
more anharmonic with increasing r and plateaus begin to
form. The amplitude pz(t) is phase shifted relative to
p, (t) by half a period. According to (2.12a) the light in-

tensity at a position x,y is the superposition of p1(t) and

p2(t) weighted by cos(kx) and cos(ky), respectively.
Since for arbitrary x,y these two contributions can add
up to almost arbitrary curves one has to be careful in in-
terpreting light intensity curves measured at an arbitrary
position.

In the upper half of Fig. 6 we show the Nusselt number
oscillating with twice the frequency of the pattern oscilla-
tion. The reason is the mirror symmetry of Fig. 5 at the

Q5 -~:— —,r=13
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0.16
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45' diagonal resulting from our choice of g, =$2. This
lets the two convective ro11 patterns occurring in the cy-
cles of Fig. 5 be identical up to a rotation by m. /2. In an
experimental square ce11, on the other hand, one might
expect imperfections to be present that favor one ro11

direction, say x, over the other one, leading eventually to
different Nusselt numbers for the x- and y-roll states. In
such an experimental situation the periodicity of N(t)
with half the pattern period would no longer hold exactly
but only approximately so. In fact, MS state that the
Nusselt number oscillates with twice the frequency of the
cycle.

In view of the above discussion a careful analysis of the
period of N(t) in comparison with that of the convective
patterns might provide a sensitive tool to measure the im-
perfections of a square cell used in convection experi-
ments.

FIG. 6. Shadowgraph pattern amplitude pl and Nusselt
number N for one period of the limit cycle at r =1.3 (left ordi-
nate), and r =1.05 (right ordinate) shown in Fig. 5 (start is
marked there by the respective arrow). The other amplitude p2
entering into the shadowgraph light intensity EI(x,y, t) (2.12a)
is phase shifted relative to p& by half a period. See text for de-
tails and a discussion of the double frequency oscillation of
N(t). Parameters as in Fig. 4.

V. SUMMARY AND CONCLUSION

5
1.0

Q.Q Q.5

FIG. 5. Limit cycle trajectories projected onto the pl-p2
plane of shadowgraph pattern amplitudes. The closed square
represents the stationary square convective state at r =1. Pa-
rameters as in Fig. 4.

We have derived an extended and generalized Lorenz
model for binary mixtures at positive separation ratios
subject to stress-free, impermeable horizontal boundaries.
In agreement with experiments the model shows that
convection sets in at a Rayleigh number r that is consid-
erably reduced in comparison to the critical one, r =1, in
a one-component Iluid, in particular if g/L » l. In the
Soret regime just above onset the buoyancy force driving
the convective flow is dominated by the concentration
field but the convective heat transport and the slope of
the Nusselt number X are extremely sma11. In the Ray-
leigh regime at r g 1 temperature modes dominate the
buoyancy force and N grows as in a one-component fluid.

In the absence of symmetry-breaking inhomogeneities
the model equations have a set of four equivalent fixed
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points representing stationary convection in the form of
straight rolls and a set of four equivalent fixed points
describing convection in the form of squares. Two of the
former represent rolls oriented along the x direction
which transform into each other by translating the pat-
tern in the y direction by half a wavelength or,
equivalently, by reverting everywhere the flow direction.
Similarly there are two stationary states for rolls oriented
along the y direction. The four square patterns are relat-
ed to each other by translations by A, /2 along x and/ or y.

In the idealized systetn square (roll) convection is very
weakly unstable (stable) in the Soret regime, while rolls
(squares) are strongly stable (unstable) in the far Rayleigh
regime. In a region of r values between these two regimes
there is no stable stationary convective state. There a
stable limit cycle solution exists with alternating rolls and
squares such that every pattern out of the two sets of
symmetry-degenerated states appears. Thereby the local
flow direction periodically reverses. In the experimental
cell of MS, however, only patterns with certain phase re-
lations (upflow and downflow positions) relative to the
sidewalls are realized: with a fixed number of rolls or
squares in the square-shaped container the local flow
direction of the rolls or squares never changes —only the
amplitudes vary.

To incorporate the sidewall forces selecting the phase
of the pattern we introduced into the Galerkin model, in
a purely phenomenological way, a small inhomogeneous
forcing term that favors a particular phase of the roll or
square pattern, say, one with upflow at the origin
x =y =0. Within the picture of a deformed Mexican hat
potential accommodating the symmetry-degenerated

square- and roll-fixed points the forcing would tilt the hat
slightly towards the favored patterns (the hat serves only
as a convenient means for discussion —the Galerkin
equations are not derivable from a potential).

In the far Rayleigh regime the inhomogeneity does not
change the stationary roll solution that results from large
internally generated forces due to nonlinear mode in-

teractions. In the Soret regime, however, where the
mode amplitudes are small the sidewall forcing stabilizes
squares and makes rolls unstable there. Tilting the hat
also changes the limit cycle in the intermediate regime
around r =1. Instead of running through all eight pat-
terns along the "groove of the hat" the system now oscil-
lates as in the experiments between two specific patterns
of rolls along x and y with one square pattern in between
such that the local flow direction does not change.

With increasing r the oscillation frequency decreases
from its value at the Hopf bifurcation out of the station-
ary square solution towards a final finite value when the
limit cycle undergoes at larger r a transition with small
hysteresis into a stationary roll state. The form of the os-
cillations becomes more and more anharmonic. The
Nusselt number oscillates with precisely half the period
of the pattern cycle if the states with rolls along the x and

y directions are identical.
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