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Molecular model of fused salts near an electrode
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%'e study the charged —hard-sphere model of a fused salt near a planar electrode, using a density-
functional theory of inhomogeneous electrolytes. The results at relatively high temperatures show

an oscillating charge distribution near the electrode, suggesting that near solid-liquid coexistence,
the electrode is "coated" by a few atomic layers of the solid phase, analogous to wetting phenomena
at liquid-vapor coexistence. At lower temperatures, we observe the growth of a macroscopically
large ordered (solidlike) phase that is separated from the bulk fluid by an interface that extends over
many molecular layers. Among other things this result shows, for the first time in the literature,
that a density-functional theory is capable of producing a thermodynamically stable, ordered phase
without the need of putting in any crystallographic symmetry at forehand.

I. INTRODUCTION

The system of a molten salt near an electrode is of in-
terest from a theoretical point of view, since it is of fun-
damental importance in chemical physics; and it is of in-
terest from a technological point of view, since the wet-
ting of electrodes by fused salts is of vital importance in
heterogeneous catalysis. ' In these technological applica-
tions, the wetting of the solid by the liquid is determined
by the solid-liquid, the liquid-vapor, and the solid-vapor
surface tensions that in turn follow from the density dis-
tribution of the fluid near the respective interfaces. To
calculate these density distributions on a statistical
mechanical footing, one has to simplify reality to a
mathematical model. One model that has been used fre-
quently in the study of homogeneous liquids, is the
charged-hard-sphere model, in which the molecules of
the fluid are replaced by hard spheres that interact at
long distances by a llr potential. The quantitative
properties of this model do not seem to match the experi-
mental data of fused salts very well, however, and this
has led to the introduction of some more elaborate mod-
els.

However, since the theory of inhomogeneous fused
salts is far from developed at present, we wish to study
the simple charged-hard-sphere model near a hard pla-
nar wall first, before the more elaborate models are ana-
lyzed. Recently, Li and Mazo have studied this model in
the generalized mean-spherical approximation (GMSA)
and found damped oscillations in the charge density as a
function of the distance from the wall. Since this theory
describes the density as a perturbation from a fixed refer-
ence density, it is incapable of describing two-phase coex-
istence, and moreover, since it is a linear theory, the
damping of the charge oscillations near the wall must
equal the bulk GMSA property that has been put into the
model. The advantage of the GMSA, naturally, is the
possibility of finding analytic solutions since it is a linear
theory, but the price to pay for this advantage is the need
of putting in the surface sum rules by hand.

hand.
A completely different type of theory is the density-

functional method. This theory is based on a functional
expansion of the free energy of an inhomogeneous liquid
about that of a locally optimized reference state, and has
been introduced by one of us for the inhomogeneous
electrolyte problem. Surface sum rules come out au-
tomatically in such a model, and two-phase coexistence is
possible, i.e., it is not at forehand excluded. In the
present paper we use this theory to calculate the density
distribution of a fused salt near a planar electrode, at
some values of the temperature and the surface charge at
the electrode. For small values of the surface charge and
at high temperature we find the charge oscillations near
the electrode to damp out at the length scale of the bulk
fluid correlation length, just as a linear theory would pre-
dict. As solid-liquid coexistence is approached, and the
surface charge is increased, we find these oscillations to
damp out more slowly, which points to what we propose
to call "coating" of the electrode by the solid phase, on
the analogy of wetting phenomena at liquid-vapor coex-
istence. Before presenting these results in Sec. III, we
briefly discuss the density-functional theory in Sec. II.
Our conclusions and some points of discussion are sum-
marized in Sec. IV.

II. THE DENSITY-FUNCTIONAL THEORY

In the charged —hard-sphere model, the particles in-
teract with the simplest possib1e pair potential to describe
electrolytes. The repulsive part of the potential is taken
to be a hard-sphere interaction, where all particles have
the same diameter R. This potential is given by

(la)

(lb)

where c.=coo, is the dielectric constant of the medium,
and q; is the charge of particle type i in SE units. The
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thermodynamic state in this model is completely deter-
mined by two dimensionless parameters, namely, the re-
duced density

p =pR (2)

and the reduced temperature

T*=4mckTR /q (3)

4m.

v'sk TR ' T'

' 1/2

(4)

where q is the unit of charge, and k is Boltzmann's con-
stant. Instead of the reduced temperature, a dimension-
less charge Q,. or coupling constant Q will often be used
here. They are defined by

where z,. is the charge of species i in elementary charge
units and Q=Q, (z, =l). In the sequel we denote the
positive particles with the subscript 1 (z, =1) and the
negative ones by the subscript 2 (zz ———1).

To describe the charge distribution near a charged wall
in an elaborate manner, we study a theory in which the
density is described by a large number of very thin layers
parallel to the wall. The density in each layer is a free
variable that must be determined by the theory. These
variables follow from the condition that the grand poten-
tial of the system must be minimal; for a system contain-
ing two types of particles having dimensionless charges Q
and —Q (or Q, =z, Q, where z, =+1), this grand potential
is, in the presence of an external electrostatic field P'"'(r),
given by

PQ= f g p;(r)[ln(p;(r)k;) —p; —I+6fs(Ip j)+z; bfD(Ip ))+Q;(P'"'(r)+ —,'P'"'(r))]d r

+ f d r f d r'g p;(r)G,,{r r', p (—r)}(pj(r') p, (r)—),

where P= 1 /kT, and where the following auxiliary func-
tions are used. Firstly, the densities p; are coarse-grained
densities that vary slowly in space, and that are used to
define an optimized local thermodynamic state of refer-
ence. We denote g;p, by p; the definition of these refer-
ence densities will be given later. Secondly, the functions
b fs and b fn are the relevant expressions for the excess
free energy per particle of the reference state:

Gs(r;p )=E(r;p )+f C (r;gp )gdg, (loa)

G („. 0} CMsA(„. 0}+ Q
2 D ' 4~r

(lob)

with Gs&D dGs&D(r———r';p)/Bp. The reference densities
therefore are fixed when the coupling functions are
known. Following the model defined earlier, these are
given by

Afs ———gp, f dg fd r Gs(gp ),
I

b fD ———gz;p; f

deaf

d r GD(gp ),
l

(6b) E (r;p) =—8(r —1)
6

e
—2m( r —1)

cos(2n.r), (11)

(6a)
The function E in (10a) is defined as

where Gs and GD are "sum" and "difference" couplings,
from which the coupling matrix follows as

Gs+ GD Gs —GD
G; =

Gs —GD Gs+ GD

The field P'"'(r), finally, is the electrostatic field due to the
charges of the fluid; it is by definition the solution of
Laplace's equation,

hP'"'(r) = —g Q,p, (r) .

where ri=np/6 is the packing fraction, and C is the
Percus- Yevick solution to the hard-sphere direct correla-
tion function. The expression, integrated with respect to
the density, that is needed in (10a) can be found in the
literature. The function CD in Eq. (10b} is the mean-
spherical approximation to the difference direct correla-
tion function (C++ —C+ )/2 which is calculated by
Waisman and Lebowitz.

III. RESULTS

pi+ps= & pi+pa&s
0 0p2= &pi p2&D

(9a)

(9b)

where &a &s&D stands for f Gs&Da(r')d r'/ jGz&Dd r',

To find the reference densities, we require the free en-
ergy to be stationary under variations with respect to the
variables p;. Since in Eq. (5} we have taken coupling
functions G; that do not depend on the difference refer-
ence density p, —p2, this requirement does not determine
all reference densities, but following the approximation
introduced by one of us, we take

In the present article we use this theory to calculate
the density distribution of a fused salt near a planar elec-
trode. The set of parameters that we use applies to mol-
ten KCl and is given by the temperature T =1500 K and
the particle diameter R =3.14 A. The value of c., has
been varied from e, =1 to c.„=10in order to study the
effect of the polarizability of the ions. The equilibrium
density in the bulk of the liquid, i.e., far away from the
electrode, has been fixed at p=p++p =0.669, where
the hard-sphere diameter has been used as the unit of
length. For this set of parameters, the dimensionless
coupling constant varies from Q =21 for a nonpolariz-
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able salt to Q =6.7 at e„=10, and the Debeye-Hiickel in-

verse screening length that is given by x =Q&p varies
from x =17 to x =5.5. This range of parameters may al-
ternatively be viewed as a temperature variation from
T' =0.028 to T' =0.28, or from T = 1500 K to
T =15000 K at c„=1.

This ionic liquid is confined between two hard planar
walls that are situated at z =0 and at z=A, where the
system size A is chosen suSciently large. The repulsive
interaction between fluid and walls is described by the
imposed boundary conditions, namely, p;(z) =0 for z & —,

'

and for z & A —
—,'. The electrostatic interaction with the

walls is described by the introduction of the external field
P'"'(z) that is given by VP'"'(z)=grr' and P'"'(A)=0.
The boundary conditions used for the internal field are
VP'"'(0)=0 and P'"'(A) =0; thus we describe a finite sys-
tem with a surface charge —o.= —o'q/R at the left
wall, and with a grounded conductor at the right wall.
We have performed calculations for o' =0. 1,0.2, 0.3 and
for 0' =0.4.

To study the behavior of the system for a given surface
charge, as a function of the reduced temperature, we cal-
culated the density profiles for the given parameters at
c, =2, 4, and 10, at the surface charge cr'=0. 40. These
density distribution functions have been plotted in Fig. 1,
where the solid curves give the counterion densities, and
the dashed curves give the coion densities. We observe
the formation of an oscillating layer near the electrode,
which is of increasing thickness with increasing coupling.
The occurrence of these oscillations is in line with the re-
sults of Monte Carlo simulations by Heyes and Clarke on
charged soft spheres, ' and with the charge oscillations
observed by Larsen" in the bulk correlation function of
charged hard spheres. For the smallest couplings c, =10
and e„=4 (these values correspond to a high reduced
temperature), we find the oscillations to decrease ex-
ponentially with a decay rate that matches the MSA
correlation length. At c, =2, however, we find the first
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FIG. 2. The dimensionless potential Pqt( of the electrode in
the presence of a fused salt with c„=2.0 as a function of the sur-
face charge o *.

few oscillations to decay slower than expected on account
of the MSA correlation length, unless the surface charge
is reduced to cr'=0. 1. For higher surface charges and
for a low value of c„we also find the local sum reference
density to be increased over several molecular layers near
the wall.

The validity of the present theory may be tested by
comparing its predictions with experimentally accessible
quantities. One observable property of the described sys-
tem is the potential of the electrode as a function of the
surface charge. To find this function, we have also varied
the surface charge for a salt of c, =2. The potential at
z =O,PqI(o=g[P'"'(0)+P'"'(0)], is given in Fig. 2 for
this system. This experimentally observable quantity,
however, is only indirectly related to the density distribu-
tion. A more direct experimental observation of the den-
sity profile would be very desirable, and can in principle
be performed using ellipsometry or related techniques.
These methods may provide information about the thick-
ness of the layer by means of the coverage of the elec-
trode by the salt. For an electrode situated at z=0, we
define the nth moment of the adsorbed layer of species i
as

1.0—

X
0.0
2.0—

1.0—

U 0.0

1.0—

C —r =4.0

E-r =2.0

p;z —p; z" z, (12)

where the fluid extends to infinity. In fact, I; is the ob-
servable that is usually named "coverage, " and the ratio
I,'/I; is a measure of the thickness of the adsorbed layer
of species i. For the systems that have been discussed, we
have compiled these moments of the layer in Table I.

TABLE I. Some moments of the adsorbed layer of a fused
salt at the electrode.

0.0
0.0

I I I

4.0 8.0 12.0
z coordinate

16.0

FIG. 1. The density profiles of a fused salt near an electrode
of surface charge o.*=0.5 for various dielectric constants.

0.1

0.2
0.3
O4
0.4
0.4

2.0
2.0
2.0
2.0
4.0

10.0

0.005
0.089
0.182
0.278
0.225
0.184

0.031
0.083
0.165
0.218
0.117
0.090

—0.095
—0.111
—0.118
—0.122
—0.175
—0.216

0.025
0.060
0.107
0.125

—0.031
—0.024
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FIG. 3. A typical density profile at growth conditions. The
surface charge equals a*=0. 1 and c,= 1.0.

A completely different situation from the one that is
outlined above, occurs if the dielectric constant is re-
duced to c.„=1.To describe the results here, we need to
explore the question of how the density profiles are calcu-
lated in some more detail. The method we use to calcu-
late the density distribution is an iterative one, where we
start with a uniform density, and change this profile by
taking steps along the steepest descent of the grand po-
tential, with a step size that is proportional to the gra-
dient of the grand potential in function space. This way,
the minimum of the grand potential is reached in a
manner very similar to the way a real system equilibrates,
and thus the study of the density profile as a function of
the number of iteration steps gives insight into the non-
equilibrium properties of the system.

When this procedure is used to calculate the density
profile at c„=1and o.*=0.1, one observes the growth of
a large solidlike ordered layer adjacent to the electrode.
The thickness of this layer increases proportional to the
number of iterations, and we did not observe any indica-
tion that the growth velocity of this ordered structure
slows down after a plateau in the oscillation amplitude
was reached (see Fig. 3). We thus conjecture the solid
phase to be the stable one in this case, and interpret this
observation as the growth of the solid salt from its under-
cooled melt. To test whether the observed ordered struc-
ture indeed corresponds to an intrinsic minimum of the
grand potential, we also calculated the density profiles for
a surface charge density +*=0.2 from a uniform start.
After the same number of iterations, we obtained density
profiles that only differ from those that are given in Fig. 3
for the first two (solid) layers adjacent to the wall. As ex-
pected, both the amplitude of the density oscillations at
the plateau, and the envelope of the solid-liquid interface
reproduce exactly.

To discriminate between the solid and the liquid, one
could study the local sum reference density: in the solid
phase we find an increase in the coarse-grained density by
3% relative to the density in the fluid phase. This in-
crease seems realistic in comparison with experimental
systems, but its small value causes problems to trace the
solid. To distinguish the ordered phase from the bulk
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FIG. 4. The square density order parameter for the density
profile given in Fig. 3.

liquid, we therefore suggest the introduction of the
"square density" S(z) as an order parameter that we
define by

z+ b, /2 2S(z)=—f [p, (z) —p2(z)] dz,
z —5/2

(l3)

where 6 is the wavelength of the oscillations at the pla-
teau of the ordered structure. This order parameter in
practice changes by a factor of 10 between the solid and
the liquid phases. This function is given in Fig. 4, which
shows a very smooth interface between the solid and the
liquid. The interface involves many layers, as is expected
in the Cahn picture of a solid-liquid interface. '

IV. DISCUSSION

Using a density-functional method, the density distri-
bution of a fused salt has been calculated in the neighbor-
hood of a charged electrode. We find this distribution to
show oscillations in the local charge density by the for-
mation of layers of alternating charge. The occurrence of
these charge oscillations is in line with the expectation,
given the observed charge oscillations that appear in the
charged-soft-sphere model, ' and in the correlation func-
tion of the charged-hard-sphere model. " Within our
theory, the system tends to freeze between T*=0.028
(e„=l) and T'=0.056 (e„=2), but the actual value of
the freezing temperature in this theory is strongly
influenced by the simple MSA direct correlation function
for which we used the theory. One cannot expect this

simple direct correlation function to lead to an accurate
prediction of the freezing temperature.

What is of importance at this point, however, is the
fact that within our model, the temperature of the system
at c, =2 is above, but close to, the freezing temperature.
Thus the increased density, and the reduced decay rate of
the charge oscillations at c„=2near the wall, may be in-
terrelated in the following manner. Due to the presence
of the wall, the system which is already close to solid-
liquid coexistence is pulled away from the stable liquid
phase into the metastable solid phase. Thus the wall is
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"coated" by a few molecular layers of the solid phase on
the analogy of wetting phenomena at liquid-vapor coex-
istence. Questions as to whether we have to indeed con-
sider a "precoating" or a "critical coating" transition are
at present unclear. A more thorough study at this point,
using Monte Carlo and density-functional techniques
seems advisable.

With respect to our ordered solution at c.„=1,we wish
to remark that in our theory the density parallel to the
wall has been averaged out at forehand. This procedure
excludes the description of a lateral structure, hence the

ordered solution lacks a real three-dimensional crystalline
symmetry. Several quantitative features of the interface,
however, are expected to not be influenced much by this
neglect of the lateral structure. Thus we predict a Cahn-
like interface for the {111) face of a simple salt in contact
with its melt. ' This interface excludes the presence of
facets in this orientation, which is in line with the obser-
vations. Indeed the only faces observed on alkali halo-
genides, grown from their melts, are the I100I faces. '

The other faces are absent, and the crystals generally ap-
pear to be round, in agreement with the present theory.
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